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Abstract— We consider the problem of rover relocalization in
the context of the notional Mars Sample Return campaign. In
this campaign, a rover (R1) needs to be capable of autonomously
navigating and localizing itself within an area of approximately
50 × 50m using reference images collected years earlier by
another rover (R0). We propose a visual localizer that exhibits
robustness to the relatively barren terrain that we expect to
find in relevant areas, and to large lighting and viewpoint
differences between R0 and R1. The localizer synthesizes partial
renderings of a mesh built from reference R0 images and
matches those to R1 images. We evaluate our method on a
dataset totaling 2160 images covering the range of expected
environmental conditions (terrain, lighting, approach angle).
Experimental results show the effectiveness of our approach.
This work informs the Mars Sample Return campaign on the
choice of a site where Perseverance (R0) will place a set of
sample tubes for future retrieval by another rover (R1).

I. INTRODUCTION

The Mars 2020 Perseverance rover that launched in July
will search for signs of ancient life on Mars by collecting
samples from Martian rocks and soil using an arm-mounted
drill. These sample will be stored in hermetically-sealed
sample tubes and released at one or multiple sample cache
depots, for possible recovery via a notional NASA-ESA
follow-up mission that would land in 2028, Mars Sample
Return (MSR) [25]. The mission would include a rover (the
sample-fetching rover, SFR) and a rocket (the Mars ascent
vehicle, MAV). SFR would drive to the sample cache depots,
pick up the tubes and bring them back to the lander for
transfer and launch to Mars orbit through the MAV. Finally, a
probe would capture the container in orbit and bring it back
to Earth for sample containment and analysis. This paper
focuses on the sample retrieval phase of the campaign, in
particular the problem of in-depot navigation for tube pickup.

While Mars rovers intended to survive the Martian win-
ter have used radioisotope heating units or thermoelectric
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generators, the base SFR design calls for neither to limit
costs, and should complete its mission in a single season
before shutting down forever. Accounting for a notional
10 km drive to the sample depot(s) and back to the MAV
leaves only 30 sols for SFR to pick up 36 tubes. Due to
limited Earth-Mars communication windows, ground-in-the-
loop tube pickup takes a minimum 3-sol-per-tube pickup
time. SFR thus needs to retrieve tube autonomously, with
minimal guidance from operators on Earth.

Towards this, Perseverance will document depots by cap-
turing images as it drops sample tubes. These images will
be telemetered to Earth to reconstruct a map of the depot
annotated with tube poses. SFR will retrieve sample tubes
by relocalizing itself with respect to that map, years later.
This is a difficult problem for multiple reasons. In contrast
to relocalization on Earth, which often benefits from human-
made objects and environments with distinctive visual struc-
tures, the surface of Mars mostly consists of desert-like
environments with fewer salient features. The (changing)
interaction of light with small rocks and other terrain fea-
tures further complicates the problem. The difficulty of
relocalization in changing environments is well-established
on Earth [35]. Anecdotally, we observe the same challenges
on Mars. We depict in Fig. 1 two stereo pairs that feature-
based localization [20] failed to align despite being from the
exact same viewpoint but under different lighting. In addition
to lighting changes, relocalization must be robust to other
environment changes such as dust deposition or accumulation
of sand to form small drifts. In that sense, the nature and
timeline of the mission permits dedicating special care to
the crafting of the map, e.g., by selecting landmarks that are
more likely persist over time.

In this paper, we propose a novel method for relocalization
over changing environments by Virtual Template Synthesis
and Matching (VTSM). Our work builds upon the state of
the art in multiple areas of visual localization (see Section II)
and offers the following contributions.
• A relocalization algorithm that synthesizes partial ren-

derings of multiple points of interest on the map, as
perceived from multiple virtual poses, and matches them
to real observations across multiple modalities (sizes
and filters) for changing environments (see Section III).

• A new dataset spanning the range of environmental con-
ditions we expect to face on Mars, including 3 terrain
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types, captured by 4 cameras along 60 viewpoints at 3
times of the day, totalling 2160 images annotated with
ground-truth poses from a motion capture system (see
Section IV). We release our dataset publicly to foster the
research in this exciting problem for space exploration1.

• An extensive performance and sensitivity analysis for
our method, leading to recommendations on depot map-
ping and navigation strategies (see Section V).

We finally discuss challenges we encountered, current limi-
tations and future extensions of our work (see Section VI).

(a) 2014-05-02 at 16:19:00. (b) 2014-05-04 at 08:33:34.

