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Abstract— This paper studies the viability of concurrent
object pose tracking and tactile sensing for assessing grasp
stability on a physical robotic platform. We present a kernel-
logistic-regression model of pose- and touch-conditional grasp
success probability. Models are trained on grasp data which
consist of (1) the pose of the gripper relative to the object,
(2) a tactile description of the contacts between the object
and the fully-closed gripper, and (3) a binary description
of grasp feasibility, which indicates whether the grasp can
be used to rigidly control the object. The data is collected
by executing grasps demonstrated by a human on a robotic
platform composed of an industrial arm, a three-finger gripper
equipped with tactile sensing arrays, and a vision-based object
pose tracking system. The robot is able to track the pose
of an object while it is grasping it, and it can acquire
grasp tactile imprints via pressure sensor arrays mounted on
its gripper’s fingers. We consider models defined on several
subspaces of our input data – using tactile perceptions or
gripper poses only. Models are optimized and evaluated with f -
fold cross-validation. Our preliminary results show that stability
assessments based on both tactile and pose data can provide
better rates than assessments based on tactile data alone.

I. INTRODUCTION

Object grasping and manipulation in real-world environ-
ments are, from a robotics viewpoint, uncertain processes.
Despite efforts in improving autonomous grasp planners,
either by learning or by building into agents sophisticated
visuomotor programs, one cannot assume that a grasp will
work exactly as planned. One obvious reason for this,
amongst many other, is that the perceptual observations on
which the planner bases its reasoning are always noisy. It
is thus unlikely that the robot’s fingers will come in contact
with the object at the exact intended points. The object will
generally move while fingers are being closed, and the final
object-gripper configuration, even if geometrically similar to
the intended one, may present a prohibitively different force
configuration. For this reason, executing grasping actions in
an open-loop system is unlikely to prove viable in real-
world environments. Real-world environments will often
require a closed-loop system in which perceptual feedback
is constantly monitored and triggers plan corrections.

Amongst the multitude of available sensors that exist,
vision and touch seem particularly relevant for grasping.
Vision-driven grasping and manipulation have been exten-
sively studied [1], [2]. Vision has typically been used to plan
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Fig. 1. Experimental robotic platform, composed of an industrial arm, a
three-finger gripper equipped with tactile sensing arrays, and a camera (on
the right).

grasping actions, and to update action parameters as objects
move. Touch-based grasp controllers have also been studied,
either for controlling finger forces to avoid slippage and to
prevent crushing objects [3], [4], [5], or for assessing grasp
stability [6], [7].

In this paper, we study the joint impact of visual and
tactile sensing on grasp stability assessment. Considering
vision and touch separately brings valuable information on
grasp stability. However, in many situations one modality can
substantially help disambiguating the readings obtained from
the other one. For instance, it is conceivable that for some
object, two grasps approaching from different directions
would yield similar tactile readings, but one would allow
for robustly moving the object while the other would let the
object slip away. Such situations may occur, e.g., because one
of the grasps benefits from an extra gripper-object contact
point in an area that is not covered by tactile sensors, or
because of a different relative configuration of the grasp
with respect to the center of mass of the object. Considering
both modalities jointly should intuitively lead to more robust
assessments. We present a platform equipped with hardware
and software components which allow it to obtain 6D object
pose (3D position and 3D orientation) and tactile imprint
information during a grasping action, and we suggest means
of using these data to learn a model of grasp stability.

Our robotic platform is composed of an industrial arm,
a three-finger gripper equipped with tactile sensing arrays,
and a vision-based object pose tracking system (see Figure
1). The robot is able to track the pose of an object while it
is grasping it despite object occlusions, and it can acquire
grasp tactile imprints via pressure sensor arrays mounted on
its gripper’s fingers.



We propose to learn a stable/unstable grasp classifier from
the pose and tactile data available once the robot has closed
its hand around an object and is ready to attempt lifting it up.
By observing the pose/touch signals issued when executing
grasps demonstrated by a human, the agent learns what it
feels like to grasp an object from a specific side. Once
perceptual data has been acquired, an attempt to lift up the
object provides the agent with a stable/unstable label for the
grasp. Once a few examples are available, the agent can make
predictions on the stability of a grasp before attempting to
move the object. If its stability estimate is too low, the agent
can for instance decide to back off and make another attempt,
or possibly search locally for a more efficient grasp.

We show preliminary results on the agent’s ability to
gather useful data, and on its ability to learn purposeful
models from these.

