
Cognitive Skills Models:
Towards Increasing Autonomy in Underwater Intervention Missions*

Luı́s Santos1, Jorge Sales2, Pedro J. Sanz3 and Jorge Dias4

Abstract— In this paper a set of computational cognitive skills
is developed and implemented on a Autonomous Underwater
Vehicle (AUV) towards increasing its autonomy in intervention
missions. Literature reveals that very few underwater systems
have the ability to perform fully autonomous interventions
without any kind of user specification/interaction. Our imple-
mentation divides the cognitive process two-fold: (1) learning
actions from human demonstration and (2) autonomous task
execution. Task parametrizations are generalized and encoded
using Gaussian Mixture Models (GMM), which in turn are
allocated into memory. On run-time execution, the system will
perform continuous environment and self assessment using
Bayesian Inference. The estimated information is used to probe
the memory, locating the adequate (learned) solution. The ma-
nipulator configuration sequences are synthesized via Gaussian
Mixture Regression (GMR) methods. This work is integrated in
a larger project, where evaluation follows a process of increasing
experimental complexity, in this specific case, validated using a
realistic underwater simulator. Promising results, indicate that
the developed cognitive skills can be transferred and tested on
the real system.

I. INTRODUCTION

Underwater manipulation systems are limited, in the sense
they usually require a human operator to guide them through
their actions. To increase their autonomy, they should exhibit
a set of cognitive skills which include memory, learning,
reasoning, decision making and reproducing actions. This
paper represents a work in progress, focusing on developing
the necessary skills for an Autonomous Underwater Vehicle
for intervention, which is defined as physical interaction with
the environment, using for example a robotic arm.

With this aim, we propose a four stage cognitive process:
1) Sensing the environment;
2) Interpreting the data;
3) Learning and memorizing manipulation skills;
4) Reproducing those skills for autonomous manipulation.

*This work was partly supported by Spanish Ministry of Research and
Innovation DPI2011-27977-C03 (TRITON Project), by Foundation Caixa
Castelló-Bancaixa PI.1B2011-17, by Universitat Jaume I under grant E-
2013-33, by the FCT - Portuguese Foundation for Science and Technology,
Grant # 65935/2009, by the Institute of Systems and Robotics from
University of Coimbra, Portugal and Khalifa University, Abu Dhabi, UAE.

1Luı́s Santos is with the Institute of Systems and Robotics, Department
of Electrical and Computer Engineering, University of Coimbra, Coimbra,
Portugal luis@isr.uc.pt

2Jorge Sales is with the Computer Science and Engineering Department,
University of Jaume-I, Castellón, Spain salesj@uji.es

3Pedro J. Sanz is with the Computer Science and Engineering Depart-
ment, University of Jaume-I, Castellón, Spain sanzp@isr.uc.pt

4Jorge Dias is with the Institute of Systems and Robotics, Department
of Electrical and Computer Engineering, University of Coimbra, Coimbra,
Portugal and the Robotics Institute, Khalifa University, Abu Dhabi, UAE
jorge@isr.uc.pt

Simulation

Real Scenario 1

Increasing
Complexity

Real Scenario 2

Real Scenario 3

Fig. 1: Development strategy: the core techniques are de-
signed, developed and prototyped inside the UWSim sim-
ulator. Then, the research results generated by this activity
will be tested on real scenarios of increasing complexity.

We present task oriented approach, in which upon interpret-
ing the scene, the system will probe its memory into retriev-
ing an appropriate action. Memorized actions are built upon
task generalization based on “learning by demonstration”
principles. Experimental validation will be carried out in
the realistic 3D Underwater Simulator UWSim [1] and with
specifically developed modules to allow the user interaction
for the learning process.

A. Related Work

In the field of the underwater intervention, including
physical interaction, it is worth mentioning previous projects
like SAUVIM [2], intended for deep interventions, which
demonstrated the autonomous recovery of seafloor objects
by using a very bulky and expensive system; and TRIDENT
[3] [4], that demonstrated the first multipurpose object search
and recovery strategy in 2012, able to operate in shallow wa-
ters, but still requiring user interaction for the specification of
the intervention mission. To the best of our knowledge, there
exists at least one ongoing project running in the underwater
intervention context (including physical interaction) funded
by European Commission: PANDORA [5], which aims to
increase AUVs autonomy. In this context, a learning solution
for autonomous robot valve turning, using Extended Kalman
Filtering and Fuzzy Logic to learn manipulation trajectories
via kinaesthetic teaching was recently proposed [6].

