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Learning Tactile Characterizations Of Object- And Pose-specific Grasps

Yasemin Bekiroglu Renaud Detry Danica Kragic

Abstract— Our aim is to predict the stability of a grasp from
the perceptions available to a robot before attempting to lift up
and transport an object. The percepts we consider consist of
the tactile imprints and the object-gripper configuration read
before and until the robot’s manipulator is fully closed around
an object. Our robot is equipped with multiple tactile sensing
arrays and it is able to track the pose of an object during the
application of a grasp. We present a kernel-logistic-regression
model of pose- and touch-conditional grasp success probability
which we train on grasp data collected by letting the robot
experience the effect on tactile and visual signals of grasps
suggested by a teacher, and letting the robot verify which grasps
can be used to rigidly control the object. We consider models
defined on several subspaces of our input data – e.g., using
tactile perceptions or pose information only. Our experiment
demonstrates that joint tactile and pose-based perceptions carry
valuable grasp-related information, as models trained on both
hand poses and tactile parameters perform better than the
models trained exclusively on one perceptual input.

I. INTRODUCTION

This paper studies the exploitation of tactile, visual, and
proprioceptive data for assessing stability in both planning
and executing grasps.

Grasp planning relies on (1) the extraction of information
from the agent’s environment (e.g., through vision), and on
(2) the recovery of memories related to the current environ-
mental configuration (e.g., previous attempts to grasp a par-
ticular object). Because of the uncertainty inherent to these
two processes, designing grasp plans that are guaranteed to
work in an open-loop system is difficult. Grasp execution
can thus greatly benefit from a closed-loop controller which
considers sensory feedback before and while issuing motor
commands.

Humans make extensive use of input from several sensor
modalities when executing grasps [2], [3]. Clearly, vision is
one of the modalities which contribute substantially to grasp
control and stability [4], [5], [6]. Touch is another one, as
supported by numerous studies which show the influence
of tactile feedback on different grasp sub-processes [2], [3],
[7], [1], [8]. For example, Johansson and Westling [7] have
shown that anesthetizing a subject’s fingers – thereby impair-
ing his sense of touch while leaving his motor capabilities
intact – directly leads to a loss in the subject’s proficiency
in grasping and lifting up objects. These observations are
reflected in the work of Johansson et al. [2], [7], [1] who
presented an empirical formalization of the human grasping

Y. Bekiroglu, R. Detry and D. Kragic are with the Centre
for Autonomous Systems, CSC, KTH, Stockholm, Sweden.
{yaseminb,detryr,danik}@csc.kth.se.

This work was supported by the Swedish Foundation for Strategic
Research, and by the EU project COGX (FP7-IP-027657).

Sensorimotor Muscle
commands

Comparison of afferent
pattern with that predicted

If mismatch then:Internal Models

Physical properties
of objects (and body)

Parameter
specification

Target
Object

Predicted sensory
feedback

(“forward model”)
Target
Object

Vision

(“forward model”)

Trigger compen-
satory actions

Selection
of action
programs Hand and body

Receptors
Somatosensory

Programs

Fig. 1: Reproduction of “Predictive ‘feed-forward’ sensory
control of manipulation”, from R. Johansson [1], Fig. 5,
p. 56. In Johansson’s work [1], the sensorimotor planning and
execution of manipulative tasks is formalized with a closed-
loop system which integrates dynamic touch and visual per-
ception with sensorimotor memories. A manipulative action
is planned from visual input, which triggers an appropriate
learned action program. As motor commands are being
issued, sensor signals are continuously compared to values
predicted by an internal forward model, which permits the
detection of unexpected events. In turn, unexpected events
trigger recovery procedures and the refinement of the forward
model.

behavior as a closed-loop system involving visual and touch
feedback and a memory-based controller, see Figure 1. A key
part of this work emphasized humans’ ability to predict the
repercussion of manipulative actions onto sensory channels
by means of a (learned) forward model, thereby allowing us
to react to unexpected situation and maintain grasp stability.

In robotics, vision-driven grasping and manipulation have
been extensively studied [9], [10]. Vision has typically been
used to plan grasping actions, and to update action param-
eters as objects move. Touch-based grasp controllers have
also been studied, with emphasis on designing programs for
controlling finger forces to avoid slippage and to prevent
crushing objects [11], [12], [13].

