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Abstract

This paper presents an approach for learning invariant features for object affordance understanding. One of the major problems for
a robotic agent acquiring a deeper understanding of affordances is finding sensory-grounded semantics. Being able to understand
what in the representation of an object makes the object afford an action opens up for more efficient manipulation, interchange
of objects that visually might not be similar, transfer learning, and robot to human communication. Our approach uses a metric
learning algorithm that learns a feature transform that encourages objects that affords the same action to be close in the feature
space. We regularize the learning, such that we penalize irrelevant features, allowing the agent to link what in the sensory input
caused the object to afford the action. From this, we show how the agent can abstract the affordance and reason about the similarity
between different affordances.

Keywords:

1. Introduction

Abstraction is mankind’s ability to condense and generalize
previous experience into symbolic entities that can act as prox-
ies for reasoning about the world. We ground these abstrac-
tions in our sensory experience and let them take on different
meanings depending on context [1]. The task of learning to
detect and abstract affordances is different to visual categoriza-
tion. A deeper understanding is based on being able to detect
intra-category commonality rather than saliency.

As an example of what this deeper understanding implies we
can picture an unstructured environment where the right object
for an intended action is unavailable. An agent that can reason
in an abstract fashion can replace the unavailable object with
other objects that afford the same or similar actions. For exam-
ple, it can replace a spoon with a pen for stirring, replace a pan
with a pot, etc. Hence categories in this sense are not binary but
loosely defined by a set of abstract functional properties that
makes up the common denominators of the category.

An additional benefit of learning to abstract is that reasoning
about the similarity between categories becomes simpler as we
are comparing similarities across subsets of the feature space.
The agent can thus assemble hierarchies of clusters of simi-
lar actions, that in turn enables reasoning within specific action
domains, that in turn enables better planning and synthesizes of
explorative strategies in unknown domains.

Having this cognitive ability is extremely useful. This paper
thus proposes a method for learning affordance abstractions,
showing how the agent can ground them in its own sensory in-
put, and use it for reasoning about the semantic similarity be-
tween objects.

Transform Magnitude Learned Invariant Features

Input Space: RBGD Metric Transform Space

Figure 1: Figure summarizing our approach. For a specific affordance, we
learn a linear transform, L, from a set of RGBD images of objects that both
afford and does not afford an action. Each RGBD input is represented by a
set of features f (x). Under the transform items that afford the action are close
in space and items that do not are far away. We regularize the learning of L
penalizing irrelevant features. We interpret the magnitude of the columns L as
feature selection enabling us to extract invariant features for the affordance. We
map the invariant features onto the object thus finding important object parts
for the affordance.

We hypothesize that the abstract representation of an affordance
category is a latent space of the general space of vector repre-
sentation of objects. Associated with this latent space is a met-
ric that we can as a proxy for reasoning about similarity. We
learn this similarity metric from the data guided by the notion
that similar items should be close in the latent feature space and
dissimilar items far away. In this paper, this means learning a
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feature transform, L, that lets us reason in the latent space under
a Euclidian metric.

Analyzing L an agent can learn the relevant features for classi-
fying to the affordance and enables it to ground the affordance
in the selected part of the sensory input. This grounding helps
the robot to locate affordance specific parts of the object from a
set of general global and local object features. Simply put, we
learn the agent to point out which parts of the feature represen-
tation of an object are important for the affordance. By exten-
sion we enable the agent to point out the physical parts of an ob-
ject that is important for classifying it to the affordance.

To learn to abstract affordance categories into a set of common
features the agent must ground the affordance in its own sensor
input. The grounding and abstraction allow for reasoning about
the similarity between affordances as it is reasonable to expect
similar affordances to have similar sets of common features.
In the light of this, we propose a novel interpretation: that we
can understand the grounding of the features for the categories
through the similarity transform of the data itself rather than
through an analysis of data points in the latent feature space.
We show that this semantic meta-similarity analysis is possible
through reasoning about the distance between the transforms,
L.

To form a complete understanding of an affordance the agent
needs to learn from interaction with the object, observing ob-
ject, action, and effect (OAE) triples. However, it has been
argued that human design of objects follows or should follow
certain design principles that through simple cues reveal the af-
fordance of an object to the human observer [2]. In the light of
this, this paper asks how much of an affordance can we under-
stand from just observing a set of objects that afford the same
action? What similarities exist in the feature space of a cate-
gory and can we deduce them just from observing category and
non-category members? Are these abstract similarities relevant
for interaction with the object?

We start by giving a wide perspective on current approaches
to affordance learning and go into detail on related work con-
nected to the proposed method. We proceed to describe our
approach in detail and give experiments showing how an agent
can learn abstractions for affordance categories and how it can
reason about these categories. We end by outlining some impor-
tant principles and future work that needs addressing.

2. Perspective on Affordance Learning

This paper learns an agent to abstract affordance categories by
observing common features in the representation of objects that
affords the same action. Specifically, we learn a linear trans-
form, L, that gives us a latent representation where similar
items close and dissimilar items far away. The latent represen-
tation enables us to compare items using the Euclidean metric
as a proxy for similarity. We penalize the learning of L such
that the transformation only selects and transforms relevant fea-
tures. We interpret the selected features as an abstraction of the

affordance we are learning and the magnitude of L as a mea-
sure of the relative relevance of a feature. This relevance en-
ables us to pinpoint important parts of the objects belonging
to an affordance category. Further on, we measure the similar-
ity between affordances by measuring the distance between the
transform magnitudes, that is, we are able to abstract affordance
categories and compare the abstractions.

Our approach to the affordance learning problem is thus quite
different to the general affordance learning research being done
in robotics which we divide into developmental methods based
on exploration and methods that learn to predict more ad-
vanced affordances from demonstration (LfD) or annotated
datasets.