Reinforcement learning has been applied by Lopes et
al. [7], towards learning and imitating actions. In case of
unknown conditions, the robot will simply keep repeating to

known motion pattern. Pastor et al. [8] investigated “learning
by demonstration” methods using Dynamic Movement Prim-
itives. A library is recorded using symbolic descriptors, using
kinaesthetic learning. To execute, the system is manually
given a specific set of task parameters to perform a single
execution. Support Vector Machines are used to learn and
actualize object affordances, through behavioral parameters,
to establish object-effect relations in [9]. Pushing and pulling
household objects by learning the impact and kinematic
parameters is addressed in [10]. They centroid and pose
information, extracted from a Microsoft Kinect. The goal
is giving a robot the ability to select between left and right
arm and detect the reach space of its actions.

B. Our Approach

As seen from the state of the art, underwater systems
still have limited autonomy. Moreover, most “learning by
demonstration” methodologies are implemented in controlled
environments and do not show the ability to modify the
task during execution. Underwater scenarios are subject to
uncertainty and noise, given its own environmental nature,
with constantly changing conditions, and might require the
AUV to modify its course of action in run-time execution.

This work represents a stage within an experimental
process of increasing complexity (see Figure 1). There is
an initial phase, where developed models are executed in a
realistic simulation environment. The objective is to refine
and validate the AUV’s implemented models in a simulation
environment, after which they will be transferred into a real
system, conveying real hardware in real environments with
increasing number of uncontrolled variables (disturbances,
visibility, noise, etc.). Moreover, when moving to real robotic
platforms, the scenarios and skills will also be expanded. The
presented work refers to the first stage, model design and
implementation for simulation testing.

A human expert is given a target action, which he has
to teleoperate in UWSim. The simulator has the ability to
give a realistic sense of the underwater conditions during
an action performance. Bear in mind, we only use sensed
information that is consistent with what a real AUV has
access to, in real scenarios. After a number of different
trials, performed actions are generalized and stored in a
categorically organized memory. Symbolic properties are
associated to sensed data, which define environment, object
and action models. These are used by the system to infer of a
solution for a task, using a Bayesian based decision process.
Our framework is task oriented, where tasks are parametric
representations of a global objective. From our solution we
can identify the following main contributions:
• An analysis model, which can adapt to changing con-

ditions of underwater scenarios;
• A memory which can store generalized action knowl-

edge and is searchable by context/symbolic information;
• An AUV which is cognitive in the sense it can au-

tonomously perceive the environment, decide is course
of action and provide the mechanical system with a
kinematic solution for a given identified task.

II. UWSIM: DATA SENSING AND PROCESSING

The UWSim is used to simulate a real underwater sce-
nario (i.e. a water tank), including an underwater vehicle
equipped with a robotic arm. In our validation arrangement,
we consider that the vehicle is located at a fixed position
with respect to the target object, so that a user can focus on
object manipulation and not on guiding the vehicle.

The UWSim [1] is a software tool for visualization and
simulation of underwater robotic missions. The software is
able to visualize an underwater virtual scenario that can
be configured using standard modeling software, and do
the interface with external control programs through the
Robot Operating System (ROS). UWSim is currently used in
different ongoing projects funded by European Commission
(i.e. MORPH [11] and PANDORA) in order to perform HIL
(Hardware in the Loop) experiments and to reproduce real
missions from the captured logs.

The simulated robotic arm is a virtual representation of
the real arm considered for the validation scenario (CSIP
Light-weight ARM5E). It has 5 D.O.F. and can be equipped
with different kind of grippers, which can also be equipped
with sensors to provide contact information, being this in-
formation useful when grasping an object. An example of a
successful reactive tactile sensor test recently performed in
laboratory conditions (water tank) can be seen on-line [12].

The low-level control architecture, including the arm kine-
matics, was implemented in C++ and makes use of ROS
for inter-module communications. The kinematic module
accepts either Cartesian or joint information (i.e. pose, ve-
locities). The ARM5Control module uses joint velocities in
order to compute motor RPM [13].