In this paper, we discuss means of learning some of
the models and sensorimotor programs which contribute to
the system depicted in Figure 1. By observing the sensor
signals issued during the execution of grasps demonstrated
by a human, our agent learns what it feels like to grasp
an object from a specific side, and learns which grasping
configurations lead to a stable grasp. When planning a grasp,
the agent is able to compute an initial estimate of the stability
of the planned grasp. As the grasp is being executed and



the manipulator’s fingers are brought around the object,
the pose (3D position and 3D orientation) of the object is
continuously tracked. When fingers come in contact with the
object, afferent tactile signals are compared to the signals
predicted by the learned feed-forward model for the current
object-gripper configuration, yielding an updated estimate
of the stability of the grasp. In a learning scenario, the
agent can then proceed with an attempt to transport and
shake the object to gather an empirical confirmation of
its stability assessment, possibly updating the feed-forward
model. During execution, if the stability estimate is too low,
the agent may decide to move the manipulator to a better
configuration before lifting up the object.

In mathematical terms, our agent learns an empirical rep-
resentation of pose- and/or touch-conditional grasp success
probability. This model predicts the stability of a grasp
from tactile data and/or object-gripper pose parameters. We
consider models defined on several subspaces of our input
data – e.g., using only tactile perceptions or pose information.
Models are optimized and evaluated with f -fold cross-
validation. This model is presented in Section III.

To our knowledge, learning to assess grasp stability jointly
from live visual and tactile feedback has not been attempted
before. This experiment poses a number of technical chal-
lenges. As an object will often move while the robot is
closing its hand to grasp it, the agent needs to track the
pose of the object during the grasp, which is made difficult
by the partial object occlusions effected by the robot hand.
Section III presents an overview of the robotic system we
implemented to run our experiment.

We experimentally demonstrate that considering both vi-
sual and tactile input is beneficial. While the relevance of
tactile and pose data varies between objects, models trained
on both pose and tactile parameters perform at least as well
as the models trained exclusively on hand poses or tactile
signals. This result shows that, despite the modeling difficul-
ties associated to an increased perceptual dimensionality, our
learning algorithm successfully identifies the discriminative
characteristics within the joint pose and tactile channel.

II. RELATED WORK

Our work is related to vision-based grasp planning, tactile
sensing, and robot learning.

Grasp planning was often approached by approximating
object shape with a number of shape primitives such as
boxes, cylinders, cones, spheres [14] and superquadrics [15]
in order to limit the number of possible grasps and prune the
search space to find stable grasps. Borst et al. [16] reduced
the number of candidate grasps by generating random grasps
dependent on the object surface and filtering them with a
simple heuristic. Ciocarlie et al. [17] reduced the config-
uration space of a robotic hand to find pre-grasp postures
from which the system searched for stable grasps. Li et al.
[18] utilized a user-created database of human grasps. After
a shape matching algorithm found the hand shape that best
matched the query object, the alignment of the hand pose

to the object shape was determined. The resulting candidate
grasps were clustered and pruned depending on the task.

Learning aspects were considered in the context of grasp-
ing some of which focused on understanding human grasping
strategies. Ekvall and Kragic [19] demonstrated how a robot
system could learn grasping by human demonstration using a
grasp experience database. The human grasp was recognized
with the help of a magnetic tracking system and mapped to
the kinematics of the robot hand using a predefined lookup-
table. Learning was also used to infer good grasping config-
urations based on visual input. Saxena et al. [20] introduced
a system that learned grasping points by using hand labeled
training data in the form of image regions which indicated
good grasping points. A probabilistic decision system was
then applied to previously unseen objects to determine a
good grasping point or a region. Letting a robot learn good
grasping configurations based on exploration was also stud-
ied [21]. Erkan et al. [22] presented a probabilistic approach
to model the success probabilities of grasp configurations
obtained from visual descriptors and combined active and
semisupervised learning to tackle the scarcity of labeled
grasps.

In prior studies, tactile sensing was used for various
purposes such as determining object pose [23] and the
surface type (edge, flat, cylindrical, spherical) of the tactile
contact [24], extracting object shape [25] and recognizing
objects [26], [27]. Morales et al. [28] used tactile data
to maximize contact surfaces to remove a book from a
bookshelf. Application of force, visual and tactile feedback to
open a sliding door was proposed by Prats et al. [29] where
tactile control ensured that an accurate alignment between
the hand and the handle was kept.

