
Robot learning by observing humans activities and modeling failures.

Stefano Michieletto1 and Alberto Rizzi1 and Emanuele Menegatti1

Abstract— People needs are varied and different. Service
robotics aims to help people to satisfy these needs, but not
all the feasible programs can be preloaded into a robot. The
robot have to learn new tasks depending on the circumstances.
A solution to this challenge could be Robot Learning from
Demonstration (RLfD) [3] [2].

In this paper, a RLfD framework is described in its entire
pipeline. The data are acquired from a low cost RGB-D sensor,
so the user can act naturally with no need of additional
hardware. The information are subsequently elaborated to
adapt to the robot structure and modeled to overcome the
differences between human and robot.

Experiments are performed using input data coming from a
publicly available dataset of human actions, and a humanoid
robot, an Aldebaran NAO, is shown to successfully replicate an
action based on human demonstrations and some further trials
automatically generated from the learned model.

I. INTRODUCTION

Service robotics is asked to help people in everyday life:
from carrying heavy stuff to opening a door, from taking care
of elderly to playing games with kids. The requested tasks
can vary a lot from one person to another and preparing the
robot to any possible human need is not a feasible strategy.
New skills should be learned directly from human being.

Robot Learning From Demonstration (RLfD) [3] [2] also
called Imitation Learning is a programming paradigm that
uses demonstrations in order to make a robot learn new tasks.
Several approaches were adopted in RLfD: Schaal et al. [20]
used motion primitives to encode learning data, Akgun et al.
[1] extracted keyframes to correctly model a skill, Calinon et
al. [6] proposed an Hidden Markov Model/Gaussian Mixture
Regression technique to reproduce human demonstrations in
a multiple constraints environment.

As highlighted in [15], state of the art approaches are
based on expensive or sophisticated hardware normally inap-
propriate for household applications. In our work, we used
a low-cost RGB-D sensor to provide data to an improved
version of the Donut Mixture Model (DMM) proposed by
Grollman in [11].

The model adopted is suitable in case of failed demonstra-
tions due to the mapping between human and robot joints.
In fact, this operation can generate a failed robot attempt,
even starting from a successful human example.

The estimated model can also be updated using the at-
tempts performed by the robot: this feature is very important
to rapidly obtain correct robot trajectories using only few
human demonstrations.

1Stefano Michieletto and Alberto Rizzi and Emanuele Menegatti are with
Department of Information Engineering (DEI), University of Padova, Via
Gradenigo 6/B, 35131 Padova, Italy {michieletto, rizzialb,
emg}@dei.unipd.it

Figure 1 shows an overview of the complete framework.

Fig. 1. Overview of the entire system proposed in this paper.

The robot used in this work is a very diffuse humanoid
created for both scientific and service purposes: the Alde-
baran NAO.

To test our RLfD framework a simple task involving only
a 1 degree of freedom (DoF) has been learned: throwing a
ball into a basket. The selected joint belongs to the upper part
of the robot in order to avoid stability problems and focus
our work to the learning system. The demonstrations used to
train the framework come from a public action dataset, and
the actors even do not know they are teaching to a robot.

The remainder of the paper is organized as follows: in
Section II, the data acquisition system is presented. The robot
structure and the joints considered in this work are illustrated
in Section III. An analysis of the considered human motions
and the data refinement process are described in Section
IV. The Robot Learning from Demonstration framework is
analyzed in Section V. The tests performed and the results
collected are reported in Section VI. Conclusions and future
works are contained in Section VII.

II. DATA ACQUISITION

Different data acquisition systems can be used to convey
the demonstrations from users to the robot: motion sen-
sors [5], kinesthetic teaching [13], or vision systems [8].

Motion sensors techniques imply to put some stuff on the
user, while kinesthetic demonstrations involve robot motion
guiding by a human performer. A naive user hardly suits to
these methods, because they are unnatural or uncomfortable.
We propose to use a RGB-D sensor [12] able to acquire the
scene at 30 fps with a resolution of 640x480 pixels for both
color and depth information. These sensors are cheap, low
weight and power consuming, so they can be easily mounted
on a mobile robot for service robotics purposes.

Recently, a large variety of computer vision algorithms
using RGB-D sensors has been developed to estimate human
pose [23], perform skeleton tracking [14] and recognize
actions and activities [16]. We used a skeleton tracking
algorithm [19] running at 30 fps to acquire joint positions and
orientations (Figure 2) subsequently elaborated to understand
the motion and guide the robot in the learning phase.