III. DATA INTERPRETATION

The system continuously performs inference about the
scene and its own state, based on information acquired from
built-in sensing capabilities. A Dynamic Bayesian Network
is proposed to perform estimation about the various states,
in an interpretation process, developed using Bayesian Pro-
gramming [14], [15], [16]. The relevant variables are defined
in the first step of Bayesian Programming, such that:
• A ∈ {pick-up, push} is a random variable denoting the

different actions our manipulator can perform.
• G ∈ {top, lateral, front} is a random variable denot-

ing the end-effector configuration to act on the object.
• P ∈ {approach, reach,manipulation} is a random

variable which identifies the current action phase. The
initial motion towards an object occurs on the approach
phase ; The end-effector takes the appropriate grasp
configuration in the reach-to-contact phase; Manipula-
tion correspond to mechanically acting on the object.

• O ∈ {box, stone, vessel} is a random variable defining
the known object classes.

• Θ ≡ [θ1, · · · θn] ∈ [−π, π] is a random variable
representing the angle in radians of a given joint n.

• F ≡ (f1, · · · , fb) ∈ Rb represents the sensed informa-
tion as a vector of processed laser range measures.

• d ∈ R is a random variable measuring the distance from
the end-effector to the target object.

To estimate the joint state of an action and its corresponding
characteristics, we use Bayesian Inference on the decompo-
sition equation of Figure 2. The most likely candidate object
class is estimated upon weighing the uncertainty of each
evidence ∈ F . Each different action phase P depends on
the existing knowledge about the manipulator configuration
Θ together with the relative distance to the target object d.
The geometric configuration is used as evidence for inference
over the Grasp Type state. These dependencies are reflected
as conditional probabilities, elements of the decomposition
of the joint distribution, which are also reflected in the Direct
Acyclic Graph (DAG) in Figure 3. The DAG is divided into
different abstraction levels for easier comprehension. There is
the action space, the characterization space encompassing the
phase and the grasp type, the object space with information
about the target object and the feature space, which holds
the observable evidence.

Likelihood distributions, which are function of random
variables ∈ R, are formulated upon Gaussian distributions,
as they are expected to be normally distributed. The density
functions that depend on discrete variables, as is the case of
the variables whose space state is symbolic, do not follow
any particular known parametric form. They represent sta-
tistical information of the different symbols being observed
for a given state, and are encoded using stochastic matrices.

Once the model is fully specified we can now query it
for information. To obtain an estimate of the most probable
action state given observable evidence, we apply the Maxi-
mum A Posteriori (MAP) method, in which inference over
the action variable is given as in equation (1).

ÂMAP = argAmax P (Θ|G)P (O|G)P (d|P)
P (Θ|P)P (F |O)P (P |A)P (O,G|A)P (A)

(1)

de
sc

ri
pt

io
n

sp
ec

ifi
ca

tio
n

Variables:
A,G, P,O : scene and state symbolic information;

Θ ∈ [−π, π] : real values of each joint n;

F ∈ Rb : laser range finder characteristic vector;
D ∈ R : distance from the end-effector to the object;
Decomposition:
P (A,G, P,Θ, D,O, F) =

P (Θ|G) P (O|G) P (D|P) P (Θ|P)

P (F |O) P (P |A)P (O,G|A) P (A)

Formulation:
P (A) = Histogram
P (Θ|G), P (O|G), P (D|P),

P (Θ|P) and P (F |O) = Gaussian
P (P |A), P (O,G|A) = Stochastic matrix

identification: parameters learned from training data F,Θ, D

Fig. 2: Bayesian Program description: (1) enumerates the
relevant variables; (2) joint distribution decomposition; (3)
formulation of the conditional distributions in parametric
forms; (4) Identification stage where parameters of the Gaus-
sian distributions are estimated from experimental data.

actionaction

phasephase graspgrasp objectobject

ΘΘ dd FF

Action space

Characterization space

Feature Space

Object space

Fig. 3: Directed Acyclic Graph of the proposed Dynamic
Bayesian Network. Nodes represent variables and directed
arcs represent variable dependencies.

The MAP method is a point estimate, which will return the
most probable state from each of the symbolic variables.

A. Experimental Results

In this section we present the experiments which demon-
strate the interpretation capabilities of our system.