Differently from the aforementioned approaches, we use
tactile feedback along with visual feedback to differentiate
between successful and unsuccessful grasping configurations
before further manipulating the object. The visual feedback
is obtained by using a real-time tracker during grasping.
Compared to our previous work on tactile learning [30]
where assessing grasp stability was based on only tactile
input extracted during a grasp, this work makes use of vision-
based object pose to further discriminate between stable and
unstable grasps.

III. LEARNING GRASP STABILITY

Our aim is to infer grasp stability from the tactile imprints
and the object-gripper configuration available before lifting
up an object, and to provide the agent with means of learning
from experience of how to make stability assessments.

A. Perceptual Input

Our robot platform is composed of an industrial arm, a
three-finger hand and a monocular camera, see Figure 2.
Tactile imprints are delivered by pressure-sensing arrays
deployed on the hand. Each of the hand’s three fingers
is composed of two segments, both covered by an array,
yielding a total of 6 tactile arrays, see Figure 2. The
tactile data is relatively high-dimensional and to some extent



Fig. 2: Experimental robotic platform, composed of an
industrial arm, a three-finger gripper equipped with tactile
sensing arrays, and a camera. There are six tactile sensing
arrays. The rightmost image shows an example of tactile
readings obtained during a grasp.

redundant. Therefore, we start by representing the acquired
data as features. Here, we borrow some ideas from image
processing and consider the two-dimensional tactile patches
as images. In order to reduce their dimensionality, we extract
these images’ moments, as suggested in the literature [31],
[32]. The general parametrization of image moments for one
tactile array A is given by

mp,q =
∑
i

∑
j

ipjqAij (1)

where p and q represent the order of the moment, and i
and j represent the horizontal and vertical position on the
tactile patch. We compute moments up to order two, (p +
q) ∈ {0, 1, 2}, which yields 6 numbers that model the total
pressure and the distribution of the pressure in the horizontal
and vertical direction. We denote a tactile input vector by t.
Such a vector contains moments from the six tactile pads
and therefore holds 6× 6 numbers.

Through visual and proprioceptive feedback, our platform
is able to acquire object and gripper poses in real time.
Gripper poses are simply obtained from the kinematics of
the robot. Obtaining object poses is more challenging. As an
object will often move while the robot is closing its hand to
grasp it, the agent needs to compute the pose of the object
after having closed the hand around it. This computation is
made difficult by the partial object occlusions effected by
the hand. Our aim however is not to get perfectly accurate
pose information, but rather a rough idea of how the object is
approached. We address this issue by tracking the movement
of the object for the complete duration of the grasp. We
are currently using a system which tracks the pose of a
textured CAD model in a monocular video stream [33].
Tracking object textures greatly helps handling partial object
occlusions and distractions induced by the hand.

We aim at designing a stability predictor that is inde-
pendent of the position of an object. For this reason, we
do not predict stability from the manipulator and object
poses directly. Instead, we base our predictions on the
relative object-manipulator pose. Object-relative manipulator
configurations allow our system to encode notions such as

“grasping a bottle from the side is better than grasping it from
the top.” However, stability will often not only depend on the
relative object-gripper configuration, but also on the absolute
orientation of the object. When an elongated object lies on a
flat surface, it is generally better to grasp it close to its center
of mass. Yet, if the object is standing, grasping it near its
tip is acceptable. As a result, we also base our predictions
on the angle between the gripper’s approach vector and a
direction aligned with gravity.

B. Stability Classification

We predict grasp stability with object-specific classifiers
trained to discriminate between percepts that lead to stable
or unstable grasps for a specific object. Our agent learns
an empirical representation of pose- and touch-conditional
grasp stability probability. This model is learned from a set
of examples denoted by

Z = {(xi, yi)}i=1,...,n (2)

where each pair (xi, yi) is composed of perceptual readings
xi ∈ Rd (pose and touch) and a binary stability label
yi ∈ {stable, unstable}. Perceptual data are read during the
execution of a grasping plan, shortly after the agent closed
the manipulator’s fingers around the object, but before any
attempt to lift or transport the object. The probability of
pose- and touch-conditional grasp stability is modeled with
kernel logistic regression (KLR). Logistic regression is a
widely used technique to model class probabilities. Using the
kernelized version of logistic regression allows us to model
non-linear decision boundaries. In the next paragraph, we
give an intuitive explanation of KLR applied to our problem.
A short formal description follows. For further details on
the theory behind logistic regression and kernel methods,
we refer the reader to the work of Yamada et al. [34], Erkan
et al. [22], and Schölkopf and Smola [35].