Fig. 2. Skeleton joints provided by the tracker.

III. ROBOT STRUCTURE ANALYSIS

The robot used in this work is an Aldebaran NAO H25
v 4.0. It is a small humanoid robot with 25 DoF and an
integrated Intel Atom CPU @ 1.6GHz. NAO comes with two
gyroscopes, an accelerometer, a feedback provided from all
its joints and pressure sensors on its feet. It can communicate
with external systems using a Wi-Fi connection. A complete
software suite and a SDK1 package are also provided to fully
program the humanoid platform and interact with the NAOqi
application programming interface (API).

NAO is one of the most popular humanoid robots in the
market, it is used for both research and service purposes and
for these reasons we chose it to test our algorithms, but the
following considerations can be easily adapted to any other
suitable robot.

The remainder of this work involves only the upper-body
motion in order to avoid stability problems, as we said
before.

Fig. 3. Aldebaran NAO, right arm working area.

Starting from the skeleton data, we extract the information
relative to the right arm movement. This information can be
used to properly control the robot arm (Figure 3)2. Our goal

1http://www.aldebaran-robotics.com/documentation/dev/sdk.html
2More information can be found at http://www.aldebaran-

robotics.com/documentation/family/nao h21/joints h21.html

is to extract the most significant joint from the movement
performed by humans and remap it to the robot. Unluckily,
we do not know the most informative joint at priori, so we
should analyze the data from all the joints we are able to
acquire.

Shoulder Roll: The right shoulder roll angle α is
computed using the normalized scalar product of vector
u (neck, r soulder), starting from the neck skeleton joint
and ending to the right shoulder skeleton joint, and the vec-
tor v (r soulder, r elbow), starting from the right shoulder
skeleton joint and ending to the right elbow skeleton joint.
In Equation 1 the complete analytic formula is reported.

α =
π

2
− arccos

(
u · v
‖u‖‖v‖

)
(1)

Shoulder Pitch: The right shoulder pitch angle β is cal-
culated projecting the vector v (r soulder, r elbow), starting
from the right shoulder skeleton joint and ending to the right
elbow skeleton joint, onto the XY plane, and then using the
formula in Equation 2.

β =

arccos

(
yv

PXY (v)

)
if zv < 0;

π − arccos
(

yv
PXY (v)

)
if zv ≥ 0, yv ≥ 0;

−π − arccos
(

yv
PXY (v)

)
if zv ≥ 0, yv < 0.

(2)
where yv and zv are respectively the y and z components of
the considered vector v.

Elbow Roll: In order to compute the right elbow roll angle
γ, the vector −v (r soulder, r elbow), from the right elbow
skeleton joint to the right shoulder skeleton joint, and the
vector w (r elbow, r hand), from the right elbow skeleton
joint to the right hand skeleton joint, are treated in a similar
way than in Equation 1. The resulting formula is reported in
Equation 3

γ = π − arccos

(
−v · w
‖v‖‖w‖

)
(3)

Elbow Yaw: The right elbow yaw angle δ is cal-
culated considering the y component of the vector
w (r elbow, r hand), starting from the right elbow skeleton
joint and ending to the right hand skeleton joint. In Equation
4 the complete analytic formula is reported.

δ = − arcsin (yw) (4)

No data are available from the skeleton tracker to properly
calculate the wrist rotations.

IV. DATA REFINEMENT

The analysis of the considered motions highlights that
the human elbow is the most significant joint we can track
properly. On the other hand the robot forearm is very short
and the throws are consequently ineffective (the maximum
distance reachable is 5 cm). The solution adopted remaps the
human elbow roll angle to the robot shoulder pitch angle in
order to keep the task simple (only a joint is involved) and
make the robot able to throw the ball over 60 cm.

Human joints are more “advanced” than the robot ones:
the angle values can overcome the limits of the robot and
the movements vary a lot from one person to another. Some
thresholds were introduced to clearly identify the action
to learn. All the data before a starting angle and after an
ending angle are automatically discarded. Finally the angle
distance between the maximum and minimum angle of each
demonstration are properly rescaled from the algorithm to
fulfill the robot joint limits.

V. THE LEARNING SYSTEM

The human motions remapped to the robot joints and
subsequently refined can now be executed by the NAO, but
an initially correct attempt could become a failed trial to the
robot. The proposed solution implements a model suitable
for failure demonstration called Donut Mixture Model.

