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Abstract— We present a task-oriented grasp model, that en-
codes grasps that are configurationally compatible with a given
task. For instance, if the task is to pour liquid from a container,
the model encodes grasps that leave the opening of the container
unobstructed. The model consists of two independent agents:
First, a geometric grasp model that computes, from a depth
image, a distribution of 6D grasp poses for which the shape of
the gripper matches the shape of the underlying surface. The
model relies on a dictionary of geometric object parts annotated
with workable gripper poses and preshape parameters. It is
learned from experience via kinesthetic teaching. The second
agent is a CNN-based semantic model that identifies grasp-
suitable regions in a depth image, i.e., regions where a grasp
will not impede the execution of the task. The semantic model
allows us to encode relationships such as “grasp from the
handle.” A key element of this work is to use a deep network to
integrate contextual task cues, and defer the structured-output
problem of gripper pose computation to an explicit (learned)
geometric model. Jointly, these two models generate grasps that
are mechanically fit, and that grip on the object in a way that
enables the intended task.

I. INTRODUCTION

Humans are ingenious: If we cannot find the tool we

ordinarily use to perform a task, we easily find another

tool that qualifies. This skill is crucial to our ability to

handle the large variety of objects that populate our world.

Unfortunately, this skill is not yet accessible to today’s robots

– most factory robotic workers only ever perform a single

task, with a single tool. Providing robots with the capability

to use new tools and objects is vital to their transition to

uncontrolled environments. In this domain, our community

has focused on two important issues: developing grasp mod-

els and developing task models. Grasp models [16], [27]

determine grasping points that are suitable for picking up

an object, while task models [15] assume the pre-existence

of a satisfactory grip on the object and focus on modeling

the motion that realizes the task. The objective of this

work is to bridge the gap between these two domains, i.e.,

grasping objects to the end of completing a task that imposes

constraints on the grip configuration. We are investigating a

model that allows a robot to grasp a previously-unseen object

in a way that is compatible with the execution of a given task.

A straightforward approach to allowing robots to work

with new objects is to hardcode the manipulation parameters
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Fig. 1. Grasping for a transport task. Left: the green overlay indicates task-
compatible regions encoded by the CNN. Right: Planning and executing a
7DOF grasp (pose and preshape) within a compatible region.

of each combination of task and object that the robot is

susceptible to encounter. While this approach works satisfac-

torily in a controlled environment where the number of tasks

and objects is limited, it does not translate to open-ended

environments containing millions of objects, and where each

object can be involved in many tasks. To address this

problem, we must provide robots with means of transferring

task-specific grasp experience across objects, to allow them

to initiate a task with objects that are not necessarily those

they trained with.

The problem of task-oriented grasping intuitively fac-

torizes into two subproblems: (A) decide which areas of

an object can be grasped to perform the task, and (B)

position the wrist and the fingers around such areas to

form a mechanically stable grasp. Problem A relates to the

agent’s understanding of the world – for instance a semantic

understanding of objects, tools and context, or a working

knowledge of physics. In turn this understanding allows the

agent to formulate task constraints that incite the proper

execution of the task. Problem B relates to sensorimotor

programs that map from visually-perceived object shapes,

to wrist and finger configurations that yield a workable

mechanical bond between the gripper and the object. The

problem of task-oriented grasping then amounts to jointly

optimizing A and B.

Evidence collected in different behavioral and neuro-

physiological studies [9], [20], [24] indicates that the A–

B composition above is possibly consistent with primate

grasping. The need for contextual information expressed in

Problem A is critically supported by the work of Creem

et al. [5], who observed that grasping relied on semantic

understanding and noted that “without semantic processing,

the visuomotor system can direct the effective grasp of an

object, but not in a manner that is appropriate for its use.”.
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Reciprocally, this A–B composition translates into a natu-

ral grasp planning solution for artificial agents [1], [6], [14],

[31], [33]. Capturing task constraints (Problem A) has been

tackled with physics-based simulations [6], visual features

and learned statistical models [14], [19], [31], or explicit

semantic rules or ontologies [36]. Capturing sensorimotor

correlations (Problem B) is addressable with tools readily

available in the machine-learning literature, and previous

work demonstrating the feasibility of this process is abundant

in the robotics community. Authors have for instance demon-

strated how feature classification [28], prototypical parts [7],

or CNNs [12], [18] are applicable to solving at least in part

the problem of geometric grasp planning.

