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Abstract— We present a task-oriented grasp model, that
learns grasps that are configurationally compatible with a
given task. The model consists of a geometric grasp model,
and a semantic grasp model. The geometric model relies on a
dictionary of grasp prototypes that are learned from experience,
while the semantic model is CNN-based and identifies scene
regions that are compatible with a specific task. A key element
of this work is to use a deep network to integrate contextual task
cues, and defer the structured-output problem of gripper pose
computation to an explicit (learned) geometric model. Jointly,
these two models generate grasps that are mechanically fit, and
that grip on the object in a way that enables the intended task.

I. INTRODUCTION

This paper addresses task-oriented grasping onto new

objects using a single depth image (single viewpoint). Our

solution endows robotic agents with the ability to plan grasps

that enable the execution of the intended task. This skill

enables the use of new tools and objects, which is vital to

our robots’ transition to uncontrolled environments. In this

domain, our community has focused on two important issues:

developing grasp models and developing task models. Grasp

models [12], [11], [18] determine grasping points that are

suitable for picking up an object, while task models [2],

[16] often assume the pre-existence of a satisfactory grip

on the object and focus on modeling the motion that realizes

the task. Despite its importance, task-oriented grasping has

received little attention compared to adjoining domains. The

objective of this work is to bridge the gap between grasp

planning and task (motion) planning, i.e., grasping objects

to the end of completing a task that imposes constraints on

the grip configuration.

II. TASK-ORIENTED GRASP MODEL

Our aim is to define a task-oriented grasp model, that

encodes grasps whose placement on an object enable a given

task. For instance, if the task is to hand over an object

to an operator, the model encodes grasps that leave part

of the object’s surface available for the operator to secure

his own grip. As alluded above, the model consists of two

components, a geometric model and a semantic model. The

geometric model computes, from a depth image, a distribu-

tion of 6D grasp poses for which the shape of the gripper
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Fig. 1. Grasping for a transport task. Left: Depth gradient, input to the
CNN. Middle: the green overlay indicates task-compatible regions encoded
by the CNN (here: grasp handles only). Right: Planning and executing a
7DOF grasp (pose and preshape) within a compatible region.

Fig. 2. Geometric model: The two leftmost images show two of the six
grasp prototypes used in this work [5]. The two rightmost images illustrate
the application of this model for grasping a new shape: fitting all prototypes,
and executing the grasp that corresponds to the best-fitting prototype. The
best-fitting prototype is shown in red in the third image.

matches the shape of the underlying surface. The model

relies on a dictionary of geometric object parts annotated

with workable gripper poses and preshape parameters. This

model builds on the work of Detry et al. [5], whereby

an artificial agent learns such a dictionary from experience

via kinesthetic teaching (Fig. 2). The second component

is a semantic model that encodes task-compatible grasping

regions. It relies on a CNN that parses a depth image into a

set of task-compatible regions, building on the work of Papon

et al. [15]. We built the CNN above the MultiNet architecture

proposed by Teichmann et al. [21]. While we use MultiNet as

our architecture, we diverge from it on the input side: rather

than using RGB images as our input, we use preprocessed

depth images, to facilitate generalization across object. The

semantic model allows us to encode relationships such as

“grasp from the handle”. The product of the geometric and

semantic agents allows us to initiate manipulative tasks on

previously-unseen objects by identifying grasping regions

where the shape of the gripper fits the shape of the tool

or object, and where the positioning of the gripper allows

the robot to perform the intended task. This work advances

the state-of-the art by leveraging data-driven semantic scene

understanding and combining a qualitative semantic map to

explicit geometric constraints, thereby providing solutions

that are both contextually relevant and physically (mechani-



Fig. 3. Left: Task-constraint labels for a bowl and the pour task, where red
means grasp away from the bowl opening. Middle and right: synthetically
generated image and labels.

cally) realizable.

Previous studies of task-oriented grasping [1], [3], [8],

[9], [19], [20], [23] relied on physics-based simulation [3],

[17], visual features and learned statistical models [9], [8],

[14], [19], or explicit semantic rules or ontologies [10],

[22]. In this work, we capture task constraints with a deep

convolutional neural network. Previous studies evaluated the

applicability of CNNs to grasp and manipulation planning

or control [12], [7], [13]. One limitation of CNNs for

grasping is the difficulty of learning a structured output. The

work of Dehban et al. [4] is technologically close to ours,

with a denoising-autoencoder–based model of object/robot

affordances.

III. TASK-ORIENTED GRASPING EXPERIMENT

To evaluate the applicability of our model, we trained

models for four different tasks: transport (grasp by the

handle), handover (grasp away from the handle), pour (grasp

away from opening), and open (grasp away from lid). We

trained the CNN on a synthetic, hand-annotated dataset. We

constructed this dataset by annotating 3D object meshes

with task constraints (Fig. 3, left), and generating random

views of random configurations of those object synthetically

(Fig. 3, right). We rendered simulated depth images using the

BlenSor sensor simulation framework [6], which provides a

realistic depth-camera sensor model. This process allowed

us to produce a large training dataset while keeping the

annotation effort within reason.

We tested our method on a robot composed of a 7-DOF

articulated arm, and a three-finger gripper from Robotiq.

Depth data are provided by a Kinect 1 camera that is

rigidly connected to the robot base. In this experiment, we

executed thirty-two grasps on novel objects that differed in

size and shape from those used for training. We computed

task constraints by submitting a single depth image to the

CNN. We computed the grasp (hand pose and preshape)

using the geometric model, restricting it to points marked as

task-compatible by the CNN. We executed thirty-two tests

with a single object on the table. Success was established if

the constraints computed by the CNN correctly matched the

task’s constraints (evaluated by inspection) and if the robot

was able to transport the object to a basket situated 80cm

away from the center of the workspace. Twenty-two of these

grasps were successful, yielding a 69% success rate. Fig. 4

illustrates sample results.

IV. CONCLUSIONS

We discussed an original solution to task-oriented grasp-

ing, that addresses geometric and semantic planning jointly.

(a) transport task, success

(b) transport task, success

(c) handover task, success

(d) pour task, failure: the se-
mantic model excluded the
handle, that is the only part of
the object compatible with the
pouring task

Fig. 4. Task-oriented grasp examples. The first three examples are
successful. The fourth example failed, for lack of similar examples in the
training set (objects for the pouring task in the training set were a mug and
a pitcher).

Our model allows the agent to grasp new objects for which

the agent has no mesh model, and works on partial object

images such as those captured by stock RGBD sensors. Our

results show that the model is capable of transferring between

objects that are globally different in shape: the geometric

planner only exploits local 3D structure, and the CNN learns

class traits that are not necessarily anchored in global object

structure.
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