KLR models the stability probability of a grasp character-
ized by a perceptual vector x with the help of a weighted
sum of the similarities between x and each vector in the
training dataset Z. The weights associated to stable grasps
will generally be positive, while those associated to unstable
grasps will be negative. If x resembles percepts of Z that
lead to stable grasps, its probability of stability will thus
be high. In order to restrict values to the [0, 1] interval,
KLR models probabilities by plugging the weighted sum
described above into the logistic function f(z) = 1

1+e−z ,
which smoothly grows from 0 to 1 as its argument varies
from minus infinity to infinity. Weights are usually chosen
to maximize the probability of the training set.

Formally, we model the probability of pose- and touch-
conditional grasp stability as

p(y = stable|x; v) =
1

1 + exp {−
∑n
i=1 viK(x, xi)}

(3)

where p(y = stable|x) is the probability of success of a grasp
characterized by the tactile and pose vector x, K is a kernel
function that models the similarity between two perceptual



readings and v is a weight vector chosen to maximize the
regularized stability probability of the data

−
n∑
i=1

log p(yi|xi; v) + c trace(vKvT ) (4)

where K is the kernel Gram matrix, with Kij = K(xi, xj),
and c is a constant. This problem can be solved, e.g., with
Newton’s method. For more details, we refer the reader to
the work of Yamada et al. [34]. In the experiments below,
the constant c is chosen by cross-validation.

C. Kernel Function

As explained above, we consider perceptual signals in
the form of tactile readings, relative object-gripper config-
urations, and an angle that represents the tilt of the hand’s
approach vector relative to gravity.

A vector x representing perceptual observations can be
written as

x = (t, g, a) (5)

where t is the tactile data, g is the object-relative gripper
pose, and a is the angle between the approach vector and
the vertical. The kernel K is defined as

K(x1, x2) = Kt(t1, t2)Kg(g1, g2)Ka(a1, a2). (6)

The kernel function Kt simply corresponds to a multivariate
isotropic Gaussian function

Kt(t1, t2) = G(t1; t2, σt), (7)

where σt is a bandwidth parameter. In the next section, an
optimal bandwidth is computed by cross-validation.

An object-relative gripper pose is composed of a 3D
position and 3D orientation. We define the gripper pose
kernel Kg as the product of a position and an orientation
kernel. Let us denote the decomposition of a pose g into
position and orientation by p and o respectively. We define
Kg with

Kg(g1, g2) = G(p1; p2, σp)
eσo o

T
1 o2 + e−σo o

T
1 o2

2
(8)

where G is a trivariate isotropic Gaussian kernel, the fraction
corresponds to a pair of antipodal von-Mises Fisher dis-
tributions (Gaussian-like distribution on the rotation group
[36], [37]), and the bandwidths σp and σo are fixed to allow
for deviations of 20 mm and 20◦ respectively. For a more
detailed mathematical description and motivation of SE(3)
kernels, we refer the reader to the work of Sudderth et al.
[37].

The kernel function Ka corresponds to a Gaussian function

Ka(a1, a2) = G(a1; a2, σa), (9)

where σa is a bandwidth parameter. In the next section, an
optimal bandwidth is computed by cross-validation.

(a) “Bottom” seed grasp (b) “Middle” seed grasp

Fig. 3: Seed grasps for a detergent bottle. Each seed grasp
is shown when the bottle is standing and lying.

(a) “Middle” grasp (b) “Tilted” (c) “Top”

Fig. 4: Seed grasps for a coffee pot.

IV. EXPERIMENTS

In this section, we present the perceptual data collected
by the robot (392 grasps in total), and we discuss classifi-
cation error rates for pose-based classification, tactile-based
classification, and tactile-and-pose–based classification. We
present in Section IV-A an experiment in which the agent
explores grasping configurations around grasps demonstrated
by a human. In Section IV-B, the agent tries grasps uniformly
along one edge of an object.