A. Donut Mixture Model

Donut Mixture Model (DMM) is a probability manner
to encode a set of data, in this work demonstrations. The
input dataset X = {xn}Nn=1 is a set of N trajectories
xn = {ξn,tξ̇n,t}Tn

t=1, of possibly different dimensions Tn.
Each trajectory is composed by joint positions ξ = {ξj}Dj=1

and velocities ξ̇ = fθ (ξ) = {ξ̇j}Dj=1, where D is the number
of joints involved in the trajectory. The DMM is used to
approximate the non-linear function ξ̇ = fθ (ξ).

A Donut component in the mixture model is defined as
the difference between two Gaussian components:

D(x|µα, µβ ,Σα,Σβ , γ) = γN (x|µα,Σα)−(γ−1)N (x|µβ ,Σβ)
(5)

where
• D is the Donut distribution;
• x is a trajectory;
• N is a standard normal distribution;
• µα and Σα are respectively the mean vector and the

covariance matrix of the first Gaussian;
• µβ and Σβ are respectively the mean vector and the

covariance matrix of the second Gaussian;
• γ > 1.
The aim of a Donut distribution is looking for a good

trajectory in the covariance space between the two Gaussian
distributions. In order to explore this space the distribution
has to avoid the best approximation of the collected demon-
strations obtained from a Gaussian distribution. Therefore the
mean of the two Gaussians should be the same, µα = µβ .
In order to keep constant the shape of the covariance, a
parameterization is applied to the Donut covariance matrices,
such that Σα = Σ/r2α and Σβ = Σ/r2β .

The Donut distribution changes as follow:

D(x|µ,Σ, rα, rβ , γ) = γN (x|µ,Σ/r2α)−(γ−1)N (x|µ,Σ/r2β)
(6)

In order to calculate the Gaussian distributions, a Gaussian
Mixture Model (GMM) is computed from the input data.
A weighted Expectation Maximization (EM) [18] process
is used to iteratively adjust the (πk, µk, Σk) parameters
of the K Gaussians composing the mixture, namely the

priors vector, the mean vector and the covariance matrix.
The Bayesian Information Criterion (BIC) [21] was used to
estimate the optimal number of Gaussian components K in
the Mixture. The score assigned at each considered K is
described in Equation 7

SBIC = −L+
np
2

logN (7)

where
• L =

∑N
j=1 log (p (ξj)) is the model log-likelihood;

• np = (K−1) +K(D+ 1/2D(D+ 1)) is the number of
free parameters required for a mixture of K components
with full covariance matrix.

The log-likelihood measures how well the model fits the data,
while the second term aims to avoid data overfitting to keep
the model general. The overall state of the GMM is described
by θ = {K, {πk, µk,Σk}Kk=1}.

The probability that a joint assumes a certain velocity
given its position is

p(ξ̇|ξ) =

K∑
k=1

π̃k D(ξ̇|µ̃k, Σ̃k, ε) (8)

µ̃k = µ̃k(ξ) = µk(ξ̇) + Σk(ξ̇, ξ)Σ−1k (ξ, ξ)(ξ − µk(ξ))

Σ̃k = Σk(ξ̇, ξ̇) + Σk(ξ̇, ξ)Σ−1k (ξ, ξ)Σk(ξ, ξ̇)

π̃k = π̃k(ξ) =
πkN (ξ;µk(ξ),Σk(ξ, ξ))∑K
k=1 πkN (ξ;µk(ξ),Σk(ξ, ξ))

ε = 1− 1

1 + ‖Ṽ [ξ̇, ξ, θ]‖

Ṽ [ξ̇|ξ, θ] = −Ẽ[ξ̇|ξ, θ]Ẽ[ξ̇|ξ, θ]> +

K∑
k=1

πk(µkµ
>
k + Σk)

where
• γ is set to 2, so in Equation 6 the first Gaussian is

doubled and than the second Gaussian is subtracted;
• µ̃k is the k-th mean vector derived from the estimated

GMM;
• Σ̃k is the k-th covariance matrix derived from the

estimated GMM;
• π̃k is the k-th mean vector derived from the estimated

GMM, with
∑K
k=1 πk = 1

• ε is the (exploration) exploratory factor, with 0 ≤ ε ≤ 1,
so we have maximum exploration (high variability) for
ε→ 1, while the minimum exploration (low variability)
is reached for ε→ 0;

• Ṽ [ξ̇|ξ, θ] is the overall variance of the estimated GMM
connecting the variability generated by human demon-
strators to the system exploration.