II. RELATED WORK

Our work is related to vision-based grasp planning, tactile
sensing, and robot learning. In robotic object grasping there
has been a lot of effort during the past few decades, see
[8] for a recent survey. Grasp planning often utilizes grasp
stability analysis that provides grasp quality measures. An-
alytical approaches are mostly used on grasp stability and
rely on precise knowledge of the contacts between the hand
and the object to estimate the stability of a grasp. Most of
the grasp planning approaches tested in simulation rely on
the object shape. Modelling object shape with a number of
primitives such as boxes, cylinders, cones, spheres [9], or
superquadrics [10] reduces the space of possible grasps. The
decision about the suitable grasp is made based on grasp
quality measures given contact positions. However, these
kind of techniques do not provide a way of dealing with
uncertainties that might arise in dynamic scenarios which
can be solved using tactile feedback. To cope with the fact
that the exact knowledge of the object and the hand is not
available, we use tactile sensors capable of measuring a range
of pressure levels. Tactile sensing has been used for various
purposes in prior studies. There are recent examples which
base grasp generation on visual input and use tactile sensing
for closed loop control once in contact with the object. For
example, the use of tactile sensors has been proposed to
maximize the contact surface for removing a book from
a bookshelf [11]. Application of force, visual and tactile
feedback to open a sliding door has been proposed in [12].
In our work the main difference is that the tactile sensors are
used to assess the stability of a grasp. Thus, rather than using
the tactile data for control, we reason about grasp stability.

Learning aspects have been considered in the context of
grasping mostly for the purpose of understanding human
grasping strategies. In [13], it was demonstrated how a robot
system can learn grasping by human demonstration using a
grasp experience database. The human grasp was recognized
with the help of a magnetic tracking system and mapped to
the kinematics of the robot hand using a predefined lookup-
table. Another approach to learning about good grasps is to
use vision. However, it is impossible to measure the contact

between the object and hand accurately. The system in [14]
learns grasping points by using hand labeled training data
in the form of image regions which indicate good grasping
regions. A probabilistic decision system is then employed
on previously unseen objects to determine a good grasping
point or a region. In [15], the authors use vision to create
probabilistic grasp affordance models for objects and refine
these models through grasping. Erkan et al. [16] presented
a probabilistic approach to model the success probabilities
of grasp configurations obtained from visual descriptors and
combined active and semisupervised learning to tackle the
scarcity of labeled grasps. Current learning approaches using
tactile sensors are focused on either determining the prop-
erties of objects [17], [18], [19] or object recognition [19],
[20], [21], [22].

Different properties of objects give valuable information
that can be further used in grasp stability analysis. In [17]
the pose of the object is determined using a particle filter
technique based on the tactile information gained from the
contacts between a gripper and the object. Similar work was
presented by Hsiao et al. [23] where object localization was
performed with knowledge of tactile contacts on specific
objects. [18] determine the surface type (edge, flat, cylindri-
cal, sphere) of the tactile contact using a neural network. In
[19], tactile information extracted from the sensors on a two
fingered gripper is used in order to determine deformation
properties of objects such as the open/closed and fill state of
bottles. Also the bottle type is recognized. However, learning
or analyzing such object properties through tactile sensors do
not answer the question of grasp stability directly compared
to the work presented here.

Work on using tactile sensors for recognition of manip-
ulated objects has been reported rather recently. The main
approach is to use multiple grasp or manipulation attempts
and then learn the object through the haptic input from
the manipulations or grasps. Current approaches use either
one shot data from the end of the grasps [21], [22] or
temporal data collected throughout the grasp or manipulation
execution [19], [20]. In [21], an approach is presented to
identify objects using touch sensors available in the fingertips
of a gripper. The approach processes tactile images collected
by grasping objects at different heights and a histogram code-
book is generated using a vocabulary built by unsupervised
clustering based on tactile observations. The identification
is based on the histogram codebook modelling distributions
over the learned vocabulary. In [22] a similar approach is
taken, but with a humanoid hand. However, a more traditional
approach to learning is employed by using features extracted
from the tactile images which are used in conjunction with
the hand joint configurations as input data for the object
classifier.

To our knowledge, learning grasp controllers jointly from
live visual and tactile feedback hasn’t been attempted before.

