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Learning the Tactile Signatures of Prototypical Object Parts
for Robust Part-based Grasping of Novel Objects

Emil Hyttinen1 Danica Kragic1 Renaud Detry2

Abstract— We present a robotic agent that learns to derive
object grasp stability from touch. The main contribution of our
work is the use of a characterization of the shape of the part
of the object that is enclosed by the gripper to condition the
tactile-based stability model. As a result, the agent is able to
express that a specific tactile signature may for instance indicate
stability when grasping a cylinder, while cuing instability when
grasping a box. We proceed by (1) discretizing the space of
graspable object parts into a small set of prototypical shapes,
via a data-driven clustering process, and (2) learning a touch-
based stability classifier for each prototype. Classification is
conducted through kernel logistic regression, applied to a low-
dimensional approximation of the tactile data read from the
robot’s hand. We present an experiment that demonstrates the
applicability of the method, yielding a success rate of 89%.
Our experiment also shows that the distribution of tactile data
differs substantially between grasps collected with different
prototypes, supporting the use of shape cues in touch-based
stability estimators.

I. INTRODUCTION

It is well-accepted that touch plays a crucial role in human
grasping [1]. Recent progress in artificial touch sensing
hardware has allowed the robotics community to endow
robots with touch capabilities and to show that tactile sensing
plays an equally important role in robot grasping [2], [3], [4],
[5].

This paper addresses the problem of grasping novel ob-
jects. A novel object is one that the robot sees for the first
time, one for which the robot has no 3D shape model, and no
previous grasping experience. Tactile sensing is particularly
important in this situation: Because the visual data provided
by the robot’s camera show only one side of the object, the
robot must apply at least one finger onto a surface that it
cannot see, resulting in a relatively uncertain grasping plan.
By confronting the tactile information gathered upon contact
to tactile impressions gathered during previous successful
and unsuccessful grasp trials, the robot can either strengthen
its belief in the success of the grasp, or decide to apply
caution and modify its plan.

The problem of assessing grasp stability from touch has
been studied by several groups [6], [4]. Bekiroglu et al.
[4] modeled success probabilities from touch exclusively,
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allowing for a model that generalizes to novel objects. In
another paper, Bekiroglu et al. [6] showed that taking visual
information into account increases prediction performances.
However, in that paper [6], the model relies on full 3D object
representations, which is not applicable to novel objects.

In this work, our aim is to learn a grasp quality model
that exploits both tactile/proprioceptive information and the
partial 3D data that the robot sees from where it stands.
The most straightforward solution to this problem is to train
a classifier on positive and negative grasp examples, with
each example parametrized by a concatenation of the tactile
data, finger joint angles, and a mix of 3D shape features
extracted from the 3D image. This approach will however
suffer from a high-dimensional input space, making the job
of the classifier difficult. Instead, we build on the fact that
many grasp planners that work with novel objects already do
some sort of shape classification. Specifically, planners are
often composed of a dictionary of prototypical shapes. To
plan a grasp, the robot fits the prototypical shapes to a 3D
image of the scene, and it executes the grasp that corresponds
to the prototype that best fits the 3D image. A dictionary of
prototypical shapes forms a discretized representation of the
space of 3D shapes that fit well within the robot’s hand.
Therefore, the label of the best-fitting prototype can be used
as a highly-compressed characterization of the shape of the
object near the grasping point.

This paper evaluates a tactile-aware part-based grasp plan-
ner. The grasp planner is composed of n prototypical object
parts. The planner encodes information on how to position,
orient and preshape the gripper relative to each of the parts in
order to produce a grasping configuration. The planner also
encodes, for each part, a model of the tactile feedback and
finger joint angles that are expected upon contact with an
object. The learning of prototypical parts and how to grasp
them is discussed in previous work [7]. In this paper, we
focus on learning the tactile/joint models, and evaluating
the model’s ability to characterize the stability of grasps
onto novel objects. We define a grasp as stable if the object
remains rigidly attached to the hand when the hand lifts up
the object, and when the operator applies to the object a
force equivalent to the one he would apply to lift it up. The
tactile/joint models encode the probability of success of a
grasp given the tactile/joint data issued by the sensors upon
contact – when the hand is fully closed. The `th model is
constructed by executing a number of grasps on different
objects using the `th prototype and training a kernel logistic
regression classifier on the resulting tactile/joint data and
success/failure labels. We present an extensive experiment



that evaluates our model on a set of 192 grasps on 32 objects.
We compare our shape-aware tactile model to a classifier
that considers tactile and joint data only. While the results
of both approaches are similar, we present a careful analysis
of the data, that indicates that shape information is relevant
to grasp stability estimation. Those results shed new light on
grasp stability estimation and will help in further developing
shape- and tactile-aware predictors. In summary, the main
contributions of this work are (1) a model of grasp stability
that uses touch, joint data, and local object shape, (2) results
on a large data set of 32 objects, and (3) an analysis the data
collected during the experiment supporting the usefulness of
shape information in grasp quality prediction.