2.1. Developmental Methods

Developmental methods have so far followed a paradigm of
measuring object, action, and effect (OAE) triples. They focus
on simple affordances such as pushing, rolling, simple tool use,
etc., where the outcome of an action is clear and measurable
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. This
is sensible since their objective is to learn a robot with limited
cognitive and motor abilities to connect OAE triples. Learning
is often unsupervised and explorative [20, 5, 4, 7] and based on
learning thresholds [3, 9] for the perceived features thus requir-
ing clear pre- and post-conditions. These threshold operations
are similar in nature to abstracting the feature of a category,
however, they are often semi-automated and built using heuris-
tics rather than the automatic process of our approach.

One of the more complete models, with regard to structuring
the learning as well as showing experiments in real environ-
ments, comes from [21, 7]. The authors represent objects not
as physical entities but as a “hypothesized entity that accounts
for a spatiotemporally coherent cluster of sensory experience”.
They represent objects by a set containing a tracker, percept,
classes, and actions, which are all more or less temporal. The
most interesting aspect of this formulation is the representation
of objects as consistent sensory inputs over time and associated
with action possibilities that produce certain outcomes. This
more integrated view of learning about objects and interacting
with the world is much closer to the idea of symbolic ground-
ing and how some researcher thinks humans organize grounded
knowledge.

More recent affordance-based learning approaches also employ
the OAE paradigm still with simple actions but with some form
of convolutional neural network (CNN) used together with mas-
sive amounts of collected OAE triples [22, 23, 24]. In [23] the
authors hypothesize that humans have an internal physics model
that allows them to understand and predict OAEs. They suggest
learning a similar model via a siamese CNN of the image input
from before and after an action. [22] takes a similar approach,
however, there the novelty lays in the construction of a branch-
ing deep net. The network has a pre-trained common base that
branches out with nets pre-trained for inference of pinch grasp-
ing, pushing, and pulling actions. The base net feeds its output
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into the branches and receives feedback from them updating
both weights in the base and branches. This enables the net to
refine the input to cater to specific tasks. This is similar to the
current perception of how humans process visual information.
The processing starts with a unified preprocessing of the visual
input and then branching into cortical areas that handle vision
for action and vision for cognition.

It is obvious that deep methods offer a great advantage in pro-
cessing as they can take raw image input and consistently pro-
duce good results. In addition, they can process large amounts
of training data that a robot needs to learn affordances that are
not toy examples. However, the drawback of these methods is
that deep nets are somewhat of black box method lacking in
interpretability, they are also data inefficient, and can be unre-
liable in prediction. To the contrary our approach yields inter-
pretable results, it allows us to locate the position of important
features on the object for specific affordances, and to reason
about the similarity between affordances.

2.2. Advanced Affordances

Learning OAE triples are thus a seemingly agreed upon funda-
mental component to learning affordances. However, learning
affordances from everyday object interactions is more compli-
cated. Actions are complex. They involve several steps of ma-
nipulation and outcomes are therefore not always as clear-cut.
Efforts so far have thus focused on some form of supervision
either in acquiring the training data, the provision of labels, or
implicitly in the model. A majority of the models tries to infer
the affordance or the action instead of learning the robot to gen-
eralize, understand, and perform the action associated with the
affordance.

Most methods take a standard supervised computer vision ap-
proach, that is, categorizing labeled images, sequences, or ac-
tion commands [25, 26, 27, 28, 29, 30, 31, 32]. Others try to
model relationships between an observed actor, typically a hu-
man, and the objects it interacts with [33, 34, 35, 35, 36, 37, 38]
learning affordances and actions jointly. However, robots are
frequently used as well and they are generally equipped with
some form of pre-programmed knowledge such as actions, ac-
tion effects, features, or object knowledge [39, 40, 41, 8], to
assist in the learning. These methods are good at what they do:
predicting actions and outcomes from visual input. However,
for a robot trying to understand the action and perhaps learn to
perform the action itself these methods describe discretization
of sensory input and knowledge from a human perspective, not
from the robot’s own sensory perspective.

Our approach is similar in that we learn from labeled images,
but with multiple affordance labels for the whole image as
in [42, 43] instead of learning to predict pixelwise labels in
[31, 32, 44, 45, 46, 47] and without the addition of actions and
outcomes. Our goal is to ground the affordance in the represen-
tation of the object. As stated in the introduction our interest
lays in what kind of abstractions an agent can learn from ob-
serving the common features in a category and how we can use

these grounded features to reason about and perform the affor-
dance.

2.3. Attribute Learning

Humans use rule-based and similarity reasoning to transfer
knowledge about categories but it is almost certainly not how
our visual system categorize everyday objects at the basic cat-
egory level. Nevertheless, works exploring classification by at-
tributes or attribute learning are important because they touch
on the deeper question of how to learn the invariant features
of categories, albeit from high-level abstractions. This is an
extremely important ability to have when generalizing affor-
dances. When humans substitute objects, it tends to happen in
an ad-hoc fashion. We base the selection process on similarity
comparisons across the abstraction we have for an affordance
to motivate the substitution.

These types of attribute approaches have mostly been explored
in computer vision [48, 49, 50, 51]. [48] segments images and
learns a graphical model over the segments that models rela-
tions between segments and contexts enabling it to predict pat-
terns such as striped, colors, etc. [49] associate specific at-
tributes with specific image categories such that they can infer
the image class from knowledge about the attributes. The at-
tributes act as an intermediate layer in a graphical model which
enables conditioning novel classes on learned classes and at-
tributes. The model does not recognize new attributes but rather
rely on the notion that learned attributes contain information
relevant for novel classes.

The approach most similar to ours is that of [50, 51]. [51] for-
mulate the categorization problem as data association problem,
that is, they define an exemplar by a small set of visually simi-
lar objects each with associated distance functions learned from
the data. [50] approach equates the ability of attribute predic-
tion with the ability to predict image classes from the learned
attributes. They stack a broad number of different features and
use feature selection to filter out irrelevant features. They re-
alize that the number of attributes they have specified is not
sufficient to classify to the specific categories and opt to learn
additional attributes from the data.