III. LEARNING GRASP STABILITY

Our aim is to design an agent which can infer grasp
stability estimates from the data available before lifting up



Fig. 2. We use a three-finger hand equipped with 6 tactile sensing arrays.
The right side of the image shows an example of tactile readings obtained
during a grasp.

an object, and to provide the agent with means of learning
from experience how to make these stability assessments.

A. Kernel Logistic Regression

Formally, our agent learns an empirical representation of
pose- and/or touch-conditional grasp stability probability.
This model is learned from a set of examples denoted by

Z = {(xi, yi)}i=1,...,n

where each pair (xi, yi) is composed of perceptual readings
xi ∈ Rd (pose and/or touch) and a binary stability label
yi ∈ {stable, unstable}. Perceptual data are read during the
execution of a grasping plan, shortly after the agent closed
the manipulator’s fingers around the object, but before any
attempt to lift or transport the object. The probability of
pose- and/or touch-conditional grasp stability is modeled
with kernel logistic regression as

P (y = stable|x; v) =
1

1 + exp−
∑n
i=1 viK(x, xi)

(1)

where P (y = stable|x) is the probability of success of
a grasp characterized by the tactile and/or pose vector x,
K is a kernel function that models the similarity between
two perceptual readings and v is a weight vector chosen to
maximize the regularized stability probability of the data.
Specifically, v is chosen as

argmax
v

{
−

n∑
i=1

logP (yi|xi; v) + c trace(vKvT )

}
, (2)

where K is the kernel Gram matrix, with Kij = K(xi, xj),
and c is a constant. This problem can be solved, e.g., with
Newton’s method. For more details, we refer the reader to the
work of Yamada et al. [24], Erkan et al. [16], and Schlkopf
and Smola [25].

B. Perceptual Readings and Kernel Function

In this work, we consider perceptual signals in the form of
tactile readings and/or relative object-gripper configurations.
A vector x representing perceptual observations can be
written as x = (t, g) where t represents tactile data and
g represents an object-relative gripper pose. The kernel K
is defined as K(x1, x2) = Kt(t1, t2)Kg(g1, g2). Our robot
platform is composed of an industrial arm and a three-finger
hand. Each of the hand’s finger is composed of two segments,
both covered by an array of pressure sensors, yielding a total

of 6 tactile arrays (see Figure 2). The tactile data is relatively
high dimensional and to some extent redundant. Therefore,
we start by representing the acquired data as features. Here,
we borrow some ideas from image processing and consider
the two-dimensional tactile patches as images. We employ
image moments as a suitable representation which also
reduce the dimensionality. The general parameterization of
image moments for one tactile array A is given by

mp,q =
∑
i

∑
j

ipjqAij

where p and q represent the order of the moment, and
i and j represent the horizontal and vertical position on
the tactile patch. We compute moments up to order two,
(p + q) ∈ {0, 1, 2}, which yields 6 numbers that model
the total pressure and the distribution of the pressure in the
horizontal and vertical direction. A tactile vector t, which
contains moments from the six tactile pads, is composed of
6 × 6 numbers. The kernel function Kt simply corresponds
to a multivariate isotropic Gaussian function

Kt(t1, t2) = G(t1; t2, σt),

where σt is a bandwidth parameter. In the next section, an
optimal bandwidth is computed by cross-validation. In cases
where one wishes to ignore tactile data and only take pose
feedback into account, Kt(t1, t2) is simply forced to 1.

A relative object-gripper pose is computed from the pose
of the hand and the pose of the object. Hand poses are simply
obtained from the kinematics of the robot. Obtaining object
poses is more challenging. As an object will often move
while the robot is closing its hand to grasp it, the agent
needs to compute the pose of the object after having closed
the hand around it. This computation is made difficult by
the partial object occlusions effected by the hand. Our aim
however is not to get perfectly accurate pose information,
but rather a rough idea of how the object is approached. We
address this issue by tracking the movement of the object
for the complete duration of the grasp. We are currently
using a system which tracks the pose of a textured CAD
model in a monocular video stream [26]. Tracking object
textures greatly helps handling partial object occlusions and
distractions induced by the hand.

