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Abstract— This paper discusses a hybrid approach to plan-
ning a grasp from a single view in an open-ended environment.
We encode qualitative contextual grasping cues in a deep neural
network, and structured gripper pose/preshape constraints in
a part-based geometric model. We establish a grasp plan
by combining the two models together. A key element of
our approach is that instead of using the CNN to solve the
complete grasping problem, we only use the CNN to compute
a scalar pixel-wise grasp probability prior, which we then
combine to a geometric-reasoning likelihood to establish an
SE(3) wrist position/orientation grasp plan. Our preliminary
results indicate the feasibility of capturing scene-wide scalar
graspability within a CNN.

I. INTRODUCTION

Planning a grasp in a fully-controlled environment is a

hard problem, that requires us to search through the high-

dimensional space of wrist positions, orientations and finger

placements, to select a hand configuration and hand/object

contacts that impart a net force that counteracts gravity

and other external disturbances. Grasping in an uncontrolled

environment, where the shape of the object is unknown, and

where we perceive the object from a single viewpoint, is

even harder, primarily because of self-occlusions and cross-

object occlusions: only one side of every object is visible

to the camera, and the robot must devise grasps in which at

least one finger is contacting a hidden surface. All grasp

planners that work with partial views must, explicitly or

implicitly, include means of predicting the shape of hidden

surfaces. Some do this explicitly, for instance via principles

of symmetry [2], [7], [17]. Others work implicitly, by fitting

shape prototype (cube, cylinders, ...) to visible surfaces [3],

[1], [6], [12], or with deep networks [10], [16], [5], [14],

[11], [9], [15], [8]. The approach that we are currently

studying is implicit. We train a CNN to map from depth

images to graspability. We generate graspability labels onto

full 3D synthetic scenes, and simulate a large number of

partial views of those scenes in order to train the CNN on

depth images that encode 2.5D data but are labeled with

full-3D graspability. By contrast to approaches that rely

on symmetry or on shape prototype, our approach exploits

contextual data: The graspability map that we compute for a

given object depends not only on points observed along the

surface of the object in question, but also on neighboring
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Fig. 1. Top: Synthetic training scene. Bottom: Graspability labels computed
with the algorithm of Detry et al. and the two prototypes of Fig. 2;
graspability is proportional to green intensity.

Fig. 2. Geometric model: The two leftmost images show two of the six
grasp prototypes used in this work [3]. The two rightmost images illustrate
the application of this model for grasping a new shape: fitting all prototypes,
and executing the grasp that corresponds to the best-fitting prototype. The
best-fitting prototype is shown in red in the third image.

objects and surfaces. By contrast to many CNN-based grasp

planners, our approach only uses the CNN to compute a

scene-wide scalar prior. We compute gripper parameters

with a classical geometric planner. This approach allows us

to compute a 7DOF grasp plan, that parametrizes the 3D

position, orientation and preshape of the gripper, by contrast

to CNN planners that typically compute 2D (image-space)

grasping points, and use heuristics to find a 6DOF solution.

To plan a grasp in a new scene, we first compute a gras-

pability image with the model discussed above, then execute

the part-based model of Detry et al. [3] while restricting the

pose search to regions that are marked graspable by the CNN.

This paper describes (1) the generation of grasp-annotated

synthetic scenes, and (2) the CNN that maps from depth

images to graspability, and (3) a preliminary experiment that

demonstrates scene-wide graspability.

Our current efforts are directed towards training a deep



Fig. 3. Learning graspability. The first image shows an example depth image, simulated using the model of Fig. 1a. The third image shows ground truth
image, simulated using the model of Fig. 1b. The bottom row shows the labels computed by the CNN for this view.

network with synthetic indoor scenes such as the one shown

in Fig. 1a. For two such scenes, we have annotated each

point of the scene with a graspability coefficient computed

with the geometric grasp planner of Detry et al. [3]. The

model of Detry et al. [3] relies on a dictionary of grasp pro-

totypes, composed of geometric object parts annotated with a

workable gripper pose and preshape parameters (Fig. 2). This

model allows us to evaluate the feasibility of a given gripper

pose G, by measuring the surface overlap between the scene

and the prototype in pose G, and by verifying that none of

the space that is spanned by the gripper collides with the

scene. We define a scene point p as graspable by simulating

random orientations of all prototype centered at p. Point p is

graspable if there is one prototype, in one orientation, that is

such that 50% of the surface of the prototype matches scene

surfaces, while avoiding collisions between the scene and the

gripper. Fig. 1b shows an example of a graspability map for

the scene of Fig. 1a, obtained by summing graspability maps

computed with the two prototypes of Fig. 2.

To train the CNN, we generated random views of the

graspability point clouds using a Kinect-like camera model

[4]. For each view, we generated a depth image and a gras-

pability image. We trained the fully convolutional residual-

dilated-skip CNN architecture of Papon et al. [13] on this

data set, using the depth image as input and thresholded

graspability image as ground truth. In this sense, the network

learns to predict grasps that are compatible with the back

(self-occluded) side of an object, by using cues from local

context instead of multiple views. Initial results are shown in

Fig. 3. The partial view shown there was held-out from the

training set – that is, while the network saw this scene from

other views, it never saw this viewpoint. The overall cross-

validation success rate of the network is 97%. This shows

that the network is learning to map from metric depth to

graspability. We note that those results were obtained with

a relatively limited number of training scenes. While those

results are encouraging, further investigation will quantify to

what extent the network learns the actual physical capabil-

ities of the gripper – for example, by evaluating predicted

graspability when surrounding objects block off potential

grasps, and by excluding the background and flat surfaces

from the evaluation.
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