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Abstract: We present the design, integration, and evaluation of a full-stack robotic system called
RoMan, which can conduct autonomous field operations involving physical interaction with its
environment. RoMan offers autonomous behaviors that can be triggered from succinct, high-level
human input such as “open this box and retrieve the bag inside.” The robot’s behaviors are driven by
a set of planners and controllers grounded in perceptual reconstructions of the environment. These
behaviors are articulated by a behavior tree that translates high-level operator input into programs of
increasing sensorimotor expressiveness, ultimately driving the lowest-level controllers. The software
system is implemented in ROS as a set of independent processes connected by synchronous and
asynchronous communication, and distributed across two on-board planning/control computers. The
behavior stack drives a novel platform consisting of a pair of custom, 500 Nm/axis manipulators
mounted on a rotatable torso aboard a tracked platform. The robot’s head is equipped with
forward-looking depth cameras, and the arms carry wrist-mounted force-torque sensors and a mix
of three- and four-finger grippers. We discuss design and implementation trade-offs affecting the
entire hardware-software stack and high-level manipulation behaviors. We also demonstrate the
applicability of the system for solving two manipulation tasks: 1) removing heavy debris from a
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roadway, where 64% of end-to-end autonomous runs required at most one human intervention; and
2) retrieving an item from a closed container, with a fully autonomous success rate of 56%. Finally,
we indicate lessons learned and suggest outstanding research problems.

Keywords: mobile manipulation, military applications, autonomy

1. Introduction
1.1. Motivation
Whereas the dream of robotics has been to assist humans by performing tasks that are dull, dirty, and
dangerous, real-world applications to date have largely been confined to the dull. This shortcoming
derives from significant challenges that remain in developing sufficiently robust capability for oper-
ating in uncontrolled environments, which are typical of the dangerous situations for which we would
like to use robots as our proxies. Until those challenges are further resolved, strategies that shape the
environment to “meet the machine halfway” can overcome some of the current deficiencies, but the
dangerous tasks rarely afford that latitude. One path forward is using competitions such as RoboCup
Rescue (Jacoff et al., 2003) and the DARPA Robotics Challenge (Krotkov et al., 2017) to drive re-
searchers toward more robust solutions for challenging problems in disaster scenarios. This continued
advancement also impacts military and law enforcement scenarios (Nguyen and Bott, 2001).

While the competition model energizes organic development of cross-functional teams to address
these issues, the cooperative model brings its own complementary strengths to problem-solving.
Starting in 2010, the US DEVCOM Army Research Laboratory (ARL) sponsored the Robotics
Collaborative Technology Alliance (RCTA), a broad consortium of academic, industry, and gov-
ernment partners, to advance autonomous ground robotics by conducting leading-edge research to
transform field robots from largely teleoperated tools into more autonomous teammates. Over its
ten-year program, the RCTA nurtured numerous advances in the areas of perception, intelligence,
human-robot interaction, dexterous manipulation, and unique mobility. These contributions include
high-speed perception in rough terrain, situational awareness in unstructured environments, multi-
modal human-robot dialogue, and dexterous manipulation in the presence of clutter, among others.
For this paper, we integrated those capabilities to execute missions requiring mobile manipulation
in unstructured environments. By advancing autonomous capabilities, we intend to reduce the
operator’s cognitive burden, thus increasing the force-multiplication effects of these systems.

1.2. Related Work
In this section we discuss related work at the systems level. Mobile manipulation tasks require an
extraordinary breadth and depth of expertise across many disciplines, each of which continues to
advance actively. Because of this complexity, there is a great deal of related work associated with
each of the individual research thrusts. Therefore, we have included some related work as appropriate
to specific research components in Section 3, and encourage the reader to seek our more detailed
papers on each of those components for a more comprehensive literature review in those areas. This
section focuses on systems-level related work.

To identify an appropriate platform for integrating and testing our research advancements, we
conducted a market survey early in the program. In particular, we wanted a system that could
provide mobility on at least mildly rugged terrain with reasonable speed, deliver human-scale forces,
be flexible enough to allow integrating multiple research technologies, and be robust enough for us
to continue development over multiple years. We chose to exclude bipeds from our search to reduce
the level of effort required to manage system stability. The results of our survey indicated that
available systems suffered from at least one of four deficiencies, which would limit their usefulness
for our purposes.