The abstractions we want to learn can also be considered dis-
criminative attributes, however, we learn these through similar-
ity comparisons rather than through discrimination. Our aim
is to simultaneously learn to predict categories and abstract
them as we view them as different aspects of the same pro-
cess.

Robotics has also explored the attribute-based inference ap-
proach. [28, 29] uses a Bayesian Network (BN) that relates
class, features, and attributes. The authors learn a robot to rec-
ognize key attributes of objects such as size, shape, color, ma-
terial, and weight, which they use to predict affordances such
as traverse, move, etc. They compare their approach to affor-
dance prediction with an SVM trained directly on the feature
space. The direct approach performs comparably or better than
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the attribute-based approach, the explanation they propose is
that the feature space contains information not directly explain-
able as any specific semantic attribute.

This serves to illustrate that we should not program autonomous
robots in unstructured environments to process the world in
hierarchies of abstract symbols derived from our own human
sensorimotor systems [52]. Human language is abstract se-
mantic symbols grounded in invariant features to make convey-
ing, planning, and reasoning easy. All psychophysical evidence
points to that human’s sensorimotor systems do not count at-
tributes to recognize an object. Further on, we cannot expect
different sensorimotor systems, humans, and robots, to produce
the same semantic grounding unless they are exactly identical in
construction and experience. This is a key feature of our work.
We learn the invariant features from detecting similarities in the
representation of intra-category objects. The agent is thus able
to ground the semantic meaning of the affordance in its own
sensory-motor system and enables it to locate physical parts of
the objects that are important for classifying to the affordance.
However, we never use these parts to infer if an object affords
an action or not.

2.4. Similarity

Measuring similarity is difficult especially for high-dimensional
representations as any arbitrary measure would have to treat
each dimension as equally valuable. This will leave the im-
portant features open to being drowned out by either noise or
the amount of non-relevant features. Further on, different met-
rics are useful for certain distributions of the data while being
detrimental for others.

One way of solving this involves specifying a relevant repre-
sentation or measure for each category. However, this solution
does not scale and contrasts with the idea that an agent should
ground semantics in its own sensory input. The other approach,
which we adhere to, is learning the similarity from the data. We
consider the useful representation for a category to be a latent
representation of a more general object representation. Learn-
ing the latent representation, in turn, enables us to use the Eu-
clidean metric for reasoning about similarity.

The similarity measures used in affordance learning are mostly
used to describe the similarity between OAE triples or a subset
of them. Many formulate their own measures or use the stan-
dard Euclidean measure [35, 36, 4, 5, 7, 10, 11, 26, 39]. The
measures are often used in an unsupervised setting to cluster for
affordance categories. Other use kernels as an implicit measure
of similarity in supervised learning [53, 28, 8, 33, 14].

Entropy [54] is sometimes used to compute distances between
distributions that describe possible actions or object categories
[6] or measure the stability of unsupervised category learning
[10, 35, 4]. Lastly, another popular approach is to model asso-
ciations as graphical models, Bayesian Networks (BN) or Con-
ditional Random Fields (CRF), as they are good at describing

the temporal nature of object interaction or other complex as-
sociations [53, 37, 34]. Here probability becomes a proxy for
similarity.

To the best of our knowledge, no previous method has ap-
proached the affordance classification problem by learning the
metric from the data. We can think of the CNN approaches de-
scribed above as learning a transform that enables an implicit
similarity mapping, however, as opposed to our approach they
are unable to locate what in the input caused the classification.
Further on, CNN based approaches projects non-linearly onto
massively high-dimensional spaces using massive amounts of
data. We instead show that our linear projection can reduce the
dimensionality down from 322 dimensions to 3 with no signif-
icant loss in accuracy using low amounts of data. At same the
time, our sparsity-inducing regularization forces the projection
to only use a small subset of the features, on average 30% of the
feature space. Finally, we learn what physical part of the ob-
jects in a category are relevant for the category giving the agent
a deeper connection between sensory input and the actionable
parts of the objects.

In this sense, the most similar approach to ours in learning the
feature space is a method by [55]. They learn a feature code-
book over the RGBD space of objects by optimizing towards a
compact representation of the feature space in an unsupervised
fashion similar to an autoencoder. The authors use the code-
book to find a lower dimensional representation of objects and
to classify object attributes. They show that by regularizing the
classifier that they can learn which codewords are important for
specific attributes. However, this approach is computationally
taxing as they learn the codebook and the latent representation
simultaneously. Contrary to our approach they aim for a gen-
eral representation for all tasks rather than utilizing class labels
to learn task-specific representations.

3. Methodology

Our goal is to learn a feature transform, L, for each affordance,
that given a general object representation, x, outputs a latent
representation, z. This latent representation should have the
quality that objects that affords an action should be close in the
latent space and others far away. This implies that we can use
the Euclidean metric as a proxy for measuring similarity. We
learn L from a set of n input-target pairs, {xi, yi}. Here x is a
general feature vector where y is a label denoting if the object
affords an action or not.

Given a set of feature transforms L for different affordances our
approach has four goals. We want to:

• Learn what features of the general objection representa-
tion x are important for classifying instances to each of the
affordances.

• Formulate a general abstract representation of the
affordance-based upon the relevant features.

• Given an object locate the relevant parts on the object.
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• Model the relationship between the affordances such that
we can understand which affordances are similar.

3.1. Features

We capture objects as an RGBD image using a Kinect sensor
and convert it into a 2D image and a point cloud. The point
cloud representation is noisy and many times parts of the object
are missing due to the reflective material of those parts. We can,
therefore, expect the relevance and reliability of the features
to vary substantially across the different affordance categories.
Further on, it is difficult to know what features are important
for classifying to a specific affordance. Because of this, we
choose to stack a number of global and local features and let
the algorithm decide on relevance. The stacking gives a feature
vector dimension of 234.