Fig. 1. Stereo images captured on Mars from the same viewpoint at
different times (available https://pds-imaging.jpl.nasa.gov/).

II. RELATED WORK

In this work, we consider the problem of relocalization of
a rover with respect to a map built from images captured by
another rover, years prior. Autonomous localization capabili-
ties on Mars rovers are currently limited to motion estimation
by visual-inertial odometry (VIO) [21], [18], and absolute
orientation estimation using gravity and Sun position in the
sky [1], [17]. Mars rovers do not implement onboard absolute
position estimation. Instead, it is conducted on Earth, by
aligning rover and orbital imagery [10], [6], [38] with meter-
scale accuracy (Mars Reconnaissance Orbiter). While VIO
could be used to estimate relative poses between rovers, it is
also vulnerable to environment changes, e.g., lighting [31].

Localization techniques leveraging 3D structure [3] can
mitigate the effects of lighting changes, e.g., by performing
3D registration using iterative closest point (ICP) [4] or fast
point feature histograms (FPFH) [33]. However, those tend to
converge towards local optima in the absence of an accurate
pose prior, especially on the rather flat terrains that may
serve for depot construction. We consider instead 3D (depth)
reconstructed together with texture (color), e.g., through
Structure from Motion (SfM) [36] or Simultaneous Localiza-
tion and Mapping (SLAM) [5], which can accomodate maps
built over multiple sessions under the same lighting [14]
or different lighting over small pose changes [27]. Such
3D maps can be used for relocalization by correspondence
search between features from 2D images to relocalize and a
database of features associated to 3D map points [34]. The
underlying matching schemes can also be accelerated to take
advantage of multi-camera systems [13] but remain subject
to similar limitations as 2D local feature matching under
scene changes. Notably, [24] showed that image patches
could be more robust to changing conditions than point
features, though less accurate. While robustness can also be

1https://data.caltech.edu/records/1898

attained by repeated traverses under different conditions [7],
[30], depot construction on Mars would be single-shot.
In a recent benchmark of visual localization in changing
conditions [35], image retrieval techniques were shown to
sometimes succeed at providing a coarse pose estimate when
local feature matching would fail, e.g., by augmenting a
mapping database with synthetic renderings [39]. 3D map
rendering was also used for relocalization by minimizing dis-
tance metrics between real and synthetic observations, such
as normalized information distance [28], normalized cross-
correlation [19] and photometric error [26], showing some
robustness moderate lighting changes. Changing shadows
were further downweighted in the image alignment pipeline
of [16] however large lighting changes remain a challenge.
We build upon these works and extend relocalization capabil-
ities by viewpoint synthesis to extensive changes in lighting
and possibly scene geometry over the years.

Instead of relocalizing images across different light-
ing, shadow-invariant image transformations were developed
in [9], [23] assuming infinitely-narrow camera sensor re-
sponses and illumination by a single Planckian source. While
the former assumption can be relaxed [29], the latter may
not always hold on Mars depending on the atmosphere radi-
ance at capture time. Similar problems were also addressed
recently using deep neural networks, e.g., to learn image
relighting [2] and image representations that are robust to
lighting changes [8], [41], [32]. While we believe such
methods will result in future breakthroughs for robust re-
localization on Earth, their applicability to space exploration
remains restricted by the scarcity of data for training, low-
compute for space-rated hardware, limited interpretability
and concerns about generalization to events unseen during
training. Still, we build our approach in such a way that it
could accomodate further advances in either field.

III. METHOD

Our goal is to enable in-depot navigation for sample tube
retrieval, by estimating the 6D pose of SFR with respect to a
depot map built from images taken by Perseverance several
years before. To do so, we propose a relocalization method
that synthesizes partial renderings of the depot map from
virtual viewpoints in the vicinity of its current pose estimate
and compares those to actual observations. In the following,
matrix variables are denoted in bold and scalar in italic.

A. Overview

Let IM2020 = (IM2020
L,i , IM2020

R,i )i∈[1,NM2020] denote a set of
NM2020 left and right stereo image pairs captured by Perse-
verance during depot construction on Mars and telemetered
back to Earth. On Earth, we register all images IM2020 and
build a map M equiped with a global frame W , in which
we express rover poses WTM2020 as well as tubes WTT . In
addition, we denote by M̂ a subset of M in which areas
likely to be affected by wind (e.g., sand) have been removed
on Earth between the Mars 2020 and MSR missions.

