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Abstract—We propose to integrate tactile and visual sensing
to predict task-compatible grasp regions for manipulation. We
address the problem of fine-part assembly, by leveraging vision to
observe scene-level information, then touch to perceive fine local
details necessary for task completion. We directly target the end
goal of task success, by predicting grasp regions that are simulta-
neously geometrically stable and task-compatible. We represent
grasp regions with 2D probabilistic maps, which we first coarsely
estimate with vision, and then refine by making contacts with the
scene. We show preliminary results of probabilistic grasp regions
generated by vision, and demonstrate the impact of tactile sensors
for disambiguating task-compatible regions.

I. INTRODUCTION

Tactile sensing and vision are two synergetic modalities for

manipulation. While vision provides us with scene-wide ob-

servations, tactile sensing allows us to gather data in areas that

are occluded from the camera by the object or the gripper and

would not be accessible otherwise. Leveraging tactile sensing

early in a manipulation task has a dual impact: it allows the

robot to verify the reliability of scene-level properties inferred

from vision, and it gives the robot an opportunity to adjust the

end-effector’s configuration from contact information.

In this paper, we address the problem of task-compatible

grasp pose planning, whereby the robot generates grasps suit-

able for the intended task. We leverage touch to disambiguate

parameters inferred from vision, both for task compatibility

and geometrical feasibility. Our approach is novel in two parts.

First, unlike traditional grasp planning approaches that reason

about contact mechanics using physical constraints, we infer

grasp poses directly from images and tactile readings. Second,

we define the goal directly in terms of task satisfaction, instead

of the individual grasp itself. This work extends our previous

work in vision-based grasp planning [11], task-oriented grasp-

ing [12], and tactile-based exploration [29].

Vision and touch should be integrated in such a way as to

leverage the advantages of each modality. Vision has a global

field of view, with mature algorithms to interpret the scene

in typical indoor lighting conditions. Touch is inherently local

and time-consuming and is more suitable for fine-grained low-

level sensing for tasks that require accurate interactions. We
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Fig. 1. Robot camera image showing ambiguity in visually perceived object
pose. The object is a 3D-printed piece of a larger assembly. Depending on the
stage of assembly, one of three sides of the object is not task-compatible (i.e.

should be avoided by the gripper), as it contains extrusions and indents for
attaching to another piece. From a camera, the small indents are not obvious,
and the sides are indistinguishable. This image is created with the object
raised to be in front of the camera; the ambiguity worsens when the object
starts out on the table. Tactile sensors are able to distinguish indents.

propose to use this integration for fine-part assembly, where

vision is first used to perceive scene-level information for a

grasping task, with ambiguity in object pose due to object

shape and the intended task (Fig. 1). The output from the

vision system is in the form of a probabilistic heat map

(henceforth referred to as “graspability mask”) of candidate

grasp locations that are geometrically suitable. Subsequently,

the uncertainty of each pixel in the graspability mask is

computed, resulting in a second mask of probabilistic variance

(“uncertainty mask”), which can be used as a cue to move the

end-effector to contact uncertain regions in the scene.

The purpose of the tactile exploration is to improve our

confidence in the grasp regions predicted by vision, in an

attempt to, for instance, find regions with high potential of task

success but mistakenly labeled otherwise by vision, or correct

regions with low actual task success but evaluated as high

by vision. During the touch sequence, the graspability mask

and uncertainty mask are updated to reflect the information

obtained from physically probing the scene. At the end of

the sequence, a movement to actually perform the task is

computed from the final belief maps.