TABLE I: Confusion Table of Symbolic Classifications.
Acronyms: (A) Approach; (R) Reach-to-Contact; (M) Manipula-
tion; (T) Top; (L) Lateral; (F) Front; (V) Vessel; (B) Box; (S) Stone;
(Pu) Pick-Up; (P) Push.

(a) Action Confusion Table.

(Pu) (P)
(Pu) 1.00 0.00
(P) 0.10 0.90

(b) Object Confusion Table.

(V) (B) (S)
(V) 0.95 0.00 0.05
(B) 0.00 1.00 0.00
(S) 0.01 0.00 0.99

(c) Grasp Type Confusion Table.

(T) (L) (F)
(T) 1.00 0.00 0.00
(L) 0.00 0.95 0.05
(F) 0.10 0.00 0.90

(d) Phase Confusion Table.

(A) (R) (M)
(A) 0.93 0.04 0.03
(R) 0.32 0.55 0.13
(M) 0.00 0.03 0.96

Action classification shows high precision. It is a fact that
we have a reduced number of Action classes, which is in part
justified by the reduced number of DoF of our manipulator.
Increasing the number of DoF will allow the system to
perform a wider range of actions, while simultaneously
providing the model with extra variables. Discrimination will
naturally increase, hence precision is expected to hold.

Object detection is robust, given they have different
shapes. Considering scenarios where a gripper is to pick an
object, the shape is probably the most important attribute.
Therefore, in case we augment our object database, confu-
sion might exist in similarly shaped objects, which is not
critical from a grasping point of view. However, inferring
additional object properties from sensed data, might increase
discrimination in these cases.

We can see that the results for action phases in Table I (d)
suggest a delay when detecting the Reach-to-Contact. After
a thorough step-by-step analysis, we found this confusion to
come from the distance d thresholds in the model training. In
fact, the Reach-to-Contact phase is defined by short ranges
and time periods, generating Gaussian Distributions of low

 1

C
um

u l
at

iv
e

p r
o b

a b
i l

i t
y

P
(
1
|P

=
p) p=approach

p=reach
p=manipulation

Fig. 4: Learned Gaussian Distributions for P (θ1|P = p),
with p = {approach, reach,manipulation}.

variance (see Figure 4). Hence, when in the presence of
noise, it easily diverges to the nearest phase class, more
specifically, Approach. In light of models’ precision and dis-
cussed issues, the achieved promising results (see Table II),
indicate that we can move into a more complex experimental
phase, the underwater tank.

TABLE II: Global precision per symbolic variable.

Symbolic Variables
action object grasp phase

Precision (%) 95.00 99.12 96.66 86.50

IV. ACTION GENERALIZATION AND SYSTEM MEMORY

Learning which attitude the end-effector should exhibit at
the different phases, requires the definition of the manipula-
tion skills based on sensed information and learning them,
from human demonstrations. Consider a set Ω, containing ω
trajectory samples for a given action a ∈ A, characterized by
a specific Grasp Type g ∈ G for a determined object o ∈ O.
Let each ω be manually segmented in time with respect to
the different phases p ∈ P . We consider that a trajectory
can be parametrized as ω = f(θn, d, t), where t represents
the variable time. This function represents the behaviour
of a single manipulator joint θn in time, but also encodes
a constraint value range θn function of the distance d to
the target object. We propose the following parametrization
functions to represent ω.

ω =

 d = f(t)
θi = f(t)
θi = f(d)

, i = 1, · · · , n (2)

The graphics in Figure 5 present collection of m human
demonstrations, which plot an example graph for each of
the aforementioned functions.

For an efficient representation, we need to obtain a
generalized model for each of the functions. We propose
an encoding process which uses Gaussian Mixture Models
(GMM). A mixture model can efficiently be applied to reduce
the dimensionality of a large number of sampled action
trials. In cases where the number of available learning trials
is high, there is an obvious advantage of saving a fixed

0 2 4 6 8 10 12 14 16 18

0.2

0.4

0.6

0.8

1

1.2

t

ra
n
g
e

Fig. 5: Raw data functions for m = 10 trials of a Pick a
Box from the Top, at the Approach Phase.

0 2 4 6 8 10 12 14 16 18

0.2

0.4

0.6

0.8

1

1.2

t

ra
n
g
e

Fig. 6: GMM representation of raw data function.

number of representative parameters, rather than the raw
data. Moreover, we can apply regression function, which
using those parameters can retrieve an approximation of the
trial average.