Consider now the task of relocalizing SFR several years
after Perseverance. While driving from landing site to depot,

https://pds-imaging.jpl.nasa.gov/
https://data.caltech.edu/records/1898
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Fig. 2. We render points Wp on the mesh built from Perseverance images from multiple virtual viewpoints (left). Synthetic templates are matched to real
SFR images to compute points in camera frame SFRp (middle). We align both point sets to estimate the pose WTŜFR (right, conceptual rover depicted).

SFR’s position is monitored onboard through VIO, which
induces drift growing with traversed distance and corrected
by manually aligning surface and orbital imagery. When
reaching the depot, relocalization with respect to M is per-
formed by manually aligning SFR and Perseverance images
instead. Due to mission time constraints, this is done only
once. For in-depot navigation, we then assume an SFR pose
estimate WTŜFR subject to VIO errors accumulated over
drives post ground-in-the-loop initialization (e.g., 20 cm for
a few-meter drive, depending on specifications) and 1.5°
uncertainty from onboard attitude estimation [1].

Pose alignment consists in computing a posterior pose
given new camera images and a prior pose estimate WTŜFR.
We compute this alignment by simulating the SFR cameras
from several viewpoint hypotheses V and iteratively match
synthetic renderings (IVL , I

V
R ) to real images (ISFR

L , ISFR
R ).

More precisely, in order to account for lighting and scene
geometry changes between mapping and relocalization, we
do not directly align full renderings but rather patches
thereof, or synthetic templates (̂IVL , Î

V
R ), centered on a point

Wp and synthesized on the fly. This enables: 1) efficiently
evaluating multiple viewpoint hypotheses without having to
render full images; 2) prioritizing landmarks that are likely
to remain visually similar over time, and conversely ignoring
parts of the image that are likely to change; 3) facilitating
pose search as a full image may contain cast shadows (edges
that do not persist with lighting changes) but small patches
may be uniformly lit. We match the synthetic templates to the
real observations, resulting in SFRp, the point corresponding
to Wp in the SFR optical frame. We thus collect NC

correspondences (Wp, SFRp) to update WTŜFR by least-
squares transformation estimation, and further refine it over
N iter iterations. We summarize our method in Alg. 1 and
Fig. 2 and discuss its components in the following.

B. Viewpoint Sampling

Pose search begins with an initial viewpoint estimate
WTŜFR, which is typically computed from the previous pose
and the rover’s VIO-derived motion since the last alignment.
We account for uncertainty incurred by VIO by searching for
a best-matching pose in the neighborhood of WTŜFR. Rover
localization is largely a planar problem, and for perfectly flat
terrain our search should be constrained to a planar search.
However, as we expect substantial relief through a depot, we
conduct a full 6D search. We search the neighborhood of the
initial pose by applying a perturbation transformation SFRTV

Algorithm 1 Virtual Template Synthesis and Matching
Precondition: (ISFR

L , ISFR
R ) stereo pair captured by SFR, M

depot map, M̂ sampling mask, WTŜFR initial guess
1: function LOCALIZE((ISFR

L , ISFR
R ),M,WTŜFR)

2: for i← 1 to N iter do
3: CW/SFR ← {} . world/SFR correspondences
4: while SIZE(CW/SFR) 6= NC do
5: WTV ← RANDOMIZEVIEWPOINT(WTŜFR)

6: Wp ← SAMPLEPOINT(M̂,WTV)
7: (̂IVL , Î

V
R ) ← SYNTHESIZE(M,WTV ,

Wp)
8: (uSFR

L , vSFR
L ) ← MATCH(̂IVL , I

SFR
L ) . Left

9: (uSFR
R , vSFR

R ) ← MATCH(̂IVR , I
SFR
R ) . Right

10: if VALID(uSFR
L , vSFR

L , uSFR
R , vSFR

R ) then
11: SFRp ← STEREO(uSFR

L , vSFR
L , uSFR

R , vSFR
R )

12: APPEND(CW/SFR, (
Wp, SFRp))

13: end if
14: end while
15: WTŜFR ← GETTRANSFORM(CW/SFR)
16: end for
17: return WTŜFR
18: end function

characterized by translation and rotation search bounds t̃, r̃
(initially, t̃ = t̃0 = 20 cm, r̃ = r̃0 = 1.5°). We build the
rotational perturbation by randomly sampling a rotation axis
from the unit sphere and a rotation angle from a uniform
distribution on [−r̃, r̃]. Similarly, the perturbation’s transla-
tional magnitude is sampled within [−t̃, t̃] and its direction
within the local surface tangent for the first iteration (planar
search), then the 3D unit sphere for subsequent refinement.