The global features are:

• Object volume - the volume of the convex hull enclosing
the object point cloud.

• Shape primitive - similarity to primitive shapes cylindri-
cal, spheric, and cubic as fitted by the RANSAC algorithm.

• Elongation - the ratio of the minor axes to the major axis.

• Dimensions - the length of the sides of the object.

• Material - Objects often consists of different materials.
We want a vector representation that gives a score for the
different materials of an object. To finds these scores we
train the SVM to classify textures glass, carton, porcelain,
metal, plastic, wood. The input is the concatenation of a
Fisher Vector (FV) representation of the SIFT features of
the image and the output of the 5th layer of a re-trained
GoogleLeNet. We take the scores of the SVM over an ob-
ject as the decomposition score of the different materials.

We motivate these global features by research showing their
usefulness in predicting variables involved in human grasping
and affordances, e.g. [56, 57, 58, 59, 60, 61, 62, 63, 63].

The local features are:

• Image gradients - histograms of intensity and gradient or-
der 1, 2, 3.

• Color quantization - the mapping of colors to a finite set
of colors and computing the histogram over the mapped
colors.

• Color stats - entropy, mean, and variance over the color
quantized object.

• FPHF - Bag-of-Words over Fast Point Feature Histograms
[64] for a number of radius scales.

• HoG - Bag-of-Words representation over the HoG [65]
features of the image.

Again we motivate these features by studies showing their use-
fulness, especially shape descriptors e.g. [66, 2]. Due to the

Before
Class 1

Neighborhood

After

Margin
Transform

Class 2

Class 3

Figure 2: Figuratively LMCA optimization first finds the k neighbors, called
target neighbors, for each instance by evaluating the nearest neighbor in the un-
transformed space. The algorithms then try to find a transform, L, that pushes
those target neighbors towards the instance, the neighborhood center, while at
the same time pushing non-class members out of the perimeter of the neighbor-
hood.

point cloud representation, we only need to keep the portion of
features associated with the point cloud. For example, for the
gradients, we only compute the gradients for pixels associated
with the point cloud. This works for all features except for HoG
as it uses patches overlapping the image.

3.2. Learning

As discussed in the introduction we use distance as a proxy
for similarity. However, with low amounts of data, it is diffi-
cult to construct a general high-dimensional feature space that
works well under some metric for a number of different label-
ings.

We, therefore, want to learn a transform, L, for each affor-
dance that puts similar instances close in space and dissimilar
instances far way. The transform should help us locate parts of
the feature space that is relevant and project onto a subspace, d,
such that alleviates the curse of dimensionality.

To this end, we use a regularized version of the Large Mar-
gin Component Analysis (LMCA) metric learning algorithm
[67] which we will refer to as LMCA-R. LMCA learns a lin-
ear transformation, L, of the input space that pushes the k class
nearest-neighbors (NN) of every instance closer together while
pushing non-class members outside a margin as illustrated in
fig.2. We learn L using gradient descent over the following loss
function,

ε(L) =
∑
i,i j

wi||L(xi − x j)||2

+c
∑

i,i j,l

wi yil h(||L(xi − x j)||2−||L(xi − xl)||2 + 1)

+λ

D∑
j=1

∥∥∥L j

∥∥∥
2 .

(1)

Here i j means the k nearest neighbors of the instance i that
belong to the same class, yil is a binary variable that is zero
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if i and l have the same label, and one otherwise. The first
term penalizes large distances for the k NN and the second term
penalizes non-class instances that are closer to the instance xi

than the class k NN, by a margin of 1. c is a constant controlling
the relative importance of the pushing component and h is the
differentiable smooth hinge loss [68].

wi is a weight term that aims to balance the learning in terms
of false-positive rates when some of the classes have few num-
bers of exemplars. We formulate the weights as wi = N

Ni
where

N is the total number of data points and Ni is the number of
instances in the class that i-th instance belongs to. The justi-
fication here is that if we assume that each of the summands,
in the loss function, are roughly similar in magnitude then the
weight factor will level the contribution from each class to the
loss. For example,

N
N1

∑
C1

xi +
N
N2

∑
C2

xi ≈
N
N1

N1xi +
N
N2

N2xi = Nxi + Nxi. (2)

The reason for multiplying by N is to keep the ratio at a reason-
able value to avoid numerical instability.

The last term in eq.1 is a penalization term due to [69]. It is the
sum of the l1/2-norm applied to the columns of L. The l1/2-norm
is simply the l1 norm, of the l2 norm, of the columns of the,
transformation matrix L. The l2-norm is the crucial factor as it
helps contain the full column, reducing it fully. This means that
it will remove irrelevant features completely instead of zeroing
individual matrix elements of L as happens with the l1-norm
over the matrix elements. λ is a constant controlling how much
weight we want to put on penalizing non-zero columns.

As L is a projection we can choose to let it project onto a sub-
dimension, d, which can be much less than D. In the experi-
ments section, we show that we can project from 234 dimen-
sions down to 3 without a significant loss in accuracy, a reduc-
tion in dimension of roughly 99%.

3.3. Classification And Analysis

To classify to an affordance category we formulate the problem
as a binary decision problem, that is, we learn a specific L for
each affordance class. We apply L to the data and classify to
the affordance using kNN where k is equal to the number of
neighbors used in the learning phase. Our use of kNN is thus a
direct evaluation of the metric.

We analyze the feature selection by taking the magnitude of the
L columns. Low values will mean an irrelevant feature while
high will mean relevant. To analyze the similarity between dif-
ferent affordances we treat the magnitude vector as having a
Gaussian multivariate distribution and use the KL-divergence
as the distance measure.

