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Abstract—This paper studies underwater perception and short-
range scene reconstruction. Our work enables autonomous ma-
nipulation behaviors that support the autonomous maintenance
of subsea infrastructure. We present a system that leverages
assisted stereo to reconstruct the geometry of textured or untex-
tured structures immersed in turbid water. Our package projects
a random binary pattern in the cameras’ field of view, which
facilitates stereopsis in areas that are not naturally textured. We
discuss the design and assembly of the package, and we quantify
the accuracy and coverage of our method in turbid water ranging
from 1 to 2.5 NTU.

I. INTRODUCTION

To date, most underwater robotic manipulation tasks — for
instance subsea infrastructure maintenance or ship inspection,
are entirely guided by human operators who command the
robots via joysticks and a camera-based monitoring systems.
Unfortunately, teleoperation performances quickly degrade in
applications affected by low bandwidth, long delays, and for
tasks that require a fast operational pace. These difficulties
can be addressed by allowing the robot to handle low-level
manipulation operations autonomously, which allows the op-
erator to focus on task-level robot supervision. For instance,
the robot would manage actions such as turning a valve or
plugging a cable. In turn, the operator would provide discrete
directives, for instance by clicking a valve in an image and
hitting a “turn” button. A key requirement for manipulation
autonomy is the ability to reconstruct the 3D geometry of
the robot’s surroundings. Scene geometry is key to allow
the robot to plan where and how to move its manipulators
to perform a task, and to execute the task safely without
contacting unmodeled obstacles. While scene reconstruction is
a well-studied problem in clear media (air, other transparent
gases, or vacuum), its application to scattering environments
such as water, fog, or rain remains a poorly understood
problem. Stereopsis and 3D reconstruction algorithms are less
forgiving than human sight. Water and suspended particles
scatter light, leading to blur and halo effects, and absorb light
at a wavelength-dependent rate, leading to color distortion
and signal degradation. Stereopsis and machine learning also
struggle to cope with the low-resolution and spatially dis-
torted video feeds that are traditionally used for teleoperation,
and typically require higher-grade cameras with fixed optics,
global shutter and digital transmission.

We present a solution that reconstructs the geometry of
textured or untextured structures immersed in turbid water,
with cm-scale fidelity within a 2m wide workspace. Our

Fig. 1. Sensor head and articulated robot. Left: sensor head combining two
cameras, an LED light (red-colored housing) and a sonar (above the light and
cameras). Right: Cameras, pattern projector (grey metal housing), robot arm.

contributions include the design and realization of a sub-
mersible assisted-stereo camera system, a stereo system that
reconstructs 3D structure from natural or artificial texture, and
an experiment that quantifies reconstruction metrics relatively
to water turbidity.

To our knowledge, this system is pioneering cm-scale un-
derwater 3D reconstruction for untextured objects. The un-
derwater vision community has demonstrated multiple means
of conducting underwater stereo reconstruction of the seafloor
[1], [2], [3], [4]. While passive stereo is well-suited to recon-
structing natural environments where texture is abundant, it is
not applicable to man-made structures that exhibit uniformly-
colored surfaces. Researchers have studied the applicability
of structured light to seafloor reconstruction, by shining a
laser sheet across the robot’s field of view [5], [6]. While this
approach can cope with uniform surfaces, its application to
robot manipulation is difficult because of the lengthy capture
process during which the laser sheet scans the scene. This
method also requires the scene to remain static for the duration
of the scan. Bruno et al. [7] have studied the applicability
of assisted stereo to underwater 3D reconstruction, but their
approach requires the scene to be illuminated with 16 different
patterns. As for structured light, this approach takes multiple
seconds to capture the images required for scene reconstruc-
tion. Our approach is closest in sprit to that of Bruno at al.
[7]. By contrast to their work, our approach allows the robot
to capture and reconstruct a scene in less than a second, by
only requiring one pattern to be projected onto the scene.

II. UNDERWATER SCENE RECONSTRUCTION

We have designed, assembled, and tested an underwater
stereo head (Fig. 1) composed of two cameras, a light,



an imaging sonar, and a projector, and we have developed
software for reconstructing 3D scene geometry from stereo
images. We reconstruct depth with assisted stereo: The pack-
age projects a random binary “checkerboard” pattern in the
cameras’ field of view, which facilitates stereopsis in areas
that are not naturally textured. We show that with a carefully-
selected set of optical, imaging, lighting, acoustic and image-
processing components, we are able to provided cm-accuracy
3D scene reconstruction in turbid water.