In this paper, we present a model of task-oriented grasping

that combines geometric reasoning to semantic scene un-

derstanding. We represented task constraints (Problem A)

with a CNN that identifies task-compatible areas within

images provided by the robot’s camera. We trained the CNN

on a synthetic, hand-annotated dataset. We constructed this

dataset by annotating 3D object meshes with task constraints,

and generating random views of random configurations of

those objects. This process allowed us to produce a large

training dataset while keeping the annotation effort reason-

able.

We addressed wrist/finger pose planning (Problem B)

with a geometric part-based model that finds object parts

whose shape is compatible with the gripper’s. To verify task

constraints, we restricted the geometric planner to object

surfaces that are noted task-compatible by the semantic

model. Fig. 1 illustrates our approach.

Our contributions are as follows: We contribute an original

solution to task-oriented grasping, that addresses geometric

and semantic planning jointly. We demonstrate the applica-

bility of a MultiNet-based CNN architecture for modeling

task constraints in image space, and we provide a model that

combines geometric and semantic information probabilisti-

cally. Our model allows the agent to grasp new objects for

which there is no mesh model. It is applicable to 2.5D object

images such as those captured by stock RGBD sensors. It

is capable of generalizing across objects that are globally

different in shape: the geometric planner only exploits local

3D structure, and the CNN learns class traits that are not

necessarily anchored in global object structure.

II. RELATED WORK

This work falls under the broad umbrella of robot affor-

dances [26], [33], whereby roboticists took inspiration in

J. Gibson’s ecological perception [10] to formalize robot-

world interactions. Sahin et al. [26] provided an extended

discussion of Gibson’s affordance concept, its adoption by

the robotics community, and its application to traversabil-

ity management (pushing/running through/driving around).

Stoytchev [33] studied the use of tools in artificial agents.

Similar to this work, Stoytchev made a distinction between

binding affordances that relate to hand-object bonds, and

output affordances that encode the additional capability that

an agent earns by seizing a tool. His work [33] focused on

autonomous acquisition of output affordances via exploratory

learning. Affordance recognition is of particular relevance to

our work, and it has been shown that object affordances can

be modeled using hard-coded features [21] or CNNs [25],

[32].

The work presented in this paper contributes to the ef-

fort supported by the authors listed above, but it focuses

specifically on grasp synthesis. By contrast to the work listed

above, we assume that the agent has already identified that

it can use an object or a set of objects to execute a given

task, and we focus on deciding where and how to grasp.

Close in spirit to our work, Antanas et al. [1] presented a

model that joined task-level and action-level reasoning. The

authors first segmented objects into top, middle, bottom, and

handle, and used a task-dependent grasp model to select

a part to grasp. Then, a shape-based grasp model selected

the final grasp configuration. We go further by avoiding a

hardcoded segmentation into a set of predefined parts, and

instead learn a mapping from image data to both semantic

constraints and gripper parameters. Song et al. [30] presented

a generative model of task-oriented grasping, Dang and Allen

[6] presented a model for task-oriented grasping that ex-

ploited both visual and tactile information, and Vahrenkamp

et al. [35] decomposed objects into parts and assigned task

labels to individual parts. While those models have the ability

to transfer parameters across objects of similar shape, their

ability to transfer to an object whose shape matches none

of the training objects is unclear. Transfer to new objects

is one of the key features of our model: both components

of our model (CNN and geometric planner) rely on local

information and would allow us to transfer parameters from

a jug to a suitcase if both objects exhibited a similar handle.

The work of Hjelm et al. [14] and Nguyen et al. [22] are

closest in spirit to our own. Hjelm et al. [14] hardcoded

a bank of visual features such as close to an opening or

fraction of object surface coverage, then learned qualitative

and geometric relations between those features and grasping

points that are compatible with a task. This paper goes be-

yond the work of Hjelm et al. by learning task features from

annotated data. Nguyen et al. [22] trained a neural network

on the affordance dataset of Myers et al. [21]. Our work goes

beyond Nguyen et al. by using a geometric grasp planner

that outputs grasps that are not necessarily centered on a

part’s centroid, and by demonstrating applicability on dataset

designed for task-oriented manipulation, where objects may

overlap. Our work complements the task space regions of

Berenson et al. [2], by providing means of parametrizing

task and grasp constraints from vision data.