II. RELATED WORK

Before robot tactile sensing became viable and affordable,
robot grasping was performed open-loop [8], [9]: A grasp
pose was planned from vision, then executed by the robot.
Grasp planning is however a difficult task, and the success of
a grasping plan is difficult to guarantee. Authors have shown
that grasps can be simulated prior to execution [10] in a
virtual environment where so-called grasp quality measures
[11] help evaluate stability. Unfortunately, this process relies
on the same noisy perception as grasp planning, and it has
been shown that the correlation between the predicted quality
and real-world success is limited [12], [13].

To ensure stable grasps, sensory feedback collected after
the application of a grasp can be used. In this case visual
feedback alone does generally not perform well since it is
bad at capturing the local properties of the contact areas,
and because of occlusion caused by the hand or the object
itself. Tactile sensors capture useful information about the
interactions between the hand and the object and are suitable
for feedback when the hand and the object is in contact.

Tactile sensing can be used to estimate different object
parameters useful to grasping, such as object position [14],
shape [15], [16], [17], [18] and object class [19], [20], [18].

Naturally, tactile can also be used directly to estimate
stability. Multiple authors have shown that it is possible
to model the shape of hand-object contacts that lead to
successful or unsuccessful grasps [6], [21], [22], [23], [24],
[25], thereby allowing the robot to assess stability before
attempting to lift an object.

Dang et al. [21] have studied means of estimating grasp
stability using the 3D locations of object-hand contacts. In
later work, Dang et al. [22], [23] devised means of correcting
grasps that are considered unstable. Miao et al. [24] used
a similar approach as Dang et al. [23], but based their
stability estimation on other tactile features. By contrast to
our work, neither Dang et al. nor Miao et al. take object
shape information into account when assessing stability.

Bekiroglu et al. [6] trained a robot to classify the stability
of a grasp from joint angles, tactile feedback and visual
feedback. This work was however limited to known object,
as the pose and identity of the object was used as in put to
the classifier. The aim of this paper is to devise a method

Fig. 1. The three prototypes used in our experiments. The left image shows
the first prototype, the middle image shows the second prototype, the right
image shows the third. The figure also shows the gripper poses associated
with the prototypes. For clarity, the gripper shown here has a simplified
shape, it is not representative of the gripper used in our experiments.

Fig. 2. Planning a grasp onto a new object: the gripper is brought to
the pose given by the best-fitting prototype. The rightmost images show
the data produced by the tactile sensors, where the darkness of each cell
is proportional to the value computed by that cell. The figure shows the
distal and intermediate pads only. To understand their arrangement, one can
imaging looking at the fully open hand along an optical axis that is normal
to the palm. In other words, the top and bottom arrays show the distal pads,
and the middle arrays show the intermediate pads.

that continues using both tactile and visual information while
being applicable to novel objects.

III. METHOD

The aim of this paper is to predict the probability of
success of a grasp prior to lifting up the object. The infor-
mation that is exploited to make this prediction consists of
(1) the tactile data collected upon contact with the object
by the sensors placed on the inner sides of the fingers,
(2) the hand’s configuration (joint angles) once fully closed
around the object, and (3) a characterization of the 3D
shape of the object in the vicinity of the grasping point.
The characterization of the object’s shape emerges from the
algorithm that plans where to grasp the object. This algorithm
is described in Section III-A. Section III-B describes how
grasp success is predicted from hand readings. Section III-
C details how the raw data issued by the hand is processed
before it is submitted to the model of Section III-B.

A. Part-based Grasp Planning

Planning a grasp on a novel object seen from a single
viewpoint is a difficult task, as at least one of the robot’s
fingers has to be applied to a side of the object that is
not visible. This problem can be addressed by constructing
a dictionary of grasping prototypes (also referred to as
templates in the literature) that encode the shape of an object
part and how to grasp it. By fitting the prototypes to a partial
3D view of an object and selecting the best fitting prototype,
the robot implicitly postulates the shape of some of the
object’s faces that are not directly observable, which allows
it to devise a workable multi-finger grasp. The dictionary of
prototypes can be constructed by hand [26] or learned from



experience [7]. This paper relies on the planner of Detry et
al. [7], which learns prototypes from grasps demonstrated
to the robot via teleoperation. Specifically, the planner is
composed of three grasp prototypes illustrated in Figure 1.
Figure 2 illustrates the planner in action: the best-fitting
prototype provides the robot with a gripper pose. For further
information on the planner and how it is learned, we refer
the reader to the work of Detry et al. [7].