The affordance learning problem is a multiclass problem. How-
ever, two factors motivated us to switch from multiclass to a bi-
nary decision problem. Firstly, for the feature selection analysis

to work, we need to pit the objects in one affordance category
against a wide range of different objects. If we are learning
multiple classes simultaneous this analysis is not possible; the
feature selection will instead show good general features. Sec-
ondly, learning multiple classes at the same time is not opti-
mal as we would use fewer parameters and data points for each
problem.

4. Experiments

We motivate our experiments by the following three ques-
tions:

1. Does our approach select features that are sensible as an
abstraction for explaining an affordance? 2. Do the selected
features map out a similar set of parts on all the objects in an
affordance category? 3. How do the affordances relate to each
other? Are the affordances we as humans view as similar equal
to what the model deems as similar?

4.1. Dataset

We collected 265 RGBD images of everyday objects ranging
from cups to cereal boxes, tools, cans, and water bottles. To col-
lect the images we placed the objects on different flat surfaces
and recorded an RGBD image using a Kinect camera. We took
each image under different light conditions and tried to vary the
pose of the objects to a reasonable amount. Many of the images
had small parts or parts made of glass or metal leaving large
holes in the depth recordings. Since each image is devoid of
clutter it is simple to segment out the object by simply remov-
ing all point cloud points, not above the planar surface.

We labeled each object as a binary vector specifying if it af-
fords each one of the affordances in table 1. Many of these
affordances are quite vague and labeling is not as binary as in
standard image classification. This vagueness follows from the
vagueness in the definition of the affordance concept. Many
objects that afford an action will under normal circumstances
not be used for the affordance if other suitable objects are avail-
able.

4.2. Classification

A prerequisite for answering the above questions is to first vali-
date if the algorithm and features provide good affordance clas-
sification accuracy, that is, if the similarity metric we learn pro-
duces valid results. We compare our results to a kNN, and a
linear SVM trained on the provided features. We also compare
to an SVM trained on the output from the last fully connected
layer of a pre-trained CNN as it has proven to be a good base-
line.

As a pre-processing step, we standardize all data. We use five-
fold cross-validation to learn the optimal parameters. For the
kNN and SVMs, we also cross-validate against a PCA projec-
tion between 0 − min(dim(X), 20) dimensions where 0 means

6



Affordance kNN LMCA-R SVM CNN-SVM
Containing (124,142) 0.87 (87.6) 0.91 (91.9) 42% 0.92 (93.0) 0.9 (91.2)
Cutting (11,255) 0.36 (95.2) 0.43 (95.7) 19% 0.22 (94.9) 0.39 (92.6)
Drinking (36,230) 0.64 (90.4) 0.79 (94.1) 24% 0.71 (91.6) 0.68 (88.4)
Eating From (25,241) 0.67 (94.0) 0.6 (93.2) 27% 0.59 (92.5) 0.71 (92.0)
Hammering (21,245) 0.32 (92.3) 0.48 (93.0) 34% 0.31 (92.9) 0.41 (82.0)
Handle Grasp (56,210) 0.77 (91.4) 0.85 (94.0) 36% 0.83 (92.8) 0.8 (89.0)
Hanging (45,221) 0.37 (79.8) 0.49 (82.1) 47% 0.07 (81.6) 0.59 (82.3)
Lifting Top (79,187) 0.63 (77.3) 0.63 (79.0) 45% 0.69 (80.0) 0.75 (86.3)
Loop Grasp (31,235) 0.38 (87.0) 0.45 (86.6) 39% 0.0 (87.6) 0.65 (89.4)
Opening (118,148) 0.86 (87.1) 0.89 (90.0) 48% 0.89 (90.4) 0.88 (89.8)
Playing (16,250) 0.51 (96.0) 0.64 (96.4) 29% 0.62 (96.2) 0.45 (85.7)
Pounding (86,180) 0.68 (78.1) 0.78 (85.8) 46% 0.75 (82.4) 0.71 (78.8)
Pouring (162,104) 0.88 (84.4) 0.9 (87.9) 49% 0.9 (87.6) 0.9 (87.6)
Putting (56,210) 0.73 (88.8) 0.83 (92.6) 33% 0.79 (90.2) 0.58 (67.4)
Rolling (105,161) 0.79 (83.2) 0.78 (83.1) 53% 0.78 (82.6) 0.72 (78.8)
Scraping (41,225) 0.77 (93.4) 0.78 (93.6) 37% 0.79 (93.4) 0.75 (90.6)
Shaking (127,139) 0.86 (86.4) 0.9 (90.8) 46% 0.91 (91.5) 0.89 (90.0)
Spraying (9,257) 0.07 (96.3) 0.33 (96.4) 30% 0.05 (96.2) 0.56 (94.4)
Squeezing (89,177) 0.6 (73.0) 0.68 (78.5) 50% 0.66 (76.4) 0.73 (80.5)
Squeezing Out (14,252) 0.37 (95.8) 0.45 (95.5) 36% 0.46 (95.8) 0.34 (92.3)
Stacking (38,228) 0.78 (94.6) 0.81 (95.2) 21% 0.72 (93.0) 0.76 (93.4)
Stirring (39,227) 0.7 (92.5) 0.86 (96.0) 25% 0.8 (94.1) 0.75 (91.0)
Tool (53,213) 0.84 (94.1) 0.91 (96.5) 28% 0.89 (95.7) 0.88 (95.4)
Average 0.63 (88.63) 0.7 (90.75) 37% 0.63 (90.1) 0.69 (87.34)

Table 1: Affordance classification 2 for kNN, regularized LMCA, and linear
SVM. F1-score and accuracy in parenthesis, bold indicates the best value. The
number of instances per class is given next to the task name, positive instances
first. Most of the classes are unbalanced, giving F1-scores that are quite low
the tasks that are highly unbalanced even though the accuracy is high, which
is natural in many unbalanced binary classification tasks. LMCA outperforms
both kNN and SVM both for F1-score and accuracy for most of categories and
overall. In addition, LMCA discards on average roughly 60% of the feature
dimensions.

no PCA is performed. For LMCA-R, we cross-validate for the
impostor loss parameter, c, and the regularization parameter,
λ.