III. METHOD

Our aim is to define a task-oriented grasp model, that

encodes grasps whose placement on an object enable a given

task. For instance, if the task is to hand over an object

to an operator, the model encodes grasps that leave part

of the object’s surface available for the operator to secure

his own grip. As alluded above, the model consists of two

components, a geometric model and a semantic model. The
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Fig. 2. Graphical representation of our grasp model. Variables i and t
model a depth image and the task. Variable c models contact regions (in
image space) that are compatible with the task. Variable h models hand
poses that comply with the geometry of the scene and with task constraints.

geometric model computes, from a depth image, a distribu-

tion of 6D grasp poses for which the shape of the gripper

matches the shape of the underlying surface. The model

relies on a dictionary of geometric object parts annotated

with workable gripper poses and preshape parameters. This

model builds on the work of Detry et al. [7], whereby an

artificial agent learns such a dictionary from experience via

kinesthetic teaching. The second component is a semantic

model that encodes task-compatible grasping regions. It

relies on a CNN that parses a scene into a set of task-

compatible regions, building on the work of Papon et al. [23].

The semantic model allows us to encode relationships such

as “grasp from the handle”. The product of the geometric

and semantic agents allows us to initiate manipulative tasks

on previously-unseen objects by identifying grasping regions

where the shape of the gripper fits the shape of the tool

or object, and where the positioning of the gripper allows

the robot to perform the intended task. This work advances

the state-of-the art by leveraging data-driven semantic scene

understanding and combining a qualitative semantic map to

explicit geometric constraints, thereby providing solutions

that are both contextually relevant and mechanically real-

izable.

A. Grasp Model

Our objective is to model the probability that a grasp

h ∈ H is suitable to accomplish a task t, using an object

shown in an image i, where H models the space of hand

configurations (wrist pose and hand preshape), i models a

depth image, and t models the task. This objective trans-

lates into the construction of an empirical representation of

p(h|i, t), the posterior probability of the hand configuration

given an image and a task. We proceed by decomposing

this problem in two. First, we compute regions of the image

that enable the task, i.e., regions where the hand can contact

the object and yield a grasp configuration that is compatible

with the task. In turn, we compute hand configurations

(wrist pose/finger preshape) for which the shape of the

hand locally matches the shape of the object, and that are

within the task regions defined above. The resulting grasps

are geometrically consistent, and compatible with the task.

Formally, our model involves the three variables i, t and h

defined above, and a fourth variable c that is a ternary image

mask that represents the task-compatibility of image regions,

as suitable, unsuitable, or unknown. A hand configuration h

belongs to H = SE(3) × M, where SE(3) is the special

Euclidean group modeling wrist poses, and M is a set of

discrete hand preshapes such as power grasp or pinch. A

grasp is executed by bringing the hand to a pose and preshape

h ∈ H, then closing the fingers until contact. Both i and t

are given. We assume the conditional independence relations

represented by the network of Fig. 2 – specifically, that the

hand configuration is independent of the task if image regions

c are provided. Those assumptions yield a decomposition of

the posterior probability of h as

p(h|i, t) =

∫
p(h|c, i)p(c|t, i)dc, (1)

where p(c|t, i) models contact regions that enable the task,

and p(h|c, i) models the probability that hand configuration h

provides a mechanically stable grasps while only contacting

visible object areas that belong to c.

Computing task-compatible grasps in a Bayesian fashion

as shown in Eq. 1 is scrupulous, but prohibitively expensive.

In the following, we instead approximate p(h|i, t) with

p(h|i, t) ≃ p(h|c⋆, i), (2)

where

c⋆ = argmax
c

p(c|t, i). (3)

Sec. III-B presents the semantic model of Eq. 3. Sec. III-C

presents the geometric model of Eq. 2. Finally, Sec. III-D

discusses a Markov-chain–Monte-Carlo approach to finding

the grasp pose that maximizes Eq. 2.