B. Learning Prototypical Tactile Signatures

The aim of this paper is to allow the robot to estimate
the stability of a grasp planned with the algorithm discussed
above, using both the shape of the object and the tactile
imprints/hand configuration available upon contact with the
object. Specifically, we define a model of the probability of
success of a grasp given the shape of the tactile imprints and
the hand’s joint angles; the shape of the object around the
grasping point is taken into account by learning a separate
model for each prototype. In this way, we model the shape
of object-gripper contacts that lead to a stable or unstable
grasp given that we are expecting to be grasping, e.g., a
box-like object, or a cylinder-like object. By proceeding this
way, the robot should ultimately be able to identify stability
cues within certain tactile or finger data. For instance, a fully
closed finger, or a finger that reports no contact at all, is
likely to indicate that the grasp will not work as intended.
Conversely, regular contacts on all finger phalanges are a
good indicator of success.

Defining success probabilities via hand-written rules such
as the two examples given above would be a tedious task,
that would need to be repeated each time a new prototype
is created. Moreover, given the high dimensionality of the
data that can potentially be produced by touch sensors, such
rules would quickly become overly complex. Instead, we
let the robot learn success probabilities from experience.
We collect a dataset by executing several grasps with each
prototype, onto objects of different sizes and shapes. We
then train one model for each prototype `, using the data
generated with prototype `, i.e., grasps planned onto novel
objects via `. When grasping a novel object, the probability
of success of the grasp is computed by confronting the tactile
and joint data read from the hand to the stability model of
the prototype that was used for planning the grasp.

In machine learning, the probability of a binary variable
taking one outcome or the other is often modeled via
logistic regression. Logistic regression is a linear model that
essentially plugs a linear regression model into the logistic
function, to produce a model whose values are bounded
to [0, 1]. Given the nature of tactile and proprioceptive
information, a linear mapping from touch and joint angles
to success probability is unlikely to emerge. We instead use
kernel logistic regression (KLR), which trades the linear
regression model of logistic regression for a nonlinear kernel
regression model.

Let us denote the dataset collected with one of the grasp
prototypes by

Z = {(xi, yi)}i=1,...,n (1)

where each pair (xi, yi) is composed of tactile readings
and joint angles xi ∈ Rd (defined in Section III-C below),
and a binary stability label yi ∈ {stable, unstable}. KLR
models the stability probability of a grasp characterized by
a perceptual vector x with the help of a weighted sum of the
similarities between x and each vector in the training dataset
Z. The weights associated to stable grasps will generally be
positive, while those associated to unstable grasps will be
negative. If x resembles percepts of Z that lead to stable
grasps, its probability of stability will thus be high. In
order to restrict values to the [0, 1] interval, KLR models
probabilities by plugging the weighted sum described above
into the logistic function f(z) = 1

1+e−z , which smoothly
grows from 0 to 1 as its argument varies from minus infinity
to infinity. Weights are usually chosen to maximize the
probability of the training set.

Formally, we model the probability of pose- and touch-
conditional grasp stability as

p(y = stable|x; v) = 1

1 + exp {−
∑n

i=1 viK(x, xi)}
(2)

where p(y = stable|x) is the probability of success of a grasp
characterized by the tactile and pose vector x (see Section III-
C), K is a kernel function that models the similarity between
two perceptual readings (defined in Section III-C below) and
v is a weight vector chosen to maximize the regularized
stability probability of the data

−
n∑

i=1

log p(yi|xi; v) + c trace(vKvT ) (3)

where K is the kernel Gram matrix, with Kij = K(xi, xj),
and c is a constant. This problem can be solved, e.g., with
Newton’s method. For more details, we refer the reader to
the work of Yamada et al. [27].

We train one classifier per prototype. The probability of
success of a grasp x planned with prototype ` is modeled
with

p(y = stable|x, `) = p`(y = stable|x), (4)

where p` corresponds to the probability given by the classi-
fier learned for prototype `.

C. Tactile and Proprioceptive Data

Our experimental platform is composed of a Robotiq
three-finger gripper equipped with tactile sensors. Six sensors
are fixed on the inside of distal and intermediate finger links,
the seventh is attached to the palm (see Figures 2 and 3).