We set the NN to 3 for kNN and LMCA-R. For the SVMs we
use the Scikit-learn library [70] which uses LibSVM. We use
a linear kernel and one-against-all classification. For LMCA-R
we set the dimensionality reduction to 3. For the CNN features
we us Caffe [71] with a GooleLeNet model pre-trained on Im-
agenet. We extract the fifth layer giving us a 4096 dimensional
feature vector.

We create 25, 70/30 training-test splits of the dataset. We give
the results as averages over the 25 splits in table 1. We mea-
sure performance using the F1-score as our main metric as we
are performing binary classification over many unbalanced cat-
egories. For example, for the spraying affordance, the accuracy
is around 96% but the best F1-score is 0.56. As we can see from
table 1 that LMCA-R performs best in a majority of the cases,
outperforming kNN in all but one case.

Comparing the CNN features to the constructed we see that they
perform roughly the same but for a few were one or the other
significantly outperforms the other. It is difficult to pinpoint ex-
actly why this is. We hypothesize that some affordances contain
objects for which the depth recordings contain a high amount
of noise. This propagates into uncertainties for the constructed
features which are mostly dependent on depth recordings. For
example, objects affording hanging usually have an arched part
which can be difficult to record with sufficient accuracy as they

are usually around 1 cm in diameter and thus close to the Kinect
noise threshold. The CNN features, on the other hand, does
not rely on depth measurements and are thus free of this con-
straint. We also see that the LMCA-R performs decently for
these classes. This is due to the reweighing factor and the pe-
nalization that is able to disregard irrelevant features and weigh
the lesser class as equally important.
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(3.1) Rolling - The capability to roll is an intangible affordance dependent on
the curvature of an object, however, not all objects that have curved surfaces
affords rolling, for example, a cup with a handle. We expected the curvature
features FPFH and HoG to be important which is the case. That FPFH15 (5cm
search radius) is the most important feature is sensible since it describes curva-
ture over big areas.
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(3.2) Stacking - Objects that afford stacking are typically cuboid shaped as
indicated by the importance of the shape feature. Stackable objects also have
flat surfaces. They should, therefore, like objects that afford rolling, be depen-
dent on surface curvature features. A deeper analysis, in the projection section,
instead shows that the edges of flat objects are the important factor. This is
probably since many flats surfaces are not really flat due to noise in the depth
camera.

Figure 3: Barplots summarizing the importance of each feature for the affor-
dances Rolling and Stacking. The left axis shows the sums of the magnitudes
for each feature of the normalized transform, ‖L‖1. The right axis shows the
KL-divergence between the normalized weights of a feature and a uniform dis-
tribution indicating the within feature distribution of magnitude values.
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(4.1) Tools - Tools are usually elongated and made of plastic, metal, or wood.
They typically have handles which have a certain geometrical structure. All these
aspects are reflected in the feature weights showing FPFH, HoG, and material as
important features in addition to the dimension feature.
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(4.2) Stirring - Objects that affords stirring are elongated which means that the
dimensions of an object and the elongation should be an important factor. The
plot shows that dimensions are on par with the more complicated shape features.
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(4.3) Lifting Top - Most objects with a top are cylindrical. This would explain
the focus on the shape features FPFH and HoG. The gradient features are some-
what prominent indicating that objects with a top contain many lines, e.g. the
clear line between top and body. Objects with a top usually have graphical labels
that will give additional lines giving more weight to gradient features.
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(4.4) Handle Grasping - The histogram shows material features being the most
important which is natural given that most objects are made of plastic, metal, or
wood. Given the excellent ability to locate handles by the model given in section
4.4 it seems the selected the parts of the FPFH features describes exactly the
shape of handles on objects.

Figure 4: Barplots summarizing the importance of each feature for the affordances Tools, Stirring, Lifting Top and Handle Grasping. The left axis shows the sums
of the magnitudes for each feature of the normalized transform, ‖L‖1. The right axis shows the KL-divergence between the normalized weights of a feature and a
uniform distribution indicating the within feature distribution of magnitude values.

4.3. Feature Selection

We take the average of the L column magnitudes over the 25
runs and normalize, this will indicate each dimension’s impor-
tance. We give results for 6 of the more interesting affordances
in Fig.3-4. The bar plots show the sum of the magnitude for
each feature, that is, the fraction of each feature of the full
magnitude vector. To provide a notion of the distribution of
magnitude within each feature we compute the KL-divergence
of the normalized magnitudes for the features with a uniform
distribution. The right-hand bars thus indicate how evenly the
magnitudes are distributed across each of the features.

The general tendency is that some features like material, size,
and shape are important across the board. Size and material are
good for making an initial guess. For example, there are no
tools made of paper or very thin objects that affords Stacking
or Handle Grasping, etc. Shape features are more specific and
vary much more across the different affordances, however, in
general size, shape, and material features are the most important
as expected. Analyzing the diagrams for all the affordances it
is clear that the features *volume, shape primitive, gradients,
and color stats* are not as important for classifying affordances
compared to the other features.
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(5.1) Drinking (5.2) Drinking (5.3) Eating From (5.4) Eating From

(5.5) Eating From (5.6) Handle Grasping (5.7) Handle Grasping (5.8) Handle Grasping

(5.9) Hanging (5.10) Hanging (5.11) Lifting Top (5.12) Lifting Top

(5.13) Loop Grasping (5.14) Loop Grasping (5.15) Opening (5.16) Opening

(5.17) Opening (5.18) Putting (5.19) Rolling (5.20) Rolling

(5.21) Stacking (5.22) Stacking (5.23) Stacking (5.24) Stirring

(5.25) Stirring (5.26) Stirring (5.27) Tool (5.28) Tool

Figure 5: Highlighting of important parts of the object for classifying the object to an affordance according to the feature selection process. The corresponding
affordance is given below the image. The bright red parts correspond to important parts and blue to non-important parts. We can see that many of the highlights
correspond to parts that humans would agree would be relevant for the specific affordance, even though such a correlation cannot be expected.
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4.4. Feature Projection

The second question we set out to answer is: are there certain
invariant parts of the objects that are valuable for classifying to
an affordance? To investigate this we want to extract the impor-
tant local features and locate them on the objects that afford the
action.

