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Abstract— In a series of papers, we have formalized an active
Bayesian perception approach for robotics based on recent
progress in understanding animal perception. A central aspect
of this active perception approach is the inference of ‘where’
and ‘what’ objects are in the environment under uncertainty,
termed Simultaneous Object Localization and IDentification
(SOLID). Here we describe some of the details of this algorithm
and approach, its extension to include reinforcement learning
of the active control strategy and speed-accuracy balance, and
how the methods connect with computational neuroscience.

In a series of papers [1], [2], [3], [4], [5], [6], [7], [8], we
have formalized a Bayesian perception approach for robotics
based on recent progress in understanding animal perception.
Our formalism extends naturally to active perception, by
moving the sensor with a control strategy based on evidence
received during decision making. Benefits of active Bayesian
perception include: (i) robust perception in unstructured
environments [5]; (ii) an order-of-magnitude improvement in
acuity over passive methods [8]; (iii) a general framework for
simultaneous object localization and identification (SOLID),
or ‘where’ and ‘what’ [8]; and (iv) a formalism that naturally
integrates with reinforcement learning so that both the active
control strategy and the appropriate belief threshold can be
tuned appropriately to the contextual situation [6]. Here we
describe some of the details of this algorithm and approach,
and how it connects with computational neuroscience.

The present approach of active Bayesian perception with
reinforcement learning for Simultaneous Object Localization
and IDentification is further motivated by recent progress in
the neuroscience of human and animal perception over im-
perfect sensor information. Leading computational accounts
involve the sequential accumulation of evidence to threshold,
consistent with numerous psychological and electrophysio-
logical experiments [9], [10]. Work in computational neu-
roscience also indicates these principles may relate to the
macro-architecture of the brain, principally the basal ganglia
and cortex [11], [12]. In particular, it has recently been
suggested that the basal ganglia architecture appears con-
figured for optimal decision making over multiple channels
of sensory evidence under a wide range of assumptions about
what the evidence represents. The correspondence between
the basal ganglia anatomy and a network version of sequen-
tial analysis holds with generic probability distributions and
evidence encoding log likelihoods, log likelihood ratios or
the log odds, and is shown in Fig. 1. (The mapping may not
be unique: others have been proposed in [11] and [13].)
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Fig. 1. Map between cortico-basal ganglia anatomy and sequential analysis.
(a) A subset of the connections between the cortex and the basal ganglia
nuclei. STN denotes the subthalamic nucleus, SNr the substantia nigra
pars reticulata and GPe/GPi the globus pallidus external/internal segments.
(b) The network version of Bayesian sequential analysis considered in [12],
configured to map onto the cortico-basal ganglia anatomy. The striato-
pallidal indirect pathway (dashed lines) is interpreted as conveying negative
changes to decision thresholds−∆Θ−

k , which complement positive changes
∆Θ+

k along the direct striato-nigral pathway. Decisions are selected with
upwards threshold-crossing in cortex, with the baseline and thresholds
shifted consistently to ensure positive neuronal activity.

Sequential analysis methods for optimal decision making
have also been applied recently to robot perception, focussing
on robot touch [1]. A strength of the formalism is that it
connects closely with leading work in neuroscience, allowing
insights from animal perception to be transferred to robot
perception. For example, these methods have enabled the
first demonstration of hyperacuity in robot touch [4], giving
perceptual acuity finer than the sensor resolution, as is
common in animal perception. As discussed above, they also
give robust perception in unstructured environments [5] in
which there is uncertainty in both where and what objects
are, as is also a central aspect of animal perception.

Our algorithm for active Bayesian perception with re-
inforcement learning is based on including a sensorimo-
tor feedback loop in an optimal decision making method
for passive perception derived from Bayesian sequential
analysis [1]. Sequential analysis uses a free parameter, the
decision threshold, to adjust the speed-accuracy tradeoff of
the decisions [14]. Our control strategy for active perception
also has another free parameter, the fixation point. We
thus introduce reinforcement learning to set these two free
parameters according to a reward function of the speed
and accuracy of the decision outcome. Taken together, this



Fig. 2. Algorithm for active Bayesian perception with reinforcement
learning. Active Bayesian perception (left) has a recursive Bayesian update
to give the marginal ‘where’ and ‘what’ posteriors, allowing active control
of the sensor position and decision termination at sufficient ‘what’ belief.
Reinforcement learning (right) modifies the decision threshold and active
control strategy based on reward information derived from the decisions.

results in the algorithm shown in Fig. 2. A key step in our
combination of active perception and reinforcement learning
is to interpret each active perception strategy (parameterized
by the threshold and fixation point) as an action. In other
work, we have viewed active Bayesian perception as passive
Bayesian perception with a sensorimotor control loop [5],
[8]. For passive Bayesian perception, the methods proposed
here would optimize just the belief threshold. Thus, by
including a sensorimotor loop, the active control strategy is
then optimized with the same reinforcement mechanism.

In the future, we aim to draw further parallels between
the cortico-basal ganglia network for perceptual decision
making and algorithms for optimal robot perception, to use
insights from animal perception to propose new methods
for robot perception and interaction with their environments,
while constraining the models of animal perception to be
appropriate for robot applications.
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