B. Semantic Model

The estimation of task-compatible contact regions requires

high-level knowledge that takes into account both the local

geometry as well as the overall structure of a particular

object. Deep Convolutional Neural Networks (CNNs) are

well-suited to this, as they merge information across a range

of receptive field sizes. This property allows them to jointly

model both part appearance and location within a larger

object. We implemented our task-compatibility model with

the MultiNet architecture proposed by Teichmann et al. [34],

due to its run-time performance and need for relatively small

training sets. MultiNet is a derivative of two of the most

popular CNNs: the Visual Geometry Group (VGG) network

[29], and the Fully Convolutional Network (FCN) [17].

VGG is useful as it provides a set of weights that were

pre-trained on the ImageNet dataset. While the VGG weights

were trained on an object classification task, their use has

been shown to provide a significant boost over random

initialization across a wide variety of tasks. For this work, we

use VGG weights as our initial condition for all layers, with

the exception of the fully connected layers at the top of the



Fig. 3. Left: the x-derivative of a synthetic depth image. Center and right:
Two grasp prototypes. The dark gray shapes are point-cloud representations
of the prototypes’ shapes and their pose relative to the gripper. The left
image shows a pinch grasp on a cylindrical object, the rightmost image
shows a power grasp on a cubical object.

network and the first convolutional layer at the bottom. The

top layers are randomly initialized since our output classes

bear no similarity to those of ImageNet, while the bottom

layer is randomly initialized since, as explained below, our

input images are not in the RGB colorspace. The FCN

architecture is important as it introduced the concept of a

fully convolutional network; a network which maps directly

from input pixels to class-labeled output pixels.

While we use MultiNet as our architecture, we diverge

from it on the input side: rather than using RGB images as

our input, we use preprocessed depth images. The decision

to use geometry, rather than color, as our input space is based

on three factors. First, we want to generalize across object

instances of the same class, and doing so with color requires

a prohibitively large training set. Secondly, while rendering

photo-realistic color images is difficult, we are able to render

synthetic depth images that are comparatively closer to real

depth images. Finally, we wish to generalize similar task-

relevant geometries across object classes. For example, if

handles are relevant to a task, we want to recognize their

importance independent of an object’s color, since only the

local shape of the handle is important.

The use of depth as an input feature for CNNs is not

as well understood as color. While there have been some

previous attempts to use it both directly [23], and encoded,

as in HHA [13] (which encodes horizontal disparity, height

above ground, and angle with gravity), how to take advantage

of the rich information depth contains remains an open

question. In this work, we select a local gradient encoding

which contains three input channels: an approximation of the

x-derivative, y-derivative, and gradient magnitude, calculated

using Sobel filters. This encoding avoids the normalization

and magnitude issues presented by using raw depth, while

remaining fast and general (unlike HHA, which requires a

floor-plane to be visible). Fig. 3 (left) shows an example of

depth x-derivative.

C. Geometric Model

The previous section documented our approach to com-

puting task-compatible contact surfaces. In this section, we

discuss the problem of computing hand parameters that

enable mechanically-workable grasps. Grasping an unknown

object from a single depth image is a difficult problem,

largely because we need to place at least one finger on a

surface we cannot observe. We address this problem with a

part-based approach: we assume the existence of a dictionary

of grasping prototypes, composed of a prototypical shape,

and corresponding grasp parameters. Fig. 3 shows two of the

eight prototypes that we are using in our experiments. The

grasp parameters considered in this work are composed of the

pose of the gripper (with respect to the corresponding shape

model), and a hand preshape that is either pinch grasp or

power grasp. To grasp a new object, the robot aligns all pro-

totypes to a point cloud of the scene, and executes the grasp

that corresponds to the best-fitting prototype by preshaping

the gripper, moving it to the computed pose, and closing

the fingers until contact. In effect, fitting 3D prototypes to

a partial view implicitly postulates the shape of the object

in occluded areas, providing us with a rationale for placing

fingers on unseen surfaces. We have shown in previous work

how to learn such a dictionary from experience [7]. The next

paragraph summarizes the algorithm that allows us to grasp

new objects. For further details on this algorithm, we refer

the reader to our previous work [7].

We model a prototype’s shape with a surface density [8].

A surface density is a function q(w) : R3 ×S2 → [0, 1] that

models a 3D shape probabilistically. Intuitively, if the shape

of a prototype is such that the point ℓ ∈ R
3 belongs to its

surface, and the local normal is n, then q([ℓ, n]) is greater

than zero. For a point w that is far from any surface, then

q(w) = 0. We encode surface densities nonparametrically

with at set of samples, and evaluate them via KDE [8].