1. First, many platforms had insufficient speed and/or stability for operating in appropriate
terrains. The military desires robots that can operate “at the speed of the fight” and generally
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on highly rugged terrain. While the field is still working toward those goals, some consideration
must be given to them when demonstrating technologies to military leaders. However, much
of the cutting-edge work in mobile manipulation at the time was being done for home service
activities. Perhaps the most notable robot used for such research was the PR2 (Bohren et al.,
2011). Great work was also done using alternatives such as Herb 2.0 (Srinivasa et al., 2012),
STAIR (Quigley et al., 2007), UBR-1 (Li and Fritz, 2015), TIAGo (Pages et al., 2016), and
Fetch (Wise et al., 2016), among others. Because the home service environment is relatively
flat, the mobile bases of these systems were wheeled and not designed for operating on rugged
outdoor terrain. Thus, they were ill-suited for our aims.

2. Second, many platforms were too small or weak to perform at the human scale, even if they
could handle the terrain. Two of the standard platforms used for military applications, the
Packbot (Yamauchi, 2004) and Talon (Wells and Deguire, 2005), fell into this category. It
was also difficult to find manipulators that could deliver human-scale forces with a reasonable
mass and reach. Many standard manipulator packages at the time such as Baxter (Fitzgerald,
2013) could not deliver the required force, and industrial arms tended to be too massive. Even
today’s state-of-the-art commercial robots designed for less structured environments, such as
Vision 60 (Akbari Hamed et al., 2020) and Spot (Bouman et al., 2020), are less forceful than
humans.

3. Third, many platforms commonly used for research are not commercially available, but are
“one-offs,” developed by a particular institution for a specific need. This situation often means
that systems either have not been through enough design cycles to provide the desired level
of ruggedness, cannot easily be reproduced, and/or would have little support staff able to
assist with troubleshooting problems. Examples include Robosimian (Karumanchi et al., 2017),
Chimp (Stentz et al., 2015), Momaro (Schwarz et al., 2017), Centauro (Klamt et al., 2020), and
Robo-Sally (Katyal et al., 2014). In these cases, true partnerships would need to be formed with
the development teams to effectively utilize these platforms, and “out-of-the-box” performance
could not be guaranteed without commercial quality control.

4. Finally, even commercially-available platforms could not provide guaranteed solutions. While
one can reasonably expect a higher degree of performance robustness, many commercial
products restrict access to low-level controls and are not as flexible or adaptive, which can
make it challenging to develop and integrate new technologies, both hardware and software.
Examples include the Packbot (Yamauchi, 2004), Vision 60 (Akbari Hamed et al., 2020), and
Spot (Bouman et al., 2020).

To accommodate these shortcomings, we sought to take advantage of the scale, strength, and
openness of the Jet Propulsion Laboratory’s (JPL) Robosimian (Karumanchi et al., 2017), but
overcome its speed limitations by adapting its limbs for use on a larger, modified Talon chassis.
Both JPL and Qinetiq were RCTA partners, thus addressing the support concerns previously
indicated. The solution also balanced the openness and robustness requirements, though the required
integration effort remained substantial. We call the resulting system RoMan (derived from Robotic
Manipulator). The program produced four RoMan systems for distribution across team sites to
facilitate co-development and limit down-time for any necessary repairs.

1.3. Paper Outline
This paper describes the development, integration, and testing of the RoMan system. Section 2
provides details on the hardware and high-level software integration, including calibration. Section 3
details the many lower-level software component actions, including navigation, perception, object
pose estimation, grasp planning, simulation, and manipulation planning. Section 4 then discusses
testing around two notional missions: 1) clearing a roadway of a large, unknown debris object, such
as a fallen tree, and 2) opening a known, hinged container to retrieve an unknown object of interest
(e.g. laptop bag) from inside. Section 5 summarizes important lessons learned, as well as what we
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Figure 1. RoMan’s major hardware components labeled. ©SPIE 2020.

see as critical open research problems. Finally, Section 6 concludes with a summary of contributions
and a description of intended future directions.

2. Robot Description
We begin by describing RoMan’s hardware, high level software architecture, and methods used for
calibration.

2.1. Hardware System
To perform human-scale manipulation activities, a platform with near human size, strength, and
dexterity was necessary. As such, RoMan has a tracked mobile base, two limbs with seven degrees
of freedom (DoF) each, a one DoF torso, end effectors for dexterous grasping and power grasping,
a multi-modal sensor head, and the computational hardware required for support. The following
subsections describe those subsystems. Figure 1 shows the main platform hardware subsystems. For
additional details, see (Kessens et al., 2020).