Related work are in several categories: tactile-based ma-

nipulation, vision-based grasp planning, tactile-vision fusion,

and task-oriented grasping. Pertaining to manipulation, tactile

sensing has been used for grasping [2, 8, 10, 7, 18, 23, 6],

recognition [25, 27, 28, 29], localization [15], to name a few



Fig. 2. Left: Depth image input to CNN, scaled to show in color. Middle: Color overlaid on point cloud depth image. Right: Probabilistic map output by
CNN, highlighting regions that resemble handles for grasping.

most recent work. A survey of visual data-driven grasping

is given in Bohg et al. [4]. More recently, convolutional

neural networks have been used in vision-based grasping

[26, 22, 21, 20]. However, the purely 2D pixel-based mapping

is insufficient for manipulation beyond simple picking and

poking. Tactile sensing and vision have been integrated for

recognition, grasping, in-hand adaptation, and shape recon-

struction [5, 14, 13, 19]. While these methods approach

manipulation as a step-by-step problem, solving perception

and grasping as separate subproblems, we directly target task

success as the goal. In the area of task-oriented manipulation,

related work include task-based quality metric [24], tactile ex-

ploration [17], vision-based grasping and adaptation [16, 1, 3],

and vision-tactile grasping [9]. We combine vision and touch

and reason about the uncertainty of task success in terms of

pixel regions, as opposed to explicitly estimating object pose

in [17]. We do not use handcrafted image features to map to

grasps like [9].

II. APPROACH

Given the camera input of a tabletop scene, we first extract

an initial 2D graspability mask of grasping regions based

on geometric stability between the object and the gripper.

A second mask representing the uncertainty learned from the

graspability mask is generated. These maps are used to calcu-

late a prior that determines locations that need to be explored

by touch. The locations are driven by task compatibility. As

the robot moves to touch the scene, the maps are updated.

Finally, a task-completing movement is computed from the

maps at the end of the tactile probing sequence. Detailed steps

are discussed in this section.

A. Vision-Initialized and Touch-Refined Probabilistic Maps

We generate a probabilistic map of candidate grasping

regions with a convolutional neural network (CNN) trained in

simulation to find gripper-fitting shapes in 2D images. Fig. 2

shows an example scene and probabilistic map generated. Note

the ambiguity in the coarse edges, even in large object parts.

A second variance map that reflects the uncertainty of the first

probabilistic map can also be outputted from the CNN. This

tells us how reliable the visually detected graspable regions

are. The visual procedure ends here, and the following step is

to use tactile sensing to improve regions with high uncertainty.

The uncertainty mask is used as a prior to inform us where

more information is needed. These are the regions we should

move the end-effector to make contacts with the scene. A set

of end-effector poses can be generated in the regions with high

local maxima in terms of the tradeoff between graspability and

uncertainty. One way is by taking argmaxx g(x) + w · q(x),
where x ∈ R

2 is a pixel location, g(x) is the value at x in

the graspability mask, q(x) the value in the uncertainty mask,

and w is a chosen importance weight between the two masks.

A top few local maxima can be found by thresholding.

These points represent peaks of regions that have a high

enough combined graspability and uncertainty to be worthy

of tactile exploration. The 2D pixels at the local maxima can

be mapped to corresponding 3D points in the world frame

by RGBD camera parameters. Based on the geometric shape

of the region surrounding the maxima, a gripper pose can be

estimated by a shape matching grasp planner [11] in existing

literature. Each point is explored by touch, and tactile readings

are used to update the masks.

At each point chosen to be contacted, the gripper is moved

to the planned pose and closed. The presence of an object

inside the gripper can be detected by whether the fingers have

closed all the way - finger distance to finger in the case of a

pinch grasp, or finger distance to palm in the case of a wide

grasp. If the enclosure is empty, then the graspability mask is

updated with a low value, and the uncertainty mask with a low

uncertainty. If the enclosure is non-empty, then the tactile and

joint readings are recorded, a feature descriptor is constructed,

and a trained discriminator (Sec. II-B) is used to determine the

task compatibility of the descriptor. This task compatibility is

in range [0, 1] and is used to update the graspability mask,

by multiplication with a Gaussian centered at x with height

proportional to the task compatibility. The uncertainty mask

is updated with a low uncertainty.

The tactile updates inform us about two properties of the

explored regions. Directly, the discriminator trained on task

compatibility tells us whether a region should be avoided

for the task. Implicitly, the actual physical contact tells us

whether a region will produce a geometrically stable grasp. In



the end, after the tactile updates to the graspability mask, it

contains both geometric stability as well as task compatibility

information from the tactile stage.