C. Virtual Template Synthesis

In the following, we consider the depot map M as a
textured polygon mesh. Using OpenGL, we build a rendering
environment reproducing SFR rectified stereo calibration
parameters, enabling the synthesis of images similar in
appearance to what would be captured by the real rover at
arbitrary viewpoints WTV . To evaluate multiple viewpoint
hypotheses efficiently, we do not render full stereo images
(e.g., 5472× 3648 ≈ 20Mpixel) but instead square patches
of side length ` centered on points of interest (e.g., ` = 256,
about 300× smaller). The synthesis pipeline is as follows.
Given a sampling mask M̂ of the depot areas that can
reliably be used for relocalization (e.g., by keeping large
rocks and filtering out sand), we randomly select a 3D point



W p̃ from the vertices constituting M̂ visible from WTV .
When the scene geometry is not expected to change, we
set M̂ := M. We then project W p̃ into the left virtual
camera frame, yielding 2D pixel coordinates (uVL , v

V
L ). We

thus synthesize a left template ÎML centered on (uVL , v
V
L ),

together with an associated depth map D̂ML . We use the full
meshM for rendering, which contains areas that may change
over time but can still be used for matching. We estimate
which pixels to keep from the synthetic template ÎML in two
ways. First, we render the depth map D̂M̂R associated to the
sampling mask M̂ and keep all pixels of ÎML that have a
depth value in D̂M̂R as they correspond to vertices of M̂.
Second, we identify pixels that may change locally (e.g.,
sand) but still serve as contrasting background for features
in the foreground (e.g., rock edges). We define those as pixels
of ÎML that do not have a depth value in D̂M̂L but are beyond
edges marking depth discontinuity in D̂ML .

We synthesize the right template ÎVR by similarly generat-
ing color and depth patches from a virtual right camera.

D. Synthetic-to-Real Template Matching

We now search for SFRp, the point corresponding to Wp
in the SFR camera frame, by separately searching for left
and right templates ÎVL , Î

V
L in the real SFR images ISFR

L , ISFR
R ,

yielding SFR pixel coordinates (uSFR
L , vSFR

L ), (uSFR
R , vSFR

R ) of
maximum normalized cross-correlation. We make use of
the epipolar constraint between rectified stereo images to
reject matches such that the vertical difference |uSFR

L −uSFR
R |

exceeds a chosen threshold εu. If |uSFR
L − uSFR

R | ≤ εu,
we calculate SFRp using the average vertical coordinate
0.5 ∗ (uSFR

L + uSFR
R ) and horizontal disparity (vSFR

L − vSFR
R ).

We exploit two strategies to facilitate synthetic-to-real
matching. First, we search for matches using different varia-
tions of synthetic templates (̂IVL , Î

V
R ): size (e.g., /̀2-length

sub-template) and derivative order (e.g., direct grayscale,
or processed through Sobel, Laplacian operators). Smaller
templates are easier to match across larger viewpoint dif-
ferences at the cost of more false positives to filter out,
while differentiating templates partially mitigates the effects
of lighting differences. Second, rather than searching for
templates (̂IVL , Î

V
R ) in the full SFR images (ISFR

L , ISFR
R ), we

compute bounds on their possible pixel coordinates based on
the pose uncertainty t̃, r̃ and perform the template search on
these sub-images (e.g., 800×800 patch within 5472×3648).

E. Pose Update

We repeat the steps described in Sections III-B to III-
D until reaching a target number NC of world-camera
point correspondence candidates (Wp, SFRp) and estimate
a transformation using the Umeyama algorithm [40] and
RANSAC for outlier rejection [11] within the Point Cloud
Library [33]. If successful, we set the resulting maximum-
inlier transformation as new pose estimate WTŜFR and repeat
the process for N iter iterations or until the pose update con-
verges within a chosen threshold (e.g., 1mm). We propose
additional mechanisms to facilitate the pose search.

When a transformation cannot be estimated from the
correspondence candidates collected at this iteration:
• STALL: get new correspondences from the same pose
• RESEED: apply a random perturbation to the current

pose before collecting new correspondences
The STALL procedure is well suited when we already have at
least one successful iteration, i.e., the current pose estimate
is already close to the real pose. In contrast, RESEED lets us
evaluate multiple guesses within a potentially large initial
uncertainty range (e.g., 50 cm) while maintaining smaller
synthetic viewpoint variations (e.g., 20 cm) for local search.