A. Exploration around Demonstrated Grasps

We ran the first experiment on the two objects shown in
Figure 3 and Figure 4. For each object, we demonstrated to
the agent sets of two and three “seed” grasps that should be
interesting to explore. Each of these grasps was parametrized
by the pose of the hand with respect to the object. The
agent was then tasked to explore the objects around these
grasps. Each grasp trial worked as follows: An object was
laid in front of the robot, at an arbitrary position. The
standing/lying configuration of the objects also varied. For
instance, Figure 3 shows the detergent bottle grasped when
standing and when lying on the table. The agent estimated
the pose of the object and selected one of the seed grasps
available for that object. Let us denote that grasp by gs.
In order to explore the object in the neighborhood of gs, the
agent generated a random grasp ĝr from P (gr) ∝ Kg(gs, gr),
where Kg is defined by Eq. 8. In effect, this led the agent
to explore grasps distributed a few millimeters/degrees away
from gs. The grasp ĝr was executed by the robot. As the hand
is rather big with respect to the objects, only two fingers were
used. Grasping was run by simultaneously closing the fingers
and applying a constant closing force on all joints. Once the
hand had stopped, the agent recorded the pose of the object
(which was usually different from the initial object pose) and



Fig. 5: Examples of grasps and associated tactile readings. Tactile images correspond to the readings obtained from the
frontmost distal array. The rightmost image of each image pair shows an overlay of the object’s shape model aligned to the
pose computed by the pose tracker [33].

the tactile imprints. It finally attempted to lift up the object.
If lift-up could be achieved robustly, the grasp was marked
as stable. If the object slipped or rotated in the hand while
being lifted up, the grasp was marked as unstable.

For the detergent bottle of Figure 3, seed grasps were
defined at half height, and at the bottom end. Both seed
grasps were explored in standing and lying configurations.
The seed grasps of the coffee pot are shown in Figure
4. For standing configurations, all three seed grasps were
explored. When lying on the table, only the “middle” was
tried. Figure 5 shows examples of grasps, associated tactile
readings and tracking results.

In this experiment, a total of 342 grasps were collected,
i.e., 232 and 110 for the detergent bottle and the coffee pot
respectively, with half of these stable and the other half
unstable. Each grasp i consists of the grasp’s perceptual
readings ti, gi, ai as defined by Eq. 5. For each object, tactile
moments ti were normalized to zero mean and unit variance.
In order to evaluate the relevancy of tactile and visual
feedback for stability estimation, we studied rates of correct
classification for classifiers based on (1) tactile feedback
alone, (2) pose feedback alone, and (3) both tactile feedback
and pose feedback together. We note that as pose parameters
cannot be shared across objects, each classifier is specific
to one object – a classifier is learned and evaluated with
the data collected for a single object. Stability classification
was computed from the probabilistic stability model defined
above (3). A grasp characterized by x was predicted to
be stable if P (y = stable|x) > 1

2 . When classifying on
tactile imprints or pose exclusively, the kernel of Eq. 6
was redefined as K(x1, x2) = Kt(t1, t2) or K(x1, x2) =
Kg(g1, g2)Ka(a1, a2) respectively. We computed success
rates by ten-fold cross-validation. Cross-validation was run
for several values of the tactile kernel bandwidth parameter
σt (values between 0.5 and 5), and several values of the
regularization constant c (see Eq. 4). Rates obtained with the
best parameters are presented in Table I. For the detergent
bottle, considering pose and tactile feedback jointly yields
a higher classification rate than considering either pose or
tactile alone. The bottle was explored around two seed points,
both when standing and lying. When standing, both seed
grasps led to stable and unstable grasps. However, when
lying, most grasps around the bottom of the bottle were
unstable, while grasps around its center were both stable

Detergent Coffee pot

Tactile feedback only 82% 82%

Pose feedback only 90% 73%

Pose and tactile feedback 93% 82%

TABLE I: Correct classification rates from ten-fold cross-
validation of three variants of the stability classification
model for the detergent bottle and the coffee pot.

and unstable. Tactile feedback alone can difficultly make
a difference between a grasp applied to the bottom of the
standing bottle and the same grasp while the bottle is lying.
For these grasps, the pose information (in the form of the
angle of the grasp approach with the vertical) allows the
classifier to separate stable and unstable grasps. For grasps
applied around the center of the bottle, pose information
allows the model to make reasonably good predictions, but
taking tactile feedback into account refines these predictions.

For the grasps tried on the coffee pot, tactile feedback
provides a better classification than pose, and considering
both tactile and pose yields the same rate as tactile alone. The
coffee pot is a rather light object compared to the detergent
bottle. As a result of its low weight, the dependency of grasp
stability on the standing/lying configuration of the object was
less important than for the bottle. Tactile imprints however
provided equally good stability assessments.