We proceed in the same way as in the feature selection analysis.
We take the mean of the magnitudes of L over all the runs. From
the mean we select the subset of features that are point-cloud
based, that is, the gradient, color quantization, FPFH features,
and normalize this subset.

To get an indication of the important parts we assign an impor-
tance weight value to each point. We compute it by summing,
the feature weights associated with the point according to each
of the selected features,

c j =
∑

f∈Features

w f [ f (p j) ]. (3)

Here f is a feature function that takes a point cloud index and
returns an index corresponding to the weight value for that fea-
ture and w f is the weight vector for the feature f . For example,
for the BoW FPFH features each codeword has a weight, to find
the weight we thus classify a point to a codeword and look up
the index for that codeword in the weight vector.

To color the object we divide all the values by the max value
taken over all points. We input the values to a gradient function
between red and blue, such that values close to the max value
becomes red, and values close to zero becomes blue.

Before we analyze the results in Fig.5 we want to bring up one
important point that cannot be stressed enough: humans and
robots are different sensorimotor systems. We have different
feature representations and mechanisms for detecting invariant
features. Therefore, we cannot expect the invariant selected
parts of the objects to be the same for robots and humans. Our
approach might detect invariant features that humans are unable
to detect or understand. The important part is the consistency
in the invariances across objects. With that being said it would
be interesting if there is a correspondence between the invari-
ant parts selected by our model and what one can expect from
a human.

The objects selected in Fig.5 is just a small subset of all positive
examples, roughly 1400, but gives a good representation of the
main results.

For Drinking, Fig.5.1-5.2, the highlighted part is the rounded
back part of the object. The back part was selected in a similar
fashion across most of the objects even for such diverse objects
such as the smaller bowl and the teapot.

For Eating From, Fig.5.3-5.5, we see that the algorithm high-
lighted the flat bottom for two of the objects in Fig.5.3 and
Fig.5.5 but not in Fig.5.4. This highlights the difficulty in gen-
eralizing from a couple of highlights. What these three images

show is that the flat parts are important for categorizing those
two objects while the sides of the frying pan in Fig.5.4 is more
important than its flat part for categorizing to the affordance.
Despite this, a majority of the objects in the category shows
highlighting of the flat or base parts.

Handle Grasping, Fig.5.6-5.8, gave mixed results. Many ob-
jects had colorings similar to those in Fig.5.6-5.7. However, we
also had a number of objects where the algorithm either selected
the whole object or the connecting part where the handle meets
the tool part as in Fig.5.8. We expected this as the connecting
part is a common shape across objects with handles.

In Hanging, Fig.5.9-5.10, we gave the algorithm a number of
objects with loops. The results were not satisfactory. On one
hand, we had results as in Fig.5.9, yet most results were sim-
ilar to Fig.5.10 with significant noise. A closer inspection re-
vealed that a large number of cups skewed the results towards
detecting cylindrical parts. The set of objects affording Loop
Grasping, a subset of hanging, Fig.5.13-5.14, showed similar
effects.

The Lifting Top, Fig.5.11-5.12, also gave mixed results. The
objects varied significantly in shape and we expected the algo-
rithm to detect the small correlations across the objects given
by the shape of the tops. The results show to the contrary that
detecting small shapes is difficult at best due to the Kinect’s low
resolution and level of noise.

Opening, Fig.5.15-5.17, were perhaps the most surprising re-
sults. The objects had large variations in shape, ranging from
toothpaste tubes to milk-cartons and bottles. We, therefore,
considered it to be one of the more difficult categories. Despite
this, the algorithm consistently highlighted parts of the objects
approached for opening for a majority of the objects.

For Rolling, Fig.5.19-5.20, we expected results where the
whole object was colored. This happened in the majority of
the objects, but there was also some with spurious colorings
such as in Fig.5.20 where the results were more difficult to in-
terpret.

Stacking, Fig.5.21-5.23, proved to be quite a good illustration
of the point made in the beginning about difference in senso-
rimotor systems. We expected a coloring of the flat parts, but
what actually is the common denominator are the edges. The
algorithm selected edges similar to those for a majority of the
objects.

Finally Stirring, Fig.5.24-5.26 and Tool, Fig.5.27-5.27, gave
very interesting results. The objects contained in these two cat-
egories are similar and as we can see from Fig.5.24-5.26 the
algorithm has selected the whole handle part with almost un-
canny certainty. Seemingly the algorithm has picked up the rule
that objects that afford stirring should have thin and elongated
handle parts.

To conclude, the above results show good consistency in select-
ing sensible parts of the objects in most of the categories. It is
clear that we need more data points for the results that showed
low consistency such as in *Hanging* and *Loop Grasping*.
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Affordance 1. 2. 3.
Containing Shaking Opening Squeezing
Cutting Tool Hammering Stirring
Drinking Putting Loop Grasping Tool
Eating From Putting Loop Grasping Drinking
Hammering Tool Stirring Scraping
Handle Grasping Tool Scraping Stirring
Hanging Loop Grasping Drinking Spraying
Lifting Top Opening Squeezing Containing
Loop Grasping Hanging Drinking Rolling
Opening Containing Shaking Lifting Top
Playing Pounding Shaking Spraying
Pounding Rolling Squeezing Drinking
Pouring Shaking Containing Opening
Putting Drinking Loop Grasping Hanging
Rolling Pounding Lifting Top Squeezing
Scraping Tool Stirring Handle Grasping
Shaking Containing Opening Squeezing
Spraying Hanging Squeezing Out Squeezing
Squeezing Containing Shaking Lifting Top
Squeezing Out Spraying Squeezing Lifting Top
Stacking Lifting Top Squeezing Putting
Stirring Scraping Tool Hammering
Tool Handle Grasping Scraping Stirring

Table 2: The three nearest neighbors for each affordance. We compute the
distances using the KL-divergence between the Gaussian distributions over the
magnitude vectors of the affordance transforms, L. Distances are therefore non-
symmetric.