In equation (3), the formulation for the GMM encoding
is presented for variables where Γ ≡ (γ1, · · · , γz), where
γ = {θ1, · · · , θn, d, t}.

p(Γ|χ) =

k∑
i=1

φif(Γ|µi,Σi) (3)

Each function is represented by a set of weights and Gaussian
Parameters χ ≡ (φ1, · · · , φk,m1, · · · ,mk, σ1, · · · , σk) for
a number of k different Gaussian distributions. Mean and
variance vectors are given by µ = (m1, · · · ,mk) and
Σ = (σ1, · · · , σk). Figure 6 presents the Gaussian Mixture
Model of the functions of Figure 5, considering k = 2. The
optimal Gaussian parameters are estimated from a Maximum
Likelihood (ML) approach, for which the Expectation Max-
imization algorithm was used.

L(Γ|χ) =

z∑
j=1

log

k∑
i=1

φif(γj |mi, σi) (4)

Given the estimation process follows ML, we selected a
small number of components, k = 2, so as to avoid the
effect of over-fitting.

A. Memorizing and Accessing Manipulation Skills

Given different sets of GMM parameters χ for different
actions and characteristics, there is the need to develop a
system action memory. We propose an indexing scheme,
where the memory location is encoded by enumerating
variable state, creating a discrete 4-D manifold space.

index = f(a, o, g, p), where

a ∈ A
o ∈ O
g ∈ G
p ∈ P

(5)

Indexes a, o, p, g correspond to the states for symbolic vari-
ables. We propose an intuitive way of representing this

cognitive memory, using a B-Tree structured memory, where
the index at each level will lead to the selection of a leaf.
Each leaf contains the generalized manipulator configuration
parameters χ for solving a task with specific characteristics
(see Skills Memory block in Figure 8a). It keeps data sorted
and allows for searching or sequential access, insertions, and
update in logarithmic time.

Given that we are using a supervised learning process, at
the beginning of each demonstration, the user is instructed
to perform a specific action, using a determined grasp type
to interact with a target object. The different phases are
also automatically assigned upon defining specific distance
thresholds from the end-effector to the object. Therefore, the
system automatically records that experiment to the specific
memory location given by those index selections. Memory
size benefits from the mixture approach, as the number of
leafs is exponentially proportional to the number of different
actions. Having a parametric representation of a generalized
action, helps maintaining a sizeable, efficient memory.

B. Manipulation Skills Synthesis

In this paper, we are proposing a Task Oriented approach
where, given a task to be executed, the system will retrieve
the required learned Gaussian parameters to perform it.
To decode these parameters into generalized configuration
function sequences ω̂, we apply a Gaussian Mixture Re-
gression (GMR) method. Let the joint data samples (Γ, ω),
where Γ and ω are observations and target motion functions
respectively, follow a Gaussian Mixture distribution as in
equation (3). The parameters for the model are given by χ,
and the joint distribution can be expressed as a sum of the
products of the marginal density over Γ and the probability
density function of ω conditioned on Γ:

P (Γ, ω) =

k∑
i=1

φiP (ω|Γ,mi, σi)P (Γ, µk,Σk). (6)

The marginal distribution is given by:

P (Γ) =
∑
ω

P (Γ, ω) =

k∑
i=1

φiP (Γ, µi,Σi). (7)

The regression function can be obtained from (6) and (7):

P (ω|Γ) =

∑k
i=1 φiP (ω|Γ,mi, σi)P (Γ, µi,Σi)∑k

i=1 φiP (Γ, µi,Σi)
(8)

Where the mean and covariance of the conditional distribu-
tion P (ω|Γ) can be computed as:

mk = µk + ΣkΣ−1k (Γ− µk)
σ2
k = Σk − ΣkΣ−1k Σk

(9)

The graphs in Figure 71 illustrate the covariance space af-
ter the regression (color blue) and the synthesized function ω̂
(in red), obtained upon a Maximum-Likelihood Estimation.

ω̂ = MLE(mk, σ
2
k) (10)

1A MatLab code developed by Calinon et al. [17] was used.

0 2 4 6 8 10 12 14 16 18

0.2

0.4

0.6

0.8

1

1.2

t

ra
n
g
e

Fig. 7: Synthesized function using GMR technique.

