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Objects can be grasped in various ways. Depending on the scenario (object shape, grip-
per/hand, task objectives, ...), grasps that differ in object-relative pose may greatly differ
in their utility. In previous work [1, 2] we introduced the concept of grasp densities that
represent, for a given scenario, the distribution of successful, object-relative gripper poses

pX|O:success(x)7 (1)

a probability density function over the object-relative gripper poses, represented as a
random variable X in SE(3) = SO(3) x R3, given that the grasp outcome O is success.
Using maximum-likelihood reasoning, suitable grasps can be chosen according to this den-
sity, even if parts of the density are pruned by influences such as obstructions, kinematic
constraints, etc.

Grasp densities are designed to be learned empirically. In principle, a robot attemps to
grasp the object a large number of times using a wide variety of object-relative gripper
poses. Each successful grasp constitutes a data point drawn from the underlying grasp
density (1). In practice, for reasons of efficiency, attempted grasps should be chosen in an
informed manner [1]. For resampling and inference, samples are turned into a continuous
density by kernel density estimation.

Grasp densities can in principle be used with any kind of 3D object model and any
pose estimation algorithm. In our work, we primarily use them in conjunction with
our own, learnable, probabilistic object representation [3]. It allows object detection,
localization and pose estimation via probabilistic inference, and integrates seamlessly
with grasp densities. Figure 1 illustrates a grasp density learned for a toy object.

Figure 1: A toy pan, its 3D ECV representation [4], and a learned grasp density, repre-
sented as sample grasps drawn from it. Each paddle illustrates an object-relative gripper
pose with an associated uncertainty, as shown on the right.

In their original form, grasp densities are associated with an entire object model. There
is no explicit notion of contacts, or of which parts of the object a particular grasp is
associated with. The present work aims to identify such parts, which can subsequently
be used to hypothesize suitable grasps on previously unseen objects that possess similar
parts. Given a library L = {o(i)}ie[l ] of N known object models o = (o,, 0,) comprising
visual features o, and a grasp densiéy 04, we proceed as follows:



1. Randomly segment a set of P object parts {p(i)}ie[ from L, comprising both

1,P]
visual features and a local section of the grasp density (Fig. 2).

2. For each part p = (p,, py), evaluate how well its visual model p, fits each of the other
visual models o, in L, and how well its grasp density p, predicts the local sections
of the grasp densities o, associated with those models. This yields a generality
measure m(p, L) of part p with respect to the set of known objects L.

A

Figure 2: Parts p = (py, py) of different sizes extracted from the toy pan.

Let t,(-) denote a rigid transformation by = € SE(3). The degree of match of a visual part
model p, to an object o, under an object-relative pose x is given by the cross-correlation

dy(; oy oy) = / Po(t51 )00 (y) dy 2)

over the object-centered parameters y € SE(3); likewise for the grasp models p, and o,.
A part p now induces a grasp density h on a visual object model o, € L as

1 _
h(z; pv,Dgs 00) = E/di(y; Doy 00)Pg (5 (y)) dy, (3)

where 7 is a normalizing factor, and ¢ controls the trade-off between robust prediction and
generalization. Intuitively, the density h is computed as the weighted sum of all possible
alignments of p,, where the weights d,(y ; p,,0,) are computed from visual correlation (2).
The constant ¢ controls the trade-off between robust prediction and generalization.

The ability of p to predict the grasping properties of o can be measured by the Bhat-
tacharyya distance f(p,0) = [ \/h(z; py, Py, 00)04(x) dz between h and o,.

Finally, the generality of p with respect to the object library L is computed as

m(p, L) = ﬁ > fpo), (4)

o€Ly

where L, is L minus the object from which p was segmented.

Highly-general parts thus identified can later be used to hypothesize grasps on novel
objects by transferring the grasp density of a matching part to the object. Moreover,
the set of all matching parts induces a first-guess approximation to a novel object’s grasp
density, which can subsequently be refined by performing grasps drawn from it.

Experimental results performed both in simulation and on a real robot suggest that parts
of intermediate size possess the highest potential to generalize, and demonstrate substan-
tially accelerated empirical acquisition of grasp densities if bootstrapped from previously-
learned parts.
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