A. Hardware

To adequately support autonomous manipulation tasks, we
require a system that is capable of providing a 3D reconstruc-
tion across a view angle of 50 degrees for surfaces that are
0.5m to 3m far from the camera, with 2cm accuracy at 2m
range. To match those requirements, we selected two cameras
with 1024x768 pixels on a 1/3 inch sensor and 3.5mm focal-
length optics. The cameras are PointGrey gigabit-ethernet Flea
cameras (FL3-GE-08S2C-C), equipped with Kowa LM3NCM
lenses with a 3.5mm focal length and F2.4 aperture. We
encased the cameras behind two polycarbonate domeports of
39mm inner radius, 3.8mm thickness, rigidly fixed on a plate
with a 20cm baseline. The domeports mitigate distortions
resulting from water-polycarbonate-air refractions, by feeding
the cameras with light beams that traverse the port perpendic-
ularly to the locally-tangent plane. An underwater domeport
acts as a diverging lens [8], [9], producing a virtual upright
image in front of the dome, at a distance that depends on
the refraction indices of water, air, and polycarbonate, and
on the radius and thickness of the port [8]. Given the dome
dimensions listed above, the virtual image of an object situated
at a 1m distance from one of our cameras is created at a
distance of 82mm from the apex of the dome. The virtual
image of an object at infinity is 10mm far from the apex.
We performed an out-of-water lens configuration whereby we
adjusted the lens’ focus until it produced a sharp image of a
calibration target situated at a distance of 85mm from the apex
of the dome.

Each camera has a 68-degree horizontal field of view. The
effective stereo field of view of the setup is 51 degrees at
0.5m range, and 65 degrees at 3m. Assuming a 0.5-pixel stereo
correlation accuracy, the theoretical depth error has a standard
deviation of 0.8mm at 0.5m, and 13mm at 2m. We trigger the
two cameras with a single step signal generated by an Arduino,
to produce closely-synchronized stereo pairs.

We calibrated the intrinsic and extrinsic parameters of
our vision head with measurements collected underwater. We
achieved a 0.3-pixel model reprojection error, which is within
the expected range for underwater vision. The vision head
achieves 3D point triangulation with an average error of
0.7mm at 0.5m. This assessment results from the triangulation
of the corners of a planar checkerboard of know geometry
across 70 images taken in a fishtank under optimal lighting and
negligible turbidity. This number represents an upper bound
for the accuracy that is potentially achievable with dense stereo
reconstruction.

Fig. 2. The top-right image shows a camera image of a task panel subjected to
homogeneous lighting. The lack of natural texture on the panel makes it hard
for stereo to compute depth, leading to gaps in the panel’s 3D reconstruction
shown in the top-right image. The bottom-left image shows the same panel
subjected to an artificially-projected pattern. The frequency (or block size) of
the pattern increases through the bottom-left, top-left, top-right, and bottom-
right quadrants of the panel. The bottom-right image illustrates that for all
but the bottom-left quadrant, the texture projected on the panel is sufficient
to allow stereo to compute depth.

As mentioned above and further discussed in the next
section, we reconstruct 3D geometry using a technique referred
to as assisted stereo, whereby we project a random pattern in
the field of view of the cameras. The projector adds texture to
homogeneous surfaces and facilitates the work of stereopsis.
We use a Texas Instruments DLP4710 projector of 600 lumens,
encased in a waterproof container with a flat frontal port. The
projector is controlled by a Raspberry Pi installed in the same
container, and connected to a deckbox via ethernet (and a
separate power line). To enable operations in high-turbidity
conditions, we have mounted a large LED spotlight between
the two cameras, within the blind spot of their joint field of
view. This spotlight is not used in the experiments below.

B. Scene reconstruction

We solve dense stereo reconstruction with a standard block
matching algorithm (BM), or with its semi-global variant
SGBM [10], with a correlation window of 9 pixels and limiting
the disparity search range to depths of 0.80 to 2 meters.
To compute a dense depth map, we undistort and rectify
raw images based on the cameras’ intrinsic and extrinsic
parameters computed during calibration, and we compute a
dense disparity map from the rectified images. This process
provides us with a distance (in meters) between the left
camera’s optical center and all resolvable textured surfaces
within the stereo system’s field of view.