The data we use in our model is acquired from the tactile
sensors and finger encoders at the time a grasp is executed.
Each tactile sensor pad gives 8 to 12 spatially distributed
pressure measurements (see Figure 2). Classifying grasps
based on raw tactile data would be a difficult task given their
high dimensionality. Instead, we consider our tactile pads to
be two-dimensional images and we apply ideas from image
processing. We represent each pad using image moments,



Fig. 3. Robotiq three-finger gripper equipped with tactile sensors. The
proximal sensors are currently not functional.

as suggested in [28], [29]. The general parametrization of
image moments for one tactile pad f is given by

mp,q =
∑
a

∑
b

apbqf(a, b) (5)

where p and q represent the order of the moment, and a and
b are the horizontal and vertical indices of tactile cells. We
compute moments up to order one, (p+ q) ∈ {0, 1} for the
fingertips and only the basic moment given by p, q = 0 for
the other pads. The basic moment p, q = 0 corresponds to
the total pressure measured by a pad, and moments of order
1 correspond to the coordinate of the center of the contact
between a pad and the object. The image moments of the
seven tactile pads yield a total of 13 values characterizing
the contacts between the hand and the object.

The Robotiq gripper has ten degrees of freedom. However,
we can only control (and measure) one degree of freedom
for each finger, plus the lateral tilt of the two side-by-side
fingers. The fingers are designed to mechanically comply
to the shape of the enclosed object. As a result, we cannot
directly compute the configuration of the hand. Nevertheless,
the information provided by the finger encoders is useful and
can help disambiguating grasp stability.

In summary, the hand provides us with four joint values
and thirteen values extracted from the tactile data. A grasp
xi in Eq. 1 is thus parametrized by

xi = (Ji,Mi), (6)

where we denote by Ji the vector of four joint values of
grasp i, and by Mi the thirteen tactile values. In the text
below, Ji is referred to as a joint feature, and Mi is referred
to as a tactile feature. The vector xi is referred to as grasp
feature.

Grasp features are normalized to zero mean and unit vari-
ance prior to learning. The kernel K modeling the similarity
between two grasp features is implemented with an isotropic
Gaussian of variance σ, optimized via cross-validation.

IV. EXPERIMENTS

In this section, we evaluate the applicability of our grasp
stability predictor. We first compute the success rate of the
prototype-aware tactile model discussed above. We then plot
and discuss the distribution of successful and unsuccessful
grasps in grasp feature space, and compare our classifier to

Fig. 4. Set of objects used for evaluation.

a simpler classifier that does not take prototype data into
account.

We have collected a total of 192 grasps, with 32 stable
grasps and 32 unstable grasps for each prototype. Grasps
were collected by repeatedly placing one of the objects of
Figure 4 in front of the robot, grasping the object via the
part-based planner discussed above, and assessing whether
the grasp is stable. Stability was assessed by lifting the object
with the robot, and slightly pushing the object by hand to
verify that it is firmly bound to the gripper. Before lifting up
the object, joint and tactile information were recovered and
stored along with the ID of the prototype used to plan the
grasp. We limited our experiments to pinch grasps because
the Robotiq hand’s ability to apply power grasps was beyond
our expectations and it proved difficult to gather a significant
number of failed power grasps. Figure 5 shows examples
of successful and unsuccessful grasps along with tactile
readings.

Let us denote by sall the set of 192 grasps discussed above,
and by s1, s2, and s3 the three subsets of sall that contain
grasps collected with prototype 1, 2, and 3, respectively.
A KLR classifier was trained on each dataset, yielding
classifiers C1 (from s1), C2 (from s2), C3 (from s3), and
Cno shape (from sall). As explained above, C1, C2 and C3 form
our shape-aware model C (see Eq. 4). Cno shape is a classifier
that differs from C by ignoring shape information – it was
trained on all grasps, using tactile and joint data, but not the
prototype IDs. Classifiers were trained using cross validation,
optimizing the parameter c of Eq. 3, and the variance σ of the
grasp kernel. The cross validation used all samples belonging
to one object as test set and all other samples as training set.