Each of these functions is computed for all θn in the
manipulator joint structure, which will give a synthesized
configuration along time and range. The data is given to the
simulator, in order to be executed by the kinematic control
in the underwater manipulator UWSim.

The system is continuously assessing task characteristics
and goals using its interpretation capabilities. Whenever a
modification in task parameters occurs, a memory probe
function is triggered to provide a new ω̂, satisfying the
required changes. We consider our approach as task oriented,
in the sense that we provide a ω̂ for a complete action phase.
This functions are updated based on two conditions:

1) If the task characteristics A,O,G change.
2) When a new phase p ∈ P begins.

Hence, we can define a ω̂p as the manipulator motion
sequence at phase p. To perform a task T encompassing a
set of characteristics, the manipulator should be able to get
a sequence, such that:

T(A=a,O=o,G=g) =
ω̂p=approach → ω̂p=reach → ω̂p=manipulation︸ ︷︷ ︸

Action phases p ∈ P are sequential and assessed from classification.

(11)

This parametric approach, allows to construct a chain of
motion sequences to perform more complex tasks. High
discrepancies for θn between two phases are solved using
kinematic control. In case the system selects and empty
memory cell, it will search its closest neighbours for a
solution. Neighbourhood is defined as a leaf which shares
at least 3 common states with the original solution.

V. AUTONOMOUS EXECUTION EXPERIMENTS

To perform the autonomous execution experiments, a
scenario is loaded into the simulator. The goal is for the
AUV to pick an object autonomously after a learning pro-
cess, from multiple expert user teleoperations. The human-
robot interaction involves: (1) the use of a gamepad, (2) a
complete 3D visual information display, and also (3) sensor
information, such as the distance to the target object and
collision detection. A User Monitor module was specifically
developed to display this information, connecting to the
simulator via ROS interface (see Figure 8b). The module
also sends vibro-tactile information to the gamepad. This is
done to give the user a sense of contact between the arm
and/or the end-effector and the target object. The first step
in the learning process conveys data acquisition from several
trials, from different users. The second step involves learning
the actions and scene parameters, which are generalized and
stored into memory.

Skills Memory (B-Tree Structure) Interpretation

Push

Lateral Front

.

.

.
Approach Reach F

E
A

T
U

R
E

 S
P

A
C

E

... ...

Actuators

Low-level
Control

Sensing

UWSim

Memory
Probe
f(a,o,g,p)

Memory
Content

Action: a = {pick-up,push}
Object: o = {box,stone,vessel}
Phase: p = {approach,reach,manipulation}
Grasp Type: g = {top,lateral,front}
Time: t; Range: d

Variable List:

Box Vessel

...
...

Index

a

o

g

p

Skill:
Pick-up; stone;
top
Phase:
manipulation

Manipulation

Top

Stone

Pick-Up

Χ(a,o,g,p)={

Synthesis
(GMR)

Synthesized
Action

fndt

... Sensor
Processinggrasp

action

phase

object

(a) Global system block diagram.

3D sceneRange sensor
(low value)

Target is
Reachable

Arm-Target collision
detected

Top-view camera
on-board I-AUV

Eye-in-hand
camera

(b) User Monitor Module.

Fig. 8: Global system block diagram, encompassing acquisition, interpretation, memory and execution stages; and User
Monitor module connected to UWSim simulator to provide feedback to the user during the learning stage.

On execution, the memory is constantly probed accord-
ing to sensed information. The adequate motion sequence
functions (one for each joint) are synthesized and sent to
the kinematics module (low-level controller). At this stage,
the proper input to the simulator is generated considering a
specified rate, resolution and velocity ranges. Discontinuities
are automatically solved using smooth interpolation.

This way, the training and learning loop is closed and the
simulator is able to display the automatically generated grasp
execution after a training stage. Examples for the training and
execution are available on-line at the following website:
https://sites.google.com/a/uji.es/learning .

VI. CONCLUSIONS

With the aim of increasing the autonomy levels for Un-
derwater Intervention Missions, we have developed a set
of computational cognitive skills that allow the system to
automatically grasp an object after a learning process. The
developed scheme allows the robot to learn by demonstra-
tion, memorize, decide and access autonomously the suitable
solution to solve a task. The implemented solution (to be
publicly available) works as independent ROS nodes that can
connect both to the simulator and the real environments, as
they share the same interface. The proposed models have
been validated in a realistic underwater simulation environ-
ment, paving the way for testing them in more complex
environments (as previously described in Figure 1).