This model offers an elegant solution to the prototype

alignment problem discussed above. Let us denote the sur-

face density model of the input image i by q(w), and by

sk(w) the surface density of prototype k’s shape. We define

the surface matching score for prototype k at pose x by

marginalizing the joint distribution of prototype poses and

object surface points, as

pk(x|i) =

∫
sk(x|w)q(w)dw, (4)

In this expression, the conditional sk(x|w) is defined as

sk(x|w) = sk(w − x), (5)

where w − x is the SE(3) transformation of w by x.

Intuitively, for a given grasp pose x, sk(x|w) is equal to

the surface distribution model of prototype i, translated and

rotated by x. Eq. 4 measures the overlap between sk(x|w)
and q(w), effectively yielding a surface matching score.

The matching score of Eq. 4 ignores the task requirements

defined by the semantic model discussed in the previous

section. To take those into account, we constraint Eq. 4

to image surfaces that are labeled task-compatible by the

semantic model, by replacing q(w) by a surface density

q′(w) constructed exclusively from points that are labeled

positively by the semantic model of Sec. III-B.

D. Joint Maximization of Semantics and Geometry

To plan a grasp, we compute the prototype index k⋆ and

gripper pose x⋆ that maximize Eq. 4, as

k⋆, x⋆ = argmax
k,x

pk(x|i). (6)



Fig. 4. Top-left: manipulation testbed. Top-right: objects used for training
the CNN. Bottom: Test objects.

The integral of Eq. 4 is not tractable analytically. Instead,

we approximate it with Monte Carlo integration [3], [8], as

p̂k(x|i) ≃
1

M

M∑
ℓ=1

sk(x|wℓ) where wℓ ∼ q′(w), (7)

where M is a large numerical constant, and q′(w) only

contains surface points that are labeled positively by the

semantic model.

To compute the prototype index k⋆ and gripper pose x⋆

that maximize Eq. 6, we apply simulated annealing to a

Markov chain whose invariant distribution is an increasing

power of p̂k(x|i). For a discussion of this method, we refer

the reader to our previous work [8].

IV. EXPERIMENT

In this section, we explain how we train the CNN of

Sec. III-B, we evaluate the performance of the CNN on

synthetic data, and we evaluate the applicability of our model

to task-oriented grasping on an industrial robot.

A. Task Constraints

To train the CNN of Sec. III-B, one would ideally annotate

a set of object images by hand. Unfortunately, CNNs require

a large amount of training data, and annotating those data

manually is in our case prohibitively costly. Instead, we

manually labeled a small set of 3D object meshes, and

generated training scenes synthetically.

Fig. 4 (top-right) shows the ten objects that we used to

train the network, five of which are from the YCB dataset [4].

In this experiment, we are considering four tasks: transport,

handover, pour, and open. Our objective is to plan grasps

that enable these tasks. Table I defines the constraints that

define our four tasks.

In order to avoid expensive and time-consuming manual

human annotations, we chose to use simulated depth im-

ages for training. To do this, we encoded task constraints

transport affected objects: All.
constraints: If object has handle: by the handle.

Otherwise, anywhere.
handover affected objects: Objects that have handles.

constraints: Leave handle available for operator’s grip.
pour affected objects: Containers (objects that have an opening).

constraints: Grasp away from opening.
open affected objects: Containers (objects that have a lid).

constraints: Grasp away from lid.

TABLE I

FOUR TASKS CONSIDERED IN THIS EXPERIMENT, AND ASSOCIATED

CONSTRAINTS.

Fig. 5. Two examples of task-constraint labels from the training set. Green
and red surfaces are respectively suitable and unsuitable for the task. The
left image shows the handover constraints for a brush: the robot must leave
the handle available for the operator to apply his grip. The rightmost image
shows a pour annotation: the robot must avoid touching the object near its
opening. Similar constraints are defined for all applicable combinations of
the four tasks and ten training objects.

by labeling the vertices of mesh models of the training

objects as suitable or unsuitable, as illustrated in Fig. 5.