For example, the algorithm will benefit from more negative ex-
amples such as cups without or occluded handles. Creating
good datasets with sensible labelings for learning complex ab-
stractions is a trial and error process since the features that you
expect to be important might not be. Further on, better depth
resolution with less noise will provide a major improvement.
For example, flat surfaces are not always interpreted as flat due
to the noise. This makes the FPFH BoW features map flat sur-
faces differently thus introducing large variance in shapes that
might not be that different. Lastly, the analysis we made of the
selected features differed, in some categories significantly, from
the analysis of the projected features. This shows, as mentioned
earlier, that drawing conclusions from the belief that different
sensorimotor systems will produce similar results can be pre-
carious.

4.5. Affordance Association

Finally, we examine how the different affordances relate to each
other. We start by assuming that the magnitude of L has a mul-
tivariate Gaussian distribution. We compute the mean and co-
variance by treating all the 25 runs as samples from the distri-
bution. We can now measure the similarity between the affor-
dances using the KL-divergence.

In Table 2 we list the 3 nearest neighbors (NN) for each affor-
dance. Since the KL-divergence is asymmetrical the NN of one
affordance might not be the NN of the other.

From Table 2 we can see that most of the affordances that we
expected to be close to each other are in fact close. For exam-
ple, objects that afford tool use are similar to objects that afford
handle grasping, scraping, and stirring. Rolling is close to Lift-
ing Top and Squeezing, Loop Grasping is close to Hanging and
Drinking, and Cutting is close to Tools. Stacking is close to
objects that affords Lifting Top and Putting, etc. The results
clearly show that our approach can learn to relate affordances
in a consistent and sensible manner.

One interpretation of the KL-divergence is the amount of in-
formation one learns of the true distribution from the informa-
tion given by another distribution. In our context, this means,
how much an affordance says about the features that are impor-
tant for another affordance. Learning to associate affordances
implies learning the interrelation between similar affordances
and the objects that make up the clusters of association. This
deeper understanding is key to generalizing and abstracting af-
fordances. Practically, this knowledge has the potential to help
a robot perform an unknown action demonstrated by another
actor. It can do this by analyzing the affordances of the object
being manipulated and figuring out what features might be im-
portant from what it has learned from other objects effectively
bootstrapping the learning process.

5. Conclusion

We started out with the simple notion of distance as a proxy for
similarity. This guided us to learn a transform of the feature
space that put similar items close and dissimilar items far away.
Objects are usually similar in only a few aspects of their repre-
sentation and we, therefore, penalized parts of the feature space
that were not relevant for classifying to the affordance.

We analyzed the penalized transform to deduce the relevant fea-
tures and provide a grounding of the affordances. Since some
of the feature space was tied to a point cloud representation we
could locate important parts of the objects for classifying to an
affordance. Our model is thus proof of concept that applying
a sensible approach to reasoning about similarity facilitates the
ability to learn abstractions of categories without the need for
pixel ground truths, pre-segmentation, other cues, and heuris-
tics.

Furthermore, we showed that the model can learn to associate
categories with each other. Instead of analyzing the transformed
data, as is common, we analyzed the feature transforms them-
selves, computing distances between them. Again using dis-
tance as a proxy for similarity. The key is the realization that
the transform itself contains the information necessary to rea-
son about the category. The learned similarities between the
affordances proved to be sensible and gave insight into how an
agent can learn to reason about categories.

The shortcomings of our model are obvious. Firstly, stacking
designed features is not a viable option for a fully autonomous
system, it will need to learn the features from the data. This
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implies that future work should focus on finding ways to ana-
lyze and compare activations in deep nets e.g. [72], either by
developing retinotopic feedback loops similar to how human
vision works or other recurrent ways of learning abstractions,
however, without the need for pixel-wise labeling. Further on,
when creating these abstractions we need to understand to what
a degree we should mimic human capabilities, as this will be a
crucial component in human-robot interaction.

Secondly, we showed that there is sufficient information in the
shape of objects to ground the affordances. However, for a robot
to gain a complete understanding of an affordance, it will have
to interact with the objects and ground all observed sensorimo-
tor input, both proprioceptive and exteroceptive. If we want
grounding and abstraction to be as fluent and effortless as in
humans, to enable high-level reasoning, future work needs to
focus on building this knowledge in a holistic fashion.

References

[1] L. W. Barsalou, Grounded Cognition, Annu. Rev. Psychol. 59 (2008)
617–645.

[2] D. A. Norman, The Design of Everyday Things, Basic Books, 2002.
[3] C. Chao, M. Cakmak, A. L. Thomaz, Towards Grounding Concepts for

Transfer in Goal Learning From Demonstration, in: ICDL, 2011, pp. 1–6.
[4] S. Griffith, J. Sinapov, V. Sukhoy, A. Stoytchev, How to separate con-

tainers from non-containers? a behavior-grounded approach to acoustic
object categorization, in: ICRA, 2010, pp. 1852–1859.

[5] S. Griffith, J. Sinapov, M. Miller, A. Stoytchev, Toward interactive learn-
ing of object categories by a robot: A case study with container and non-
container objects, in: ICDL, 2009, pp. 1–6.
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