When a transformation is successfully estimated:
• ANNEAL: decrease synthetic viewpoint randomization

following t̃ := γt̃, r̃ := γr̃, with γ ∈ [0, 1]
• DISTRIBUTE: randomize synthetic viewpoints around

multiple poses rather than the current estimate only
• REUSE: carry over a set number of correspondences

(inliers) throughout successful iterations
The γ parameter facilitates convergence by reducing syn-
thetic viewpoint randomization over time, e.g., stop random-
izing (γ = 0), halve every iteration (γ = 0.5), keep constant
(γ = 1). In DISTRIBUTE, rather than focusing viewpoint
synthesis around the maximum-inlier transformation from
RANSAC, we spread it around the best pose candidates with
frequency weighed by their inlier count (e.g., 3 candidates
with 10, 15, 25 inliers, would have a 20, 30, 50% pick rate,
respectively) to avoid local minima. In REUSE, we do not
restart the world-camera point correspondence search from
scratch every time but instead keep a set number inliers from
the past iteration (e.g., 50%). This helps stabilize the pose
search and avoid large variations across iterations. Finally,
we limit the number of times STALL and RESEED can be
performed consecutively and return a failure code if reached.

IV. DATASET

(a) Flagstone testbed.
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(b) Camera pose grid around tubes TA, TB .

(c) Sample images on CFA 6 rocks (left) and CFA 2 pebbles (right).

Fig. 3. Outdoor dataset: (a) testbed, (b) capture grid, (c) sample images.

To evaluate the performance of our proposed method
towards mission planning, we collect an outdoor dataset



capturing representative conditions we expect to face on
Mars. In a preliminary study [31], we showed on an indoor
dataset that lighting changes and lack of consistent features
throughout were a major challenge for rover localization.
We investigate these problems further by collecting a new
dataset, outdoor, enabling: 1) natural light and shadows from
the sun that change continuously; 2) diverse, representative
terrains, based on discussions with Mars geologists on where
sample tubes could be dropped; 3) a large workspace to
evaluate different depot imaging strategies as well as in-depot
navigation during tube recovery (e.g., how far SFR can
deviate from areas imaged by Perseverance).

We construct a camera acquisition setup for outdoor use
consisting of four FLIR BlackFly S cameras (5472× 3648,
color, 77° field of view) arranged as two stereo pairs of
baseline 20 and 40 cm, representative of the Perseverance
rover’s optics [22]. The cameras are covered by an aluminum
plate serving as heat shield for extended use under sunlight
and rigidly linked to a frame carrying motion capture (Mo-
Cap) markers for pose ground-truthing using 10 Vicon T-160
cameras (see Fig. 3a). The dataset captures the following:
• 3 terrain types (see Figs. 3a and 3c):

– “Flagstone”: broken stone slabs covered with a thin
layer of sand similarly to fractured bedrock on Mars.

– “CFA6”: a rock distribution of cumulative fractional
area (CFA – a measure of rock density [15]) equal to
6%, the smallest rocks still visible from orbit to guide
the choice of depot location. Rocks encountered in
practice would only be this big or smaller.

– “CFA2”: small rocks only visible from surface im-
agery (not orbit), here pebbles on dust and sand.

• 3 image capture times: “am” (9 am to 10 am), “nn”
(noon to 1 pm), “pm” (3 pm to 4 pm)

• 2 sample tubes with variable visibility: unoccluded or in
a crack between slabs (flagstone), unoccluded or 25%
covered by sand (CFA 2), 50 or 75% occluded (CFA6)

• 15 camera tripod positions along two circles, each
centered on a sample tube (30 stops total, see Fig. 3b)

• 2 camera orientations at each stop (look at each tube)
• 4 cameras: 2 stereo pairs of baseline 20 and 40 cm

Overall, our outdoor dataset comprises 540 capture con-
figurations, totalling 2160 images collected over the course
of 3 days, annotated with reference poses from MoCap.

V. EXPERIMENTS

In this Section, we examine the performance of our
method on different types of terrains and lighting conditions,
then assess different depot mapping and navigation strategies
to make recommendations for Mars Sample Return planning.