REFERENCES

[1] M. Prats, J. Pérez, J. Fernández, and P. Sanz, “An open source tool
for simulation and supervision of underwater intervention missions,” in
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on, 2012, pp. 2577–2582.

[2] G. Marani, S. K. Choi, and J. Yuh, “Underwater autonomous manip-
ulation for intervention missions AUVs,” Ocean Engineering, vol. 36,
pp. 15–23, 2009.

[3] FP7-TRIDENT, “Marine Robots and Dexterous Manipulation for En-
abling Autonomous Underwater Multipurpose Intervention Missions
(TRIDENT),” http://www.irs.uji.es/trident/.

[4] P. J. Sanz, P. Ridao, G. Oliver, G. Casalino, C. Insaurralde, C. Silvestre,
C. Melchiorri, and A. Turetta, “TRIDENT: Recent improvements
about autonomous underwater intervention missions,” in 3rd IFAC
Workshop on Navigation, Guidance and Control of Underwater Ve-
hicles (NGCUV 2012), Porto, Portugal, 04 2012.

[5] FP7-PANDORA, “Persistent Autonomy through learNing,
aDaptation, Observation and Re-plAnning (PANDORA),”
http://persistentautonomy.com/.

[6] A. Carrera, S. R. Ahmadzadeh, A. Ajoudani, P. Kormushev, M. Car-
reras, and D. G. Caldwell, “Towards Autonomous Robotic Valve
Turning,” Journal of Cybernetics and Information Technologies (CIT),
vol. 12, no. 3, pp. 17–26, 2012.

[7] M. Lopes, F. Melo, and L. Montesano, “Affordance-based imitation
learning in robots,” in Intelligent Robots and Systems, 2007. IROS
2007. IEEE/RSJ International Conference on, 2007, pp. 1015–1021.

[8] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and gener-
alization of motor skills by learning from demonstration,” in Robotics
and Automation, 2009. ICRA ’09. IEEE International Conference on,
2009, pp. 763–768.

[9] E. Ugur, E. Oztop, and E. Sahin, “Going beyond the perception
of affordances: Learning how to actualize them through behavioral
parameters,” in Robotics and Automation (ICRA), 2011 IEEE Interna-
tional Conference on, 2011, pp. 4768–4773.

[10] T. Hermans, J. M. Rehg, and A. F. Bobick, “Decoupling Behav-
ior, Control, and Perception in Affordance-Based Manipulation,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) Workshop on Cognitive Assistive Systems, October 2012.

[11] FP7-MORPH, “Marine Robotic System of Self-Organizing, Logically
Linked Physical Nodes (MORPH),” http://morph-project.eu/.

[12] “Reactive tactile sensor test.” [Online]. Available: http://youtu.be/
42ZklVwNaqc

[13] J. J. Fernández, M. Prats, J. C. Garcı́a, R. Marı́n, and A. Peñalver, “Ma-
nipulation in the Seabed: A New Underwater Manipulation System for
Shallow Water Intervention,” in 1st Conference on Embedded Systems,
Computational Intelligence and Telematics in Control, CESCIT 2012,
University of Würzburg, Germany, April 2012, pp. 314–319.

[14] P. Bessiere, J.-M. Ahuactzin, K. Mekhnacha, and E. Mazer, Bayesian
Programming. Taylor & Francis, 2012.

[15] F. Colas, J. Diard, and P. Bessière, “Common bayesian models for
common cognitive issues,” Acta Biotheoretica, vol. 58, pp. 191–216,
2010.

[16] J. F. Ferreira, J. Lobo, P. Bessière, M. Castelo-Branco, and J. Dias,
“A bayesian framework for active artificial perception,” IEEE Transac-
tions on Cybernetics (Systems Man and Cybernetics, part B), vol. 43,
pp. 699–711, 2013.

[17] S. Calinon, F. Guenter, and A. Billard, “On learning, representing and
generalizing a task in a humanoid robot,” IEEE Trans. on Systems,
Man and Cybernetics, Part B, Special issue on robot learning by
observation, demonstration and imitation, vol. 37, pp. 286–298, 2007.