A novel trajectory can be generated from the computed
DMM. If this new trajectory fails in reaching the task, the
model should be updated reiteratively in order to get success.
A first technique consists of recomputing the model using the
EM process on the entire dataset plus the generated trajec-
tory. This method grows in time and memory proportionally
to the input dataset. An alternative uses a sample and merge
approach to maintain constant both time and memory.

B. Optimization

The new trajectory generation requires that the DMM
probability density function is maximized. Differently from
GMM, DMM has no analytical solution to the problem, so
an optimization technique should be used. Grollman [11]
proposed gradient ascendant (steepest gradient) to find a
maximum around an initial guess. The result could be both
global or local maxima depending on the starting point.

In this paper the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm [4] [9] [10] [22] is used to
overcame some problems we noticed using gradient
ascendant that is very inefficient when the function to be
maximized has long narrow valleys. BFGS is a quasi-
Newton optimization state-of-the-art method that iteratively
approximates Hessian matrix to converge to the solution.

Given f convex, continuously differentiable function to
maximize, x0 starting point in the f domain and B0 initial
approximation of the Hessian matrix set to any symmetric
positive definite matrix (i.e. identity matrix), at each iteration
k the point xk and the matrix Bk is updated using the
formulas:

xk+1 = xk + t∆x

Bk+1 = Bk −
Bksks

>
k Bk

s>k Bksk
+
yky
>
k

y>k sk
(9)

where
• t is the step size;
• ∆x = −B−1k−1∇f(xk−1) is the direction to move to

find the maxima, it is also used as stopping criterion in
the case it is lower than a predefined threshold;

• sk = xk − xk−1;
• yk = ∇f(xk)−∇f(xk−1).
This method assures fast convergence, it avoids calcu-

lation of second-order information, that is computationally
expensive using numerical differentiation. BFGS is a general
purpose method, very effective in several situations, and with
a minimal variation also with large scale applications. Table I
shows a comparison between a gradient ascendant implemen-
tation and the BFGS algorithm we proposed. Three initial
points were considered on a DMM generated randomly. The
convergence of the algorithm, the number of iterations, the
resulting point and its corresponding value in the Donut are
considered.

The result still could be a local maximum, this is an in-
trinsic problem due to use of gradient as moving direction. It
mainly depends from the designed starting point, at example
if it is near to a local maximum. Another typical error could
happen when the curvature near to the starting point is lower
than the threshold and the algorithm stops at the first iteration
even if the selected point is in the Donut tail.

In order to avoid these situations, we introduced two
polices:
• Start Check (SC): the starting point is changed if the

neighborhood presents a gradient already lower than the
selected threshold;

• Multi-way Search (MW): the research of the maximum
is reiterated starting from S different initial points
simultaneously. The number of starting points S can
vary with the number of processors and the response
time requested by the application. In this work we set
S = K, and the starting points are the means of the K
Donut components. Finally, we considered the overall
maximum, thus only the best resulting maximum is
used. This policy allows us to avoid local maxima that
lead to sub-optimal trajectories.

In Table II three different tests are reported in which SC
policy is applied to non converging or local converging
BFGS instances. Table III shows the MW policy with S = 4
compared with two different standard BFGS iterations. For
both Table II and Table III the same DMM generated for the
Table I comparison was used as function to maximize.

VI. EXPERIMENTAL RESULTS

Our approach is tested using the skeleton data provided
in the Throw Over Head action from the IAS-Lab Action
Dataset3 [17] [16], in which 12 actors threw a ball using a
basketball approach (Figure 4). The arm is raised, the elbow
is bent, the limb is extended, and the wrist is rotated so that
the ball reaches the target; the entire movement is correctly
repeated 3 times for each actor. The acquired data were
refined as described in Section IV and remapped to the robot
joint space. From the original 36 trajectories, we removed 2
samples in which the number of skeleton joint data provided
is too low to be effective in the robot movement.

These demonstrations are the input to our Learning from
Demonstration framework. The aim is to make an Aldebaran
NAO learn how to play basketball. The robot should be able
to put the ball into a basket placed 40 cm in front of it
(Figure 5). The results of the system are compared with the
output trajectories computed using well-know GMM/GMR
framework [7] suitable for robot learning when the task
is successfully performed by the demonstrators. As in the
original article, the means of the Gaussian components are
used to generate the trajectory from the system.

Fig. 5. Overview of experimental scenario: the NAO is placed at 40 cm
from the basket.

Looking at our input trajectories we notice, as we ex-
pected, that only few (11 over 34) throws enter correctly into
the basket, the remaining 23 throws score no points; even if

3The IAS-Lab Action Dataset is publicly available at
http://robotics.dei.unipd.it/actions

TABLE I
COMPARISON BETWEEN BFGS AND GRADIENT ASCENDANT OPTIMIZATION ALGORITHMS.