A. Relocalization Performance

The first step consists in building a map of the depot.
For each terrain and capture time (9 combinations total),
we build a depot map from 60 viewpoints captured with
the 40 cm-baseline stereo cameras, representative of those
Perseverance would use for depot imaging. Using the Agisoft

Metashape software, we generate a textured mesh M of
the full scene. For Flagstone and CFA6 (possible scene
perturbations, e.g., from Martian wind), we manually process
M with the Blender 3D graphics software to only keep rocks
in the sampling mask M̂. For CFA2 (undisturbed scene), we
keep the full mesh and set M̂ :=M. We depict the resulting
meshes and masks in Figs. 4b to 4d. We then use this map
to relocalize images taken at different times of the day, see
Fig. 4a. Viewpoints to relocalize (green arrows) overlap with
mapping images (blue) when they are from the same capture
time, otherwise vary slightly over different capture sessions.

We evaluate our method by starting away from the ground-
truth pose WTSFR, applying a random transformation of
10-to-20 cm translation and 1.5° rotation components (see
Section III-A). We run VTSM using the resulting perturbed
pose WTŜFR as initial guess, t̃0 = 20 cm and r̃0 = 1.5°
initial search bounds with decay parameter γ = 0.5, virtual
template sizes 128 and 256, and epipolar constraint threshold
εu = 8pixels. A run is considered successful if NC = 100
correspondences are found and the pose is successfully up-
dated for N iter = 5 iterations. The transformation estimation
error is defined as the difference between ground-truth pose
and final estimate, SFRTŜFR = (WTSFR)

−1 ·WTŜFR.
We report in Fig. 4e the VTSM relocalization success

rate and average error on each terrain type, sorted by time
difference between mapping and relocalization: 0 h (same
time for both), 3 h (e.g., noon relocalization vs morning
map), 6 h (e.g., afternoon relocalization vs morning map).
We also depict Flagstone detailed results in Fig. 4f as 2D
plots where each point’s coordinates represent the distance
(linear and angular) between the viewpoint to relocalize and
the nearest viewpoint used to map the depot, and its color
the relocalization accuracy. As a baseline to our method, we
also report these metrics when performing localization by
matching local features between the same relocalization and
nearest mapping viewpoints. We did so using the LIBVISO2
package [12], modified to use SIFT features for better
robustness in exchange for longer computation time.

We observe the following. First, while SIFT-based lo-
calization is generally more accurate than VTSM when it
successfully estimates a transformation, this success rate
decreases significantly with lighting changes across all ter-
rains. Notably, it completely drops to 0% with 6 h of
natural sunlight difference while VTSM achieves 100%
across all configurations. We note that relocalization errors
are largest on CFA6, possibly due to the small size of rock
features together with their sparsity in the sampling mask
(see Fig. 4c), suggesting that it may be preferrable to build
the depot on large-enough rocks if the scene is expected to
be affected by Martian wind (Flagstone), or to find areas
where sand will remain undisturbed (CFA2). Second, Fig. 4f
illustrates that VTSM is generally successful throughout the
assessed range of 40 cm and 20° between test and mapping
viewpoints. This prompts us to consider larger ranges in the
next sections. Finally, we report an average run time of 3min
55 s on a 4.5GHz CPU-only, single-threaded implementation
compatible with space-rated hardware.



For the sake of completeness, we considered alternative
methods that may not be compatible with space-rated hard-
ware, such as neural-network-based features [37], that we
observed generally performing worse than SIFT on Mars-
like terrains under lighting changes [31]. We also imple-
mented the image transform of [9] as a preprocessing step
and observed that the added noise, as reported by [29],
particularly hindered subsequent local feature matching on
our relatively barren terrains. While this may be alleviated
with additional training, it remains unclear whether the single
Planckian source assumption would hold at tube pickup time
on Mars. Finally, we trained the benchmark-leading [35]
image retrieval technique of [39] on our dataset. While
image retrieval itself aims at returning the nearest pose in a
predefined database rather than the actual rover pose itself,
we could envision using such a system to seed VTSM with
a coarse estimate for further refinement. However, we again
observed the method to fail at retrieving such a pose, which
may be due to the DenseVLAD features employed being
derived from SIFT, therefore subject to similar limitations.

B. Parameter Sensitivity Analysis

While the 40 cm-baseline stereo cameras are representative
of those Perseverance will use for depot mapping, the SFR
design may be constrained by further size and payload
requirements. Keeping the depot maps built from the 40 cm-
baseline stereo images, we now relocalize images taken
by other cameras in a 20 cm-baseline configuration. We
report the resulting errors on all three terrains over 6 h time
difference between mapping and relocalization in Fig. 5a.
We observe that while the smaller stereo baseline results
in higher relocalization errors, these are expected as the
theoretical depth uncertainty itself also increases by 6.5-to-
26.0mm for a 1 pixel disparity uncertainty 3-to-6m ahead
of the camera. As success rates remain similar, we infer
here that VTSM itself is robust to camera changes, with its
accuracy contingent on that permitted by the chosen setup.