We then generated arbitrary configurations of the training

objects by virtually dropping randomly placed objects onto

a plane, using a simulator and a physics engine. We rendered

simulated depth images using the BlenSor sensor simulation

framework [11], which provided a realistic depth-camera

sensor model. This was necessary, as it allowed our synthetic

data to emulate traits of the structured-light sensors mounted

on the robot, facilitating the direct transfer of trained models

to real data. Fig. 6 shows an example of a synthetic training

scene and ground-truth labels.

We trained our model on a set of 5000 synthetic training

images. For simplicity, we trained a separate network for

each of the four tasks listed above (we do not see any

obstacle to capturing all tasks in a single network in future

work). To avoid overfitting, we interrupted training once

the training set loss began to diverge from the validation

set loss. The network uses dropout as a regularizer. In

the future, we plan to avoid overfitting by continuously

Fig. 6. Left image: the RGB channel of a synthetic training scene, showing
objects of Fig. 4. This image is for illustration only; we do not use color in
any model discussed in this paper. Center: Depth image derivatives (x and y)
and depth gradient intensity, rendered as R, G, and B channels respectively.
Right: ground-truth labels for the transport task.



Task MaxF1 MAP

Transport 0.738 0.789
Handover 0.959 0.986
Pour 0.904 0.959
Open 0.859 0.924

TABLE II

MAXF1 AND MEAN AVERAGE PRECISION (MAP) FOR PIXELWISE

TASK-SUITABILITY CLASSIFICATION ON SYNTHETIC VALIDATION DATA.
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Fig. 7. Task suitability results on synthetic images. From left to right:
transport, handover, pour, and open. Examples of classification results
demonstrate that the networks are able to learn the different tasks, and can
generalize across novel views and configurations of the objects.

generating new viewpoints during training. Training took

approximately six hours for each network on a single Titan

X GPU, while test evaluation of new images takes 100ms

on the same GPU. We then evaluated the ability of the

trained models to generalize to new object poses using a

separate validation set of synthetic data. Qualitatively, the

network learns to recognize the parts of the objects relevant

to each task, and labels them appropriately, as can be seen in

Fig. 7. Table II provides quantitative results. The networks

successfully capture the constraints of all tasks, with better

performances for handover, pour and open. This discrepancy

is explained by ambiguity in the definition of the transport

constraints: grasp on handle if exists, anywhere otherwise,

which leads to contradicting labels for non-handle grasps on

objects that have a handle or not. Overall, Fig. 7 and Table II

clearly demonstrate the same result: the network is able to

accurately label the parts of the objects from novel views

and in previously unseen configurations.

B. Task-oriented Grasping

In this section, we evaluate the applicability of our method

to task-oriented grasping on an industrial robotic manipula-

tor. The manipulator is composed of a 7-DOF articulated

arm, and a three-finger gripper from Robotiq. Depth data

are provided by a Kinect 1 camera that is rigidly connected

to the robot base. This setup is shown in Fig. 4.

This experiment consisted in executing a set of grasps on

novel objects – objects that differed in size and shape from

those used for training. Each test proceeded as follows: First,

we randomly selected one of the four tasks listed above, and

we arbitrarily placed one or several objects on the table.

We selected objects such that the task is applicable to at

least one object on the table — e.g., if the task is handover,

at least one object has a handle. We then captured a depth

image, zeroed all pixels that corresponded to points located

2cm underneath the tabletop or below, and computed a task-

compatibility mask on the resulting depth image using the

model of Sec. III-B. Next, we computed the grasp (hand pose

and preshape) that maximized the geometric model while

complying with the task’s constraints (Eq. 6), limiting the

pose search space to kinematically-feasible configurations

that did not collide with the table or object surfaces recorded

by the 3D camera. When multiple objects were present on

the table, the maximization step of Eq. 6 effectively decided

which object the robot would grasp; the experiment did not

require explicit object segmentation. The maximization step

took on average 10s on an Intel E5–2687W CPU. Finally, we

computed and executed a trajectory that brought the gripper

to the desired pose, and closed the gripper until contact.

We evaluated the model according to three criteria. The

first criterion C1 captured whether the constraints computed

by the CNN correctly matched the task’s constraints. We

evaluated it by inspecting the mask computed by the CNN,

using the rules listed in Table I. The second criterion C2

captured the mechanical and semantic success of the grasp.