Method BGFS Grad. Asc. BGFS Grad. Asc. BGFS Grad. Asc.
Convergence Yes No Yes Yes Yes No

Iterations 4 250 2 194 5 250
x0 -0.02 -0.02 0 0 0.02 0.02

xmax -0.0029 -0.0029 -0.0029 -0.0029 -0.0029 -0.0029
f(xmax) 114.23 114.23 114.23 114.23 114.23 114.23

TABLE II
COMPARISON BETWEEN STANDARD BFGS AND BFGS PLUS SC POLICY ON NON CONVERGING OR LOCAL CONVERGING STARTING POINTS.

Method BFGS BFGS + SC BFGS BFGS + SC BFGS BFGS + SC
Convergence No Yes Yes Yes Yes Yes
Local/Global - G L G L G

Iterations (SC) 1 4 (8) 2 5 (3) 5 3 (5)
x0 -0.25 -0.031 -0.063 -0.034 -0.114 0.006

∇f(x0) 0 1.25 -2.48 E -19 0.027 0 -197.3
xmax -0.25 -0.0029 -0.053 -0.0029 -0.10 -0.0029

f(xmax) 0 114.23 -1.47 E -17 114.23 -1.73 E -84 114.23

TABLE III
COMPARISON BETWEEN STANDARD BFGS AND BFGS PLUS MW POLICY.

Method BFGS BFGS MW 1 MW 2 MW 3 MW 4
Convergence No Yes Yes Yes Yes Yes
Local/Global - G L G G G

Iterations 1 5 2 3 2 5
x0 -0.07 -0.038 -0.063 -0.0062 -0.001 0.024

∇f(x0) 0 7.29 E -6 -2.48 E -19 2597.8 -2026.36 0.24
xmax -0.07 -0.0029 -0.053 -0.0029 -0.0029 -0.0029

f(xmax) 0 114.23 -1.47 E -17 114.23 114.23 114.23

Fig. 4. Screen-shots from the Throw Over Head action performed by different actors in the IAS-Lab Action Dataset.

all the 34 demonstrations were successfully performed by the
actors. This result is due to difference between the human
and the robot DoFs, and, as we said before, we chose a
Learning from Failure Demonstrations framework to model
human observations mainly for this reason. It is also worth to
notice that the difference is further augmented by the noise
introduced by the sensor.

We divided the 34 demonstrations into three groups:

• successful and failed demonstrations (34 trajectories)
• failed demonstrations only (23 trajectories)
• successful demonstrations only (11 trajectories)

for each of these groups we generated 15 new trajectories
coming from 15 different DMM, where the 1st DMM models
the initial dataset (34, 23 or 11 demonstrations), the 2nd

DMM models the initial dataset plus the previously generated
trajectory, the nth DMM models the initial dataset plus the
(n− 1)th trajectories generated previously. Differently than
in Grollman’s work, where the generation is stopped when a
successful trajectory comes out, we preferred to generate all

the 15 trajectories in order to observe the system behavior
even with a high number of correct demonstrations.

In the first group, the input trajectories are both correct and
incorrect. The generated trajectories are showed in Figure
6 (a), the 15 trajectories from our framework are drawn
in red; in black the one generated from the GMM/GMR
framework; the input trajectories are dotted in blue. The 5th,
6th, 13th and 15th trajectories scored a point, while the one
from GMM/GMR did not.

The results from the second group are showed in Figure
6 (b). As before the 23 incorrect input trajectories are dotted
in blue; in red the ones from our framework; the trajectory
generated by the GMM/GMR framework is black. Since
this group is composed by failed demonstrations only, we
expected an improvement in our framework performances
and still a bad throw from GMM/GMR framework. As we
expected, only 5 generated trajectories failed, the 2nd, the
6th, the 8th, the 13th and the one from GMM/GMR.

Figure 6 (c) shows the third group results. As usual the 11

(a) Generated trajectories from both successful and failed demon-
strations.

(b) Generated trajectories from failed demonstrations only.

(c) Generated trajectories from successful demonstrations only.

Fig. 6. Results obtained from the demonstrations collected from human
observations (blue dots) using our framework (in red) and a GMM/GMR
framework (black).

successful trajectories are dotted in blue; the ones in red are
generated from our framework; the GMM/GMR trajectory is
in black. Differently from what we thought, our framework
overcomes the GMM/GMR one even in this group. In fact,
the GMM/GMR throw touches the basket border, but finally
goes out. On the other hand, our framework generated only
2 failed trajectories: the 1st and the 11th.