We now consider an alternative scenario where the rover’s
position uncertainty suddenly grows beyond the previous
20 cm to 50 cm (e.g., slippage). To address this, one possi-
bility is to simply increase the randomization range t̃0 when
generating synthetic viewpoints to 50 cm around the current
pose guess WTŜFR. However, the increased search range also
requires more attempts to sample poses closer to the real
one, while also generating more false positives. Furthermore,
template matching takes longer as the increased uncertainty
only lets us restrict the search to about 2000× 2000 patches
within the real images instead of 800 × 800 as described
in Section III-D. Instead, we propose to keep VTSM virtual
viewpoint randomization at 20 cm, but around multiple pose
seeds randomly sampled within the 50 cm uncertainty range.
We choose to run one VTSM iteration over 100 such pose
seeds and select the one resulting in the maximum number
of correspondence inliers to run the rest of the algorithm on.
Adding these results to Fig. 5a, we observe that success rates
remain at 100% and that relocalization errors are slightly
lower, which may stem from the search over multiple pose
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(a) Mapping and test viewpoints. (b) Flagstone mesh M (green: mask M̂).

(c) CFA6 mesh M (green: mask M̂). (d) CFA2 mesh M (no mask M̂).

Terrain Flagstone CFA6 CFA2
Time diff. [h] 0 3 6 0 3 6 0 3 6

SI
FT Success [%] 98.9 66.7 0.0 100.0 70.7 0.0 98.9 52.9 0.0

Error [mm] 0.8 22.8 N/A 0.4 6.5 N/A 0.6 10.7 N/A

V
T

SM

Success [%] 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Error (init) [mm] 148.1 152.3 149.2 149.7 147.9 150.0 149.3 150.5 148.0
Error (end) [mm] 51.2 56.0 50.2 65.4 75.9 98.5 51.1 52.8 76.6

(e) Localization success rate and average error on all terrain-time differences.
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(f) Transformation estimation success rate and average error on flagstone depot
across 0, 3, 6h capture time and lighting differences. Note: SIFT-0h amounts
to estimating the (zero) transformation between the same images and VTSM-
0h illustrates the effects of 10-to-20 cm, 0-to-1.5° pose randomization alone.
3 and 6h plots include pose variations across different depot traverses.

Fig. 4. VTSM evaluation on all terrain-time differences.

seeds within a 50 cm range being a better initializer than
relocalizing from a single one within 20 cm. Fig. 5b depicts
real and synthetic images from VTSM showing successful
matching on all terrains despite strong lighting changes
between mapping and relocalization. We report an average
1 h 4min run time per relocalization attempt with 50 cm
uncertainty, including 1 h to evaluate the 100 pose seeds,
which could be improved using other search schemes or early
stop criteria (e.g., minimum inlier ratio).

C. Depot Imaging Strategy and Relocalization Range

Finally, we consider the case where SFR deviates from
the path Perseverance took when imaging the depot. We



Terrain-time Flagstone-6 h CFA6-6 h CFA2-6 h
Configuration ref bl 50cm ref bl 50cm ref bl 50cm

V
T

SM
Success [%] 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Error (init) [mm] 149.2 146.2 363.8 150.0 153.7 379.2 148.0 146.5 377.1
Error (end) [mm] 50.2 58.2 49.3 98.5 123.0 83.5 76.6 84.6 62.2

(a) VTSM results on different configurations. Reference results ref: 40 cm
relocalization baseline, 10-to-20 cm initial randomization. Two variations: bl:
20 cm relocalization baseline, 50cm: 25-to-50 cm initial randomization.

Synthetic, random Real, relocalize Synthetic, final
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(b) Afternoon relocalization vs morning map with 50 cm randomization. Note
the real image strong shadows, which could occur on Mars (rover shadow).