We assessed semantic success by assessing whether the

grasp is compatible with the task, and mechanical success

by having the robot lift the object off the table. The third

criterion C3 represented the robot’s ability to transport the

object to a basket located 80cm from the center of the

workspace.

In a first experiment, we executed 32 tests with a single

object on the table. Table III summarizes this experiment,

and Fig. 8 shows a set of examples. In Table III, the number

of C2 grasps is larger than the number of C1 grasps. This

observation is illustrated by Fig. 8d: while the mask predicted

for this case correctly rejected the leftmost side of the

container’s opening, it missed the other side, hence failing

C1. The partial failure of the grasp model did however not

prevent the grasp from being compliant with the task. In

Fig. 8f, the network rejected the handle, which is the only

part that the robot is allowed to grasp to execute the pour

task, whose constraint is to avoid touching the opening of

the container. This failure can probably be explained by a

lack of sufficiently similar objects in the training set. Fig. 8e

shows an example of a C3 failure: the weight of the object

overcame the grip during transport.

We repeated the experiment above, with multiple objects

on the table instead of only one. Here, C1 captured whether

the task constraints of all relevant objects were correctly

identified by the CNN. We added a criterion C1b that

captured whether the task constraints of the object the robot

eventually grasped was correct. Table IV summarizes this

experiment, and Fig. 9 shows a set of examples. The table

shows that in approximately half of the tests, at least one

object was misclassified. To put this number in perspective,

we note that there were on average three objects on the

table for each run. The C1b success rate in this experiment

is similar to the C1 rate of the single-object case, which

demonstrates the robustness of the model to clutter. Fig. 9a

shows a case where two objects were misclassified (the two



C1 Valid task-constraint mask 25 / 32 (78%)
C2 Valid grasp (mechanical & semantic) 28 / 32 (88%)
C3 Successful transport 25 / 32 (78%)

C1 ∧ C2 25 / 32 (78%)

C1 ∧ C2 ∧ C3 22 / 32 (69%)

TABLE III

SUCCESS RATES FOR SINGLE OBJECTS.

C1 Valid task-const. mask (all relevant objects) 12 / 23 (52%)
C1b Valid task-const. mask (grasped object) 19 / 23 (82%)
C2 Valid grasp (mechanical & semantic) 19 / 23 (82%)
C3 Successful transport 19 / 23 (82%)

C1b ∧ C2 19 / 23 (82%)

C1b ∧ C2 ∧ C3 15 / 23 (65%)

TABLE IV

SUCCESS RATES FOR THE MULTI-OBJECT EXPERIMENT.

rightmost objects). Fig. 9b is almost a success, but the front

half of the object’s handle is marked suitable, which is

against the constraints of the handover task.

While we can observe a distinct performance reduction

between synthetic and real data (Fig. 7 and Fig. 8, 9), our

results support the networks’ ability to gear grasps towards

task-compatible regions. The primary factor limiting the

accuracy of real-data results is the noise present in the sensor,

particularly along object boundaries. Further improvements

to the simulation of training data, possibly through the addi-

tion of surface material modeling in the BlenSor framework,

could help account for this. Finally, unwanted returns occur

around the table’s edges, because of the absence of those

edges in the training set. Future simulations could benefit

from dropping objects onto a table, rather than onto a floor,

so that the edges of the support surface are visible in training.

V. CONCLUSIONS

We presented a model for task-oriented grasping that

jointly exploits a semantic and geometric understanding of

the scene. We implemented the semantic model with a set of

task-specific CNNs that we trained to identify image regions

that the robot is allowed to contact to comply with a given

task. We trained the CNN on synthetic scenes randomly

generated with hand-labeled mesh models.

The geometric model is a part-based planner that relies on

a dictionary of prototypical grasps. Given a task directive,

the model searches through scene surfaces that are labeled

positively by the task’s CNN, to find a prototype pose that

maximizes overlap with the scene. The result of this process

is a gripper pose and preshape parameters that yield a grasp

that is geometrically consistent, and that only contacts object

surfaces that will not preclude the task from performing

correctly. We trained the semantic model on 5000 scenes,

generated with ten hand-labeled objects, and evaluated its

applicability both on synthetic data and on an industrial

robot. Our results make the generalization capability of our

model explicit: despite noisy depth images, we were able

to transfer task constraints to objects that differ in size and

shape from the training set.
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