In Figure 6 we illustrate the success rates of the different
classifiers. The green dashed and red solid lines plot the
success rates of C and Cno shape as functions of the number
of dimensions of the input grasp features made available to
the classifiers. As explained above, a grasp feature contains
17 elements, four from joint angles and 13 computed from



Fig. 5. Examples of successful and unsuccessful grasps, and tactile
readings. The first two grasps are successful, while the last two fail when
the robot attempts to lift the objects up. See Figure 2 for more details on
the arrangement of tactile pads.

the tactile pads. Figure 6 shows the success rate of classifiers
trained using subsets of the 17 dimensions. We started
with all the 17 dimensions of the features and then we
removed the dimensions one by one in order of importance,
with the dimension least important for classification being
removed first. The overall shapes of the curves shown in
the figure indicate that successful/unsuccessful grasps can
be discriminated by using only 6 to 8 of the dimensions of
the grasp features. The last two dimensions are irrelevant –
they correspond to the palm sensor and the finger tilt joint.
The finger tilt is left unchanged in this work, and no palm
contacts have been observed.

Figure 6 shows that, using an optimal number of features,
our method manages to correctly classify 89% of the grasps
in our database. Figure 6 also shows that the difference in
success rate between C and Cno shape is of limited statistical
significance, and, at first glance, one may conclude from
this result that using shape information does not help in
classifying stability. However, further analysis of our data
and the classifiers tends to show otherwise.

Figure 7 shows the 192 grasp features projected to a 2D
space via multidimensional scaling. In effect, the 2D Eu-
clidean distance between two points in the plots of Figure 7
is an approximation of the actual Euclidean distance between
the two corresponding grasp features in 17-dimensional
space. For clarity, features are shown on three separate plots
that correspond to the three prototypes. Despite the low
dimensionality it represents, Figure 7 can bring insight on
several aspects of the data. It appears rather clear that grasp
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Fig. 6. Classification rates as a function of the number of dimensions of
features made available to the classifier. The thick lines show the average
success rates for a classifier or group of classifiers. The thin lines show
one standard deviation when computing this statistic is possible. The green
dashed lines show the shape-aware classifiers discussed in this paper. The
red solid line shows the classifier that does not take shape information into
account. The black dash-dot lines show the results of classifiers that are
trained on grasp examples collected with a different prototype than the one
the classifiers are tested with.

features emerging from different prototypes follow overlap-
ping but distinct distributions. The difference in distribution
of successful and unsuccessful grasps is even clearer. These
observations tend to indicate that while KLR is powerful
enough to discriminate successful/unsuccessful grasps when
all three prototypes are mixed together, conditioning on
shape has the potential of easing the burden of the classifier.

The black dash-dot line of Figure 6 illustrates the same
observation quantitatively. This line has been computed by
averaging the success rates of classifiers that were trained
on grasp examples collected with a different prototype than
the one the classifier was tested with. In other words, the
rightmost point of the black dash-dot line corresponds to the
average of the success rate of C1 tested on s2 and s3, C2

tested on s1 and s2, and C3 tested on s1 and s2, using all
17 dimensions of grasp features. The rates obtained in this
way are substantially lower than those provided by C or
Cno shape. This means that a classifier learned, for instance,
from s1, will miss-classify some grasps of s2 that would
be correctly classified by C2. We believe that this result
is a strong indication that shape information is relevant to
stability estimation, and that this problem should be studied
further.

V. CONCLUSION

We presented a method for estimating the stability
of grasps planned onto novel objects. Grasp planning is
achieved via a part-based planner, composed of grasp proto-
types learned from experience. Grasp stability is estimated
via kernel logistic regression, the stability model is trained on
hand joint angles, a low-dimensional approximation of tactile
readings, and the ID of the prototype a grasp is planned
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Fig. 7. Plots of all grasp features projected to a 2D plane via MDS. The three plots respectively correspond to grasps planned with prototype 1, 2 and
3. Green circles correspond to successful grasps and red triangles to failed grasps.

with. This way, the stability estimator only uses information
about the approximate shape of the object near the grasping
point, which makes it transferable to novel objects that partly
resemble one of the training objects.

Our experimental results support the applicability of our
method, showing that grasp outcomes are correctly predicted
in 89% of the test cases. We have compared our model to a
model that only relies on tactile and joint data. Our model
slightly outperforms the latter. We have additionally shown
that the distribution of tactile and joint data is dependent
on the approximate shape of the object near the grasping
point, and that predicting the outcome of a grasp planned
with one prototype is difficult to do based on the information
gathered with a different prototype. We believe that those
results show evidence of the relevance of shape information
in stability estimation, and indicate that shape-aware stability
is a problem that deserves further attention.

In future work, we plan to conduct experiments on a larger
scale, to provide further insight on the relevance of different
types of tactile and shape features on grasp stability. We also
plan to investigate different ways of adapting grasps based
on tactile sensing.
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