We also evaluated classification rates as a function of the
amount of data available to the agent. Using fixed values for
σt and c, we ran ten-fold cross-validations on increasingly
large subsets of the collected data. We considered fractions
of the data going from 20% to 100% of the total collected
data, for each of which we ran multiple cross-validations.
The mean classification rates are shown in green in Figure
6. These graphics show that for the detergent bottle, even
small numbers of examples allow for robust pose-based
classification. For the coffee pot, collecting more data allows
for more robust pose predictions. Red-shaded areas show one
standard deviation. In all cases, the variance of the predictor
decreases as the number of examples increases.

B. Exploration along the Top Edge of a Box

In the second experiment, the agent explored grasp poses
distributed alongside the top side of a box (see Figure
7). Our aim with this experiment was to study how the
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(a) Detergent bottle, tactile feedback
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(b) Detergent bottle, pose feedback
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(c) Detergent bottle, tactile and pose feedback
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(d) Coffee pot, tactile feedback
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(e) Coffee pot, pose feedback
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(f) Coffee pot, tactile and pose feedback

Fig. 6: Rates of correct classification as a function of the available amount of data.

Fig. 7: Illustration of the grasps executed by the robot and
the corresponding tactile images from one distal array. The
left image shows a “middle” grasp, which always succeeded,
while the right image shows an “extremity” grasp which
always failed. The object was continuously explored between
these two points. The tactile images show that during the
unstable grasp, the leftmost side of the finger applies a strong
pressure onto the object, while, for the stable grasp, pressure
is more evenly distributed across the whole width of the
finger.

transition between stable and unstable grasps occurred, and
how accurately it was reflected by pre-grasp perceptual
data. The wrist poses of the grasps executed by the robot
were demonstrated by a human by teleoperation. The box
was grasped by simultaneously closing the two fingers and
continuously applying a constant closing force on all joints.
A total of 50 grasps were executed, amongst which 25
were stable and 25 were unstable. Grasps applied near the
middle of the top face of the box were always stable (see
left image in Figure 7). As grasps were tried closer to
the extremity of the box, they remained stable for a few
centimeters, then abruptly became unstable. Unstable grasps
were characterized by a rotation of the object when the robot
tried to lift it up.

Stability classification was evaluated as explained above.

Classification rates computed from tactile data alone yielded
a 94% rate. Rates computed from pose data alone, and
from pose plus tactile data, led to 100% correct predictions.
Several comments can be made on these results. First, pose
perfectly separated stable grasps from unstable ones. We note
however that in our setup, the camera is pointed directly at
the objects, and the objects cover a large fraction of the
camera’s field of view. If the camera were to cover a larger
field, such as the whole robot workspace, pose estimation
would be less accurate, and pose-based classification would
be less reliable, therefore motivating the use of additional
perceptual modalities. Second, in this experiment, tactile
imprints can discriminate surprisingly well grasps applied
on both ends of the explored region of the box. Although
this discrimination may be useful in certain situations, it is
likely that it is limited to the specific part of the box that
was explored by the robot. As discussed below, one of our
future aims is to learn models that characterize a part of an
object, and which would thus be applicable to novel objects
that share the same part. In this context, it will be interesting
to study how tactile characterizations such as those learned
for the box, or the objects of the previous section, generalize
to novel objects.

V. CONCLUSION

This paper studied the viability of concurrent object pose
tracking and tactile sensing for assessing grasp stability on
a physical robotic platform. We presented a kernel-logistic-
regression model of pose- and touch-conditional grasp suc-
cess probability, and a robotic platform that can track the
pose of an object while it is grasping it, and that can acquire
tactile imprints of the grasps it executes. We showed that the
robot is able to use data collected by human demonstrations
to learn grasp stability classifiers. Our results showed that
stability assessments based on both tactile and pose data can



provide better rates than assessments based on tactile data
alone.

Because models rely on the pose of an object, each model
that the agent learns is only usable with that particular
object. It is not realistic to imagine that an agent would learn
different model of every object that exists. To overcome this
limitation, we project to learn models that characterize only
a part of an object, and which would thus be applicable to
novel objects that share the same part.

VI. ACKNOWLEDGEMENTS

We warmly thank T. Mörwald, M. Zillich, and M. Vincze
for their support with the Blort pose tracker [33]. We thank
M. Yamada for providing us with his KLR library.

REFERENCES

[1] R. Johansson, “Sensory input and control of grip,” in Novartis Foun-
dation Symposium, 1998, pp. 45–59.