VII. CONCLUSIONS

In this paper, a RLfD framework was developed in order
learn a new skill from human observations. The model used
is suitable to overcome the differences between the human
and robot motions, with only few more trials performed by
the robot. We compared the results with a different RLfD
technique. Our framework generates better trajectories in all
the considered scenarios.

As future work we will focus on time performances in
order to make it work real-time. We also plan to increase
the number of robot joints controlled by the framework,
and for this reason we improved the model proposed by
Grollman [11]. In fact, some preliminary tests showed that
our approach does not incur the problems highlighted by
Grollman in his work.

REFERENCES

[1] B. Akgun, M. Cakmak, K. Jiang, and A. L. Thomaz. Keyframe-based
learning from demonstration. International Journal of Social Robotics,
2012.

[2] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of
robot learning from demonstration. Robotics and Autonomous Systems,
2009.

[3] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot pro-
gramming by demonstration. In B. Siciliano and O. Khatib, editors,
Handbook of Robotics, 2008.

[4] C. G. Broyden. The convergence of a class of double-rank minimiza-
tion algorithms 1. general considerations. IMA Journal of Applied
Mathematics, 1970.

[5] S. Calinon and A. Billard. Stochastic gesture production and recogni-
tion model for a humanoid robot. In Intelligent Robots and Systems,
2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Con-
ference on, 2004.

[6] S. Calinon, F. D’halluin, D. G. Caldwell, and A. G. Billard. Handling
of multiple constraints and motion alternatives in a robot programming
by demonstration framework. In Humanoid Robots, 2009. Humanoids
2009. 9th IEEE-RAS International Conference on, 2009.

[7] S. Calinon, F. Guenter, and A. Billard. On learning, representing,
and generalizing a task in a humanoid robot. Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, 2007.

[8] R. Dillmann. Teaching and learning of robot tasks via observation of
human performance. Robotics and Autonomous Systems, 2004.

[9] R. Fletcher. A new approach to variable metric algorithms. The
computer journal, 13(3):317–322, 1970.

[10] D. Goldfarb. A family of variable-metric methods derived by varia-
tional means. Mathematics of computation, 1970.

[11] D. H. Grollman and A. G. Billard. Robot learning from failed
demonstrations. International Journal of Social Robotics, 2012.

[12] J. Han, L. Shao, D. Xu, and J. Shotton. Enhanced computer vision with
microsoft kinect sensor: A review. IEEE Transactions on Cybernetics,
2013.

[13] M. Hersch, F. Guenter, S. Calinon, and A. Billard. Dynamical
system modulation for robot learning via kinesthetic demonstrations.
Robotics, IEEE Transactions on, 2008.

[14] A. Kar. Skeletal tracking using microsoft kinect. Methodology, 2010.
[15] A. León, E. F. Morales, L. Altamirano, and J. R. Ruiz. Teaching

a robot to perform task through imitation and on-line feedback. In
Progress in Pattern Recognition, Image Analysis, Computer Vision,
and Applications, 2011.

[16] M. Munaro, G. Ballin, S. Michieletto, and E. Menegatti. 3D flow
estimation for human action recognition from colored point clouds.
Journal on Biologically Inspired Cognitive Architectures, 2013.

[17] M. Munaro, S. Michieletto, and E. Menegatti. An evaluation of 3D
motion flow and 3D pose estimation for human action recognition. In
Learning in Graphical Models, 2013.

[18] R. Neal, and G.E. Hinton. A view of the EM algorithm that justifies
incremental, sparse, and other variants. In RSS Workshops: RGB-D:
Advanced Reasoning with Depth Cameras, 1998.

[19] Nite middleware [online] http://www.primesense.com/solutions/nite-
middleware.

[20] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. Learning movement
primitives. In Robotics Research, 2005.

[21] G. Schwarz. Estimating the dimension of a model. The annals of
statistics, 1978.

[22] D. F. Shanno. Conditioning of quasi-newton methods for function
minimization. Mathematics of computation, 1970.

[23] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio,
A. Blake, M. Cook, and R. Moore. Real-time human pose recognition
in parts from single depth images. Communications of the ACM, 2013.

	Introduction
	Data acquisition
	Robot structure analysis
	Data refinement
	The Learning System
	Donut Mixture Model
	Optimization

	Experimental Results
	Conclusions
	References