Block matching works by identifying corresponding patches
in left and right images, and triangulating the 3D position
of the source from camera geometry. The main difficulty
with stereo is to identify unique left-right correspondences.
Unique correspondences are abundant when a scene is highly



Fig. 3. Perception head, test panel, and robot manipulator mounted on a rigid
frame in the relative configuration used for the experiment of Fig. 6.

textured, but the steel and painted components of subsea
structures are typically uniform in color and surface properties,
making stereo matching unreliable. We alleviate this problem
by projecting our own texture in the cameras’ field of view,
which drastically enhances stereo on homogeneous surfaces
(Fig. 2).

III. EXPERIMENTS

We evaluated the applicability of our system by reconstruct-
ing the panel of Fig. 3. We attached the vision head and
panel to a rigid steel structure, such that the panel stands at
1.1m in front of the camera. We captured panel images in
varying turbidity conditions, with different shutter speeds and
projected patterns, and measured the accuracy and coverage of
stereo reconstructions across all combinations of conditions.

We varied turbidity by dissolving solid clay in the tank
shown in Fig. 3 (bottom), and circulating the water with a
pump. After homogeneous turbidity was achieved, we stopped
the pump and captured batches of images approximately every
8 minutes for a total of 33 hours as the clay settled at a
natural pace. We monitored turbidity with a spectrophotome-
ter produced by Scan Messtechnik GmbH installed next to
the cameras. The spectrophotometer provides NTU and FTU
readings. NTU readings throughout the test ranged from 1 to
2.5. Fig. 4 shows a plot of the turbidity readings averaged
through windows of 8 minutes.

We projected four random binary patterns of increasing
block size: 4 × 4, 8 × 8, 12 × 12 and 24 × 24 pixels
respectively. For reference, the projected image consisted of
1824 × 984 pixels. The top row of Fig. 9 shows the pattern
with 4 × 4 pixel blocks, the bottom row shows the pattern
with the largest blocks, 24× 24 pixels. Smaller blocks lead to
more complex texture, which should facilitate stereo matching.
However, turbid water scatters light and induces blur, which
may obstruct small-block patterns. The experiments below
showed that within our turbidity range, the 24px block pattern
consistently outperformed other patterns.

We captured images at five different shutter speeds — 0.01s,
0.02s, 0.04s, 0.08s, and 0.16s. Shorter exposures typically lead
to noisier images. However, long exposures are not always
acceptable, as they increase sensitivity to motion blur. We
implemented a software gain controller which selects the
maximum camera gain that provides fewer than 0.1% of
saturated pixels across both camera images. The same gain
is then set for both cameras.

Every 8 minutes of the 33 hours of the test, we captured 20
stereo pairs, corresponding to the 20 combination of 4 patterns
and 5 shutter speeds. We evaluated our results by measuring
the accuracy and coverage of the reconstruction of the task
panel. We built a ground-truth reconstruction of the panel from
manual measurements, yielding the ground-truth point cloud
shown in Fig. 5 (left). The ground-truth point cloud had an
average 1.2cm spacing between points.

We define coverage as the fraction of ground-truth points
that are within 2cm of a reconstructed point. Let G =
{gi}i∈[1,M ] be the set of points forming the ground-truth
cloud, and P = {pi}i∈[1,N ] a point cloud acquired via stereo.
We first define G′ as the subset of G that have a neighbor in
P at a distance of 2cm or less

G′ =

{
g ∈ G : min

p∈P
|s− g| < 2cm

}
. (1)

Coverage is expressed as

c =
|G′|
|G|

. (2)

Coverage varies between 0 and 1. Low coverage values
indicate gaps in the reconstruction. We define the accuracy
of P as the root mean square error of the pairs established in
Eq. 1:

a =

√
1

|G′|
∑
g∈G′

min
p∈P

(g − p)2 (3)

By restricting our measure of accuracy to pairs of points from
G and P that are at most 2cm apart, we allow this metric to
remain informative in low-coverage cases where only a small
number of scene points are reconstructed.

Fig. 6 show plots of accuracy and coverage as functions of
time, for BM and SGBM stereo, shutter speeds of 0.01s, 0.04s,
and 0.16s, and 4px and 24px block patterns. In all cases, the
larger block pattern (in orange) leads to better results than the
smaller one (in green), leading to an accuracy of approximately
6mm and a coverage of 100% across the board in low turbidity.
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Fig. 4. Turbidity readings through a 33-hour test. Our turbidity sensor
provides approximately three measurements per minute. We divided the data
in time slices of 8 minutes. This figure plots the per-slice average turbidity.
Standard deviation within a slice is plotted in filled lighter color. Both plots
exhibit a large variance between 1 and 4 hours. We have not been able to
identify the cause. We note however that the monotonicity of the plots of
Fig. 6 indicates that this variance may not be related to a global change
of tank turbidity, but rather to a phenomenon local to the area where the
spectrophotometer was mounted. The sensor was mounted behind the cameras,
approximately 50cm away from their viewports.