An object-relative gripper pose is composed of a 3D
position and 3D orientation. We define the gripper pose
kernel Kg as the product of a position and an orientation
kernel. Let us denote the decomposition of a pose g into
position and orientation by p and o respectively. We define
Kg with

Kg(g1, g2) = G(p1; p2, σp)
eσo o

T
1 o2 + e−σo o

T
1 o2

2
where G is a trivariate isotropic Gaussian kernel, the fraction
corresponds to a pair of antipodal von-Mises Fisher dis-
tributions (Gaussian-like distribution on the rotation group
[27], [28]), and the bandwidths σp and σo are fixed to allow
for deviations of 20 mm and 20◦ respectively. For a more
detailed mathematical description and motivation of SE(3)



Fig. 3. Illustration of the grasps executed by the robot. The left image
shows a “middle” grasp, which always succeeded, while the right image
shows an “extremity” grasp which always failed.

Fig. 4. Illustration of the perceptual data collected during grasps with the
tracked object pose for the two grasps of Figure 3 and the tactile readings
of the frontmost distal tactile pad for the two grasps of Figure 3.

kernels, we refer the reader to the work of Sudderth et
al. [28]. In cases where only tactile feedback is desired,
Kg(g1, g2) is set to 1.

IV. EXPERIMENT

In this section, we present perceptual data collected by the
robot while grasping a box from the top, and classification
rates for pose-based classification, tactile-based classifica-
tion, and tactile-and-pose–based classification.

The wrist poses of the grasps executed by the robot were
demonstrated by a human by teleoperation. These poses were
distributed along the top side of the box (see Figure 3). As we
wanted to study the stability of grasps applied along the top
side of the box, only two fingers were used for grasping. The
box was grasped by simultaneously closing the two fingers
and continuously applying a constant closing force on all
joints. A total of 50 grasps were executed, amongst which
25 were stable and 25 were unstable. Grasps applied near
the middle of the top face of the box were always stable
(see left image in Figure 3). As grasps were tried closer
to the extremity of the box, they remained stable for a few
centimeters, then abruptly became unstable. Unstable grasps
were characterized by a rotation of the object when the robot
tried to lift it up. Figure 4 shows the poses computed by the
object tracker and the tactile reading of the two distal pads
for the two grasps of Figure 3.

Stability classification was computed from the probabilis-
tic stability model defined above (1). A grasp characterized
by x was predicted to be stable if P (y = stable|x) > 1

2 . We
computed success rates by ten-fold cross-validation. Cross-
validation was run for several values of the tactile kernel
bandwidth parameter σt (values between 0.1 and 1), and sev-
eral values of the regularization constant c (see Eq. 2). Table

Success rate

Tactile feedback only 94%

Pose feedback only 100%

Pose and tactile feedback 100%

TABLE I
TEN-FOLD CROSS-VALIDATION OF THREE VARIANTS OF THE STABILITY

CLASSIFICATION MODEL.

I shows the success rates obtained in the three perceptual
conditions we studied. Stability estimates computed from
tactile data alone yielded a 94% rate. Estimates computed
from pose data alone lead to 100% correct predictions.
This result was rather surprising – we were expecting at
least a few wrong prediction –, but nonetheless showed that
obtaining pose information can potentially help improving
tactile-based stability assessments.

V. DISCUSSION

In general, it is unreasonable to assume that objects will be
perfectly tracked during grasps. For smaller objects, fingers
will occlude a larger relative area, and pose parameters will
become more noisy. By extending this experiment to other
objects, we expect to find situations where neither tactile nor
pose information alone are able to make a robust stability
estimate, but their joint use is.

We note that in the experiment presented above, object-
relative gripper poses perfectly predict stability because the
object is always lying on the same face. If the object was to
stand on another face, object-relative gripper poses wouldn’t
suffice for predicting stability. In general, the absolute ori-
entation of the object should become part of the perceptual
data to allow the model to capture the effect that gravity has
on an object.

Because models rely on the pose of an object, each model
that the agent learns is only usable with that particular
object. It is not realistic to imagine that an agent would learn
different model of every object that exists. To overcome this
limitation, we project to learn models that characterize only
a part of an object, and which would thus be applicable to
novel objects that share the same part.

VI. CONCLUSION

This paper studied the viability of concurrent object pose
tracking and tactile sensing for assessing grasp stability on
a physical robotic platform. We presented a kernel-logistic-
regression model of pose- and touch-conditional grasp suc-
cess probability, and a robotic platform that can track the
pose of an object while it is grasping it, and that can acquire
tactile imprints of the grasps it executes. We showed that the
robot is able to use data collected by human demonstrations
to learn grasp stability classifiers. Our preliminary results
showed that stability assessments based on both tactile and
pose data can provide better rates than assessments based on
tactile data alone.
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