[2] ——, “Sensory control of dexterous manipulation in humans,” Hand
and brain: The neurophysiology and psychology of hand movements,
pp. 381–414, 1996.

[3] P. Jenmalm, S. Dahlstedt, and R. Johansson, “Visual and tactile
information about object-curvature control fingertip forces and grasp
kinematics in human dexterous manipulation,” Journal of Neurophys-
iology, vol. 84, no. 6, p. 2984, 2000.

[4] R. Woodworth, “The accuracy of voluntary movement,” The Journal
of Nervous and Mental Disease, vol. 26, no. 12, p. 743, 1899.

[5] A. Milner and M. Goodale, The visual brain in action. Oxford
University Press, USA, 2006.

[6] C. Hesse and V. Franz, “Grasping remembered objects: Exponential
decay of the visual memory,” Vision Research, 2010.

[7] R. Johansson and G. Westling, “Roles of glabrous skin receptors
and sensorimotor memory in automatic control of precision grip
when lifting rougher or more slippery objects,” Experimental Brain
Research, vol. 56, no. 3, pp. 550–564, 1984.

[8] A. Kritikos and C. Brasch, “Visual and tactile integration in action
comprehension and execution,” Brain Research, vol. 1242, pp. 73–86,
2008.

[9] B. Yoshimi and P. Allen, “Closed-loop visual grasping and manipula-
tion,” in IEEE International Conference on Robotics and Automation,
1996.

[10] D. Kragic, A. T. Miller, and P. K. Allen, “Real-time tracking meets
online grasp planning,” in IEEE International Conference on Robotics
and Automation, 2001, pp. 2460–2465.

[11] A. Bicchi, J. Salisbury, and P. Dario, “Augmentation of grasp robust-
ness using intrinsic tactile sensing,” in IEEE International Conference
on Robotics and Automation, 1989.

[12] R. Howe, N. Popp, P. Akella, I. Kao, and M. Cutkosky, “Grasping,
manipulation, and control with tactile sensing,” in IEEE International
Conference on Robotics and Automation, 1990.

[13] R. Howe, “Tactile sensing and control of robotic manipulation,”
Advanced Robotics, vol. 8, no. 3, pp. 245–261, 1993.

[14] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen, “Auto-
matic Grasp Planning Using Shape Primitives,” in IEEE International
Conference on Robotics and Automation, 2003, pp. 1824–1829.

[15] C. Goldfeder, P. K. Allen, C. Lackner, and R. Pelossof, “Grasp
Planning Via Decomposition Trees,” in IEEE International Conference
on Robotics and Automation, 2007, pp. 4679–4684.

[16] C. Borst, M. Fischer, and G. Hirzinger, “Grasping the dice by dicing
the grasp,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2003, pp. 3692–3697.

[17] M. Ciocarlie, C. Goldfeder, and P. Allen, “Dexterous grasping via
eigengrasps: A low-dimensional approach to a high-complexity prob-
lem,” in In Robotics: Science and Systems Manipulation Workshop,
2007.

[18] Y. Li, J. L. Fu, and N. S. Pollard, “Data-driven grasp synthesis
using shape matching and task-based pruning,” IEEE Transactions on
Visualization and Computer Graphics, vol. 13, pp. 732–747, 2007.

[19] S. Ekvall and D. Kragic, “Learning and Evaluation of the Approach
Vector for Automatic Grasp Generation and Planning,” in IEEE In-
ternational Conference on Robotics and Automation, 2007, pp. 4715–
4720.

[20] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic grasping of novel
objects using vision,” The International Journal of Robotics Research,
vol. 27, no. 2, pp. 157–173, 2008.

[21] R. Detry, E. Baseski, M. Popovic, Y. Touati, N. Krueger, O. Kroemer,
J. Peters, and J. Piater, “Learning continuous grasp affordances by
sensorimotor exploration,” in From Motor Learning To Interaction
Learning in Robots. Springer-Verlag, 2010, pp. 451–465.

[22] A. Erkan, O. Kroemer, R. Detry, Y. Altun, J. Piater, and J. Peters,
“Learning probabilistic discriminative models of grasp affordances
under limited supervision,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2010, pp. 1586–1591.

[23] A. Petrovskaya, O. Khatib, S. Thrun, and A. Y. Ng, “Bayesian esti-
mation for autonomous object manipulation based on tactile sensors,”
in IEEE International Conference on Robotics and Automation, 2006,
pp. 707–714.
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