B. Touch-based Task Discriminator

To distinguish between tactile signatures that indicate

whether a grasp is task-compatible, we trained a regression

model on tactile descriptors with binary task compatibility

labels. The tactile feature descriptor contains readings from

the tactile sensor and joint angles of the gripper. The exact

feature vector is hardware-dependent and specified in Sec. III.

During an assembly task, two pieces are joined by some

region on each piece. These regions should be avoided by the

gripper, to keep them available to be attached. We consider

assembly pieces with indents, gaps, and holes, such as in Fig.

3, which are detectable by our sensing hardware. The low

resolution in the hardware poses limits on the type of objects

it is able to distinguish. Given finer grained sensors, objects

with finer detail and variety of materials can be considered.

In the training stage, the gripper is placed in various

grasping configurations with respect to the object, covering

compatible and incompatible cases. Example configurations

are shown in Fig. 5. The sensor inputs from each configuration

are recorded as a feature descriptor and given a binary label,

0 for incompatible, 1 for compatible.

For a given task, the regression model evaluates descriptors

for both task compatibility and gripper pose. The former is

explicitly given in the binary training label. The latter is object-

dependent and linked to which edges of the object are available

to be grasped during an attachment task. The edges involved

in the attachment, and therefore to be avoided by the gripper,

impose implicit constraints on gripper poses. A gripper pose

compatible with the task would need to place fingers only on

the available edges. Such poses are defined by the gripper’s

geometry and kinematics, which can be solved by a geometric

shape-matching grasp planner [11].

Fig. 3. Example indents, gaps, and holes commonly found in assembly parts.

III. EXPERIMENT RESULTS

We show results of a CNN-generated probabilistic map of

grasping regions (Fig. 2) and task compatibility as judged by

a tactile discriminator.

The robot platform we used is shown in Fig. 1, a Robotiq

3-finger gripper equipped with 36 Takktile MEMS barometric

sensors on the fingertips and palm, attached to a KUKA LBR

iiwa 14 R820 arm. Each fingertip has a 2×3 array of sensors,

with sensors spaced 5 mm apart. The palm has 18 sensors but

rarely makes contact with small objects in a pinch grasp.

Fig. 4 shows tactile readings on an incompatible and a

compatible grasp, captured on the aluminum triangle block

in Fig. 3. The assembly task needs to avoid the large holes

on the diagonal face. The incompatible grasp was produced

by placing the fingers on the diagonal face with the large

holes, and the compatible grasp placed the fingers on the

sides (Fig. 5). In the incompatible grasp, the thumb shows two

sensors on the object surface and one on the hollow portion. In

the compatible grasp, the diagonal edges produced contiguous

sensor activations.
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Fig. 4. Tactile readings for an incompatible (left) and a compatible (right)
grasp, arranged in the shape of the gripper. Top: thumb; Center: palm; Bottom:
forefingers. Medium green: no contact; dark pink: heavy contact.

The tactile feature descriptor is 46-dimensional: 36 Takktile

readings and 10 gripper joint angles (4 controllable, 6 com-

pliant). We evaluated the tactile features by recording samples

at different orientations and placements of the gripper with

respect to the object. For preliminary results, the samples were

done by manually placing the object at different poses into

the gripper. Fig. 5 shows examples of task-compatible grasps

for each object. A logistic regression model is learned. The

samples are randomly split into 50% training set and 50% test

set, and we report the average out of 100 splits.

We recorded tactile features for the aluminum objects in

Fig. 3, 25 samples on the triangle block, 24 on the joint, 9 on

the 90-degree plate, and 13 on the pipe bracket. Separately for

each object, the model’s prediction accuracy for compatibility

was 87.8%, 65.9%, 90.8%, 68.5% respectively, and overall

67.7%.

IV. CONCLUSION

We showed results from individual subparts of the proposed

visual-tactile integration. From the graspability mask, an un-

certainty mask can be learned to initialize the touch sequence.

During contacts, using the tactile discriminator, the masks can

be updated and used to predict the final task-completing move.



Fig. 5. Example compatible and incompatible grasps. Col 1: compatible
grasps for two objects. Col 2, 3: compatible (top) and incompatible (bottom)
grasps for one object per column.
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