Fig. 5. Results on alternative relocalization configurations.

do so in two ways. First, we consider two alternative depot
imaging trajectories for Perseverance (see Fig. 6a): a wave
trajectory where the rover navigates between two consecutive
sample tubes imaging both, and a forward trajectory where
the rover only looks ahead while driving. This lets us evaluate
relocalization from viewpoints further from the mapping set.
Second, we sub-sample each depot imaging set by only using
viewpoints every x m, which lets us evaluate Perseverance
imaging density requirements to enable SFR relocalization.
We observe the following. First, our meshing software starts
failing to align input images when the imaging step size
exceeds 1m due to insufficient overlap between viewpoints.
We depict in Fig. 6b the forward path with step size 1.9m,
leaving only the first and last viewpoints of the trajectory
as mapping images, which the software could not be align.
We thus obtained a mesh from only the first viewpoint’s
stereo pair for Flagstone and CFA6, and from the final
viewpoint for CFA2. The latter being in the middle of the
depot resulted in only half of it being 3D-modeled. While
this issue may be mitigated using further image alignment
techniques, we are also interested in evaluating our method
against less accurate meshes. Fig. 6c illustrates that VTSM
relocalization is still successful up to the 6m away from the
nearest mapping image on Flagstone and CFA6, with errors
mostly below 10 cm up to 3m away. Failure cases on CFA2
appear, expectedly, when attempting to relocalize images of
the depot half that could not be mapped. We report results
on all configurations in Fig. 6d, observing that relocalization
accuracy drops after 1m depot imaging step in most cases.

VI. DISCUSSION

The problem of retrieving sample tubes on Mars years
after they have been dropped by another rover is a difficult
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(a) Alternative imaging trajectories: wave (left) and forward (right).
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(b) Forward trajectory with step size 6 (1.9m step). Red arrows indicate
mapping images that were not successfully aligned with the others (blue
arrows) during mesh reconstruction. Left: Flagstone and CFA6, right: CFA2.
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(c) Transformation estimation success rate and average error on forward
trajectory with step size 6. All maps are effectively built from a single stereo
pair. Failure cases for CFA2 can be attributed to half the mesh missing.

Trajectory Wave Forward
Step size [m] 0.4 0.8 1.5 2.0 0.4 0.8 1.2 1.9

F.
st

on
e Range [m] 3.0 3.0 3.0 6.0 3.0 3.0 5.0 6.0

Success [%] 100.0 100.0 100.0 86.2 100.0 100.0 100.0 100.0
Error [mm] 56.9 50.8 65.9 248.2 80.4 84.9 116.7 104.2

C
FA

6 Range [m] 3.0 3.0 3.5 6.0 4.0 4.0 4.0 6.0
Success [%] 100.0 100.0 100.0 100.0 100.0 100.0 98.3 100.0
Error [mm] 85.2 83.9 122.4 119.2 75.6 110.9 139.3 121.6

C
FA

2 Range [m] 2.5 3.0 4.5 6.0 3.0 3.0 5.0 3.5
Success [%] 100.0 100.0 100.0 77.6 100.0 100.0 100.0 77.6
Error [mm] 60.9 77.3 189.1 312.8 74.3 75.1 94.4 84.4

(d) VTSM results on wave and forward imaging trajectories. We sub-sample
each with four step sizes, skipping viewpoints in between. “Range” denotes the
maximum distance between the resulting mapping and relocalization images.

Fig. 6. Results on different mapping step sizes and relocalization ranges.

task due to the unknown of how depots may change over
time. In this paper, we presented a complete relocalization
pipeline matching partial renderings of a depot map over
multiple virtual viewpoints to real images. Our approach
estimated poses with 100% success rate across all terrains
and lighting differences when local feature matching would
completely fail, with average error below 10 cm in both
nominal and extended conditions. Further analysis permitted
by our large-scale dataset showed that our method maintained
similar performance for at least 3m away from poses imaged
by Perseverance, with relocalization failing only when de-
pot mapping itself fails. Based on results across different
experimental conditions, we recommend that depots are



constructed on fractured bedrock on Mars akin to flagstone
on Earth, and imaged by Perseverance from viewpoints no
further than 1m apart. Sparse, or even no rocks can be
considered if the effects of Martian wind can be deemed
negligible from surface or orbital imagery.

Our work lends itself to multiple development oppor-
tunities. First, the viewpoint randomization process could
appropriately be implemented as a particle filter that updates
search parameters rather than following a fixed schedule.
We expect this would improve relocalization accuracy and
computational efficiency towards being used onboard the
rover. Machine learning techniques could also be used to
identify salient points on the map that are most likely to
yield successful matches, as done manually in [19]. As a
longer-term development, the synthetic matching pipeline
could be applied to image modalities other than direct pixel
intensity and its derivatives. We could, for example, convert
both synthetic and real images to lighting-invariant represen-
tations using recent neural-network-based techniques [41], or
synthetically relight the depot map on the fly to reproduce
Mars lighting conditions at SFR relocalization time.
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