Short exposures (top row) unsurprisingly lead to worse
accuracy than longer ones. The top row of Fig. 7 shows an
image taken with a 0.01s shutter speed, with turbidity at its
highest. The only part of the scene that can be reconstructed
from that image is the contour of the center valve. With
the same turbidity and pattern, a longer exposure leads to
approximately 50% of coverage (Fig. 7, bottom row).

Standard block matching and SGBM were on par with one
another. We note that we did not filter the SGBM output
in Fig. 7, Fig. 8 and Fig. 9, which explains the speckles
that appear over the background. Points that are reconstructed
outside of the surface occupied by the panel in the image do
not influence accuracy or coverage. The 24px block pattern
outperformed the 4px pattern across the board.

Fig. 8 shows that 2.5 hours into the test, when turbidity read
approximately 1.6 NTU, a shutter speed of 0.04s or longer
provided coverage above 95%, and a RMSE below 7mm.
Fig. 9 illustrates low-turbidity performance.

The standard deviation of the mean absolute error across
all inliers (1) of a given reconstruction was consistently of the
order of 5mm, regardless of turbidity, pattern block size or
shutter speed.

IV. DISCUSSION

This work is motivated by autonomous underwater robotic
operations, where accurate 3D reconstruction is a key asset.
Our objective is to develop software that allows the robot
of Fig. 3 to turn the panel’s valve without supervision. The
experiment of the previous section informs us on the minimum
acceptable exposure time for a given accuracy, at a certain
turbidity, which in turn informs us on the pace of scene motion

Fig. 5. Ground truth structure (left) and stereo point cloud (right). Ground
truth was established via manual measurements. The ground truth panel only
contains points that are within the projection cone of the pattern projector,
and within the frontal plane of the panel.

Fig. 7. Camera image (left) and disparity (right) captured at t = 8 minutes
(high turbidity), with shutter speeds of 0.01s (top) and 0.16s (bottom). Both
top and bottom images were captured while projecting the pattern with the
largest block size (24px).

Fig. 8. Camera image (left) and disparity (middle and right) captured at
t = 2.5 hours (medium turbidity), with a 0.16s shutter speed and 24px block
pattern. The middle image illustrates a disparity map computed with standard
block matching, while the rightmost image was computed with SGBM. Green
pixels are approximately 1.1m far from the cameras. Red pixels are less than
a meter from the cameras; blue pixels are further than 1.2m.

Fig. 9. Camera image (left) and disparity (middle and right) captured at t =
33 hours (low turbidity), with a 0.04s shutter speed, and 4px and 24px block
pattern for the top and bottom row respectively. In each row, the middle image
illustrates a disparity map computed with standard block matching, while the
rightmost image was computed with SGBM. Green pixels are approximately
1.1m far from the cameras. Red pixels are less than a meter from the cameras;
blue pixels are further than 1.2m.
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Fig. 6. Accuracy (RMSE) and coverage of stereo reconstructions with different shutter speeds and projected patterns. The plots show a systematically-sampled
subset of the data for clarity. Refer to Fig. 4 to relate time to turbidity.



our system can cope with (shorter exposures allow for faster
motion).

In parallel to the work discussed above, we are designing
an experiment where depth is computed via the piecewise-
planar stereo algorithm of Roser et al. [3]. This algorithm first
computes a sparse set of support point via feature matching.
Then, the algorithm computes the depth of the remaining
pixels with a mixture of dense stereo and a pixel-wise depth
prior parametrized by the depth of pixels where a support point
has been computed. We are strengthening our reconstruction
algorithm by pruning support points that do not correlate with
acoustic measurements, leading to a 20% accuracy improve-
ment according to preliminary tests.

V. CONCLUSIONS
We presented a system that leverages assisted stereo to

reconstruct the geometry of textured or untextured structures
immersed in turbid water. Our package projects a random
binary pattern in the cameras’ field of view, which facilitates
stereopsis in areas that are not naturally textured. We discussed
the design and assembly of the package, and we quantified the
accuracy and coverage of our method in turbid water ranging
from 1 to 2.5 NTU. Our experiments showed that our system
can achieve cm-scale accuracy in a large range of turbidity
conditions. This work will ultimately enable autonomous ma-
nipulation behaviors that support the autonomous maintenance
of subsea infrastructure.
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