2.1.1. Mobile Base
A tracked mobile base was selected for improved traction and navigation on unpaved roads and
soft ground such as sand, gravel, and soils by reducing ground pressure. QinetiQ NA provided a
non-ITAR variant of their TALON® platforms to serve as RoMan’s mobile base. The skid-steer drive
train is powered by two independent electric motors, each connected to a 40:1 gearbox, for a total
output of 182.4 N-m. A Gold Cello 50/100 (ELMO Motion Control) motor controller controls each
motor in a master/slave configuration.

2.1.2. Manipulators
The design of RoMan’s manipulators is based upon the Jet Propulsion Laboratory’s Robosimian
(Hebert et al., 2015) entry into the DARPA Robotics Challenge. These limbs provided both the
required strength and dexterity for performing the desired tasks. The bases of the limbs are oriented
90 deg apart on a torso plate approximately 0.7 m from the ground, allowing the platform to reach
objects that may rest on a shelf 1.5 m high. An additional actuator is used within the one DoF
torso, allowing for manipulation and sensing on either side of the platform without reorientation. For
manipulation efforts requiring precision grasps, the right manipulator is outfitted with RobotiQ’s
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3-Finger Gripper for small and medium sized objects (bags, light debris, fuel containers, etc.). For
heavier objects and those requiring full body movement, the left manipulator uses Motiv Robotics’
Camhand gripper, which is capable of utilizing the full strength of the manipulator system.

2.1.3. Sensors
A Velodyne Puck (VLP-16) and an Intel®RealSense™(D435) provide the primary visual information
for the platform, including long and short range mapping, and information on objects to be
manipulated and their surroundings. These are affixed to a FLIR (D47) Pan/Tilt Unit (PTU)
mounted above the limbs to provide a higher perspective for long distance navigation and object
handling purposes. An additional Lidar sensor (single line, Hokuyo UTM-30LX) is aligned with the
front drive wheels’ axis for low ground obstacle avoidance (i.e curbs, rocks). Platform orientation
information is available using an Inertial Measurement Unit (IMU, Microstrain®3DM-GX5-25)
located near the platform’s geometric center, as well as a Global Positioning System (GPS) antenna
(UBlox EVK-M8T). Finally, each manipulator is mounted to a 6-DoF Force/Torque sensor (ATI
Mini-58) within the wrist to provide feedback for force-controlled activities.

2.1.4. Computing
The computational demands of the system can be categorized into 3 areas: Platform and
SLAM (AM1, NUVO-5002LP), Intelligence (AM2, GB-BXi78550), and Perception (AM3/AM4,
ZBOXQK7P5000). The Platform and SLAM system contains the controllers for the track base,
limbs, manipulators, and pan/tilt actuation. For latency purposes, EtherCAT and USB commu-
nications are directly sent to AM1. AM2 processes the world model, including the various levels
of panning and behaviors based on the collected sensor data from the sensor suite. The perception
computational hardware (AM3/AM4) emphasizes raw sensor data processing towards classifying and
detecting various objects, key-points, and other desirable attributes using neural network solutions.

2.1.5. Power System
RoMan’s base contains the main power distribution and battery systems. The robot is powered by
nine 9.9 Ah MIL-Spec Lithium-Ion batteries (Bren-tronics, BB2590) arranged in a 3s3p configura-
tion, providing a total of 2200 Watt-hours of power. As each battery is self-contained, the platform
can remain powered while each battery is removed for charging and replaced. During operation, the
system’s power consumption is dependent on the activity performed. Typical operation consisting of
base platform movement and object manipulation allows for one to two hours of periodic untethered
operation. However, the platform can also operate on shore power provided by a single power
supply (Keysight, N5769A). The platform’s main operating voltage is nominally 72-83 V, with bus
voltages of 12 V and 16.5 V to support sensors and computational hardware, respectively. Additional
hardware details can be found in (Kessens et al., 2020).

2.2. Software System
2.2.1. Computing Architecture
The RoMan platform utilizes a heterogeneous set of small form factor computers as mentioned in
Section 2.1.4. This includes CPU and GPU resources allowing for all necessary computation to take
place on-board the platform. An external laptop, connected via WiFi is used to send commands,
inspect sensor data and analyze feedback from on-board algorithms. While this computer allows the
operator to send goals to the robot and monitor actions, no computation necessary for RoMan to
complete an action takes place off-board the platform. The architecture is organized using horizontal
stratification, as different modules have been developed by individual institutions, allowing many
modules to operate independently of other behaviors within the same level.

With the exception of low-level motor controllers and sensor drivers, RoMan uses modules
communicating through the Robot Operating System (ROS) framework (Quigley et al., 2009).
Each module is run as a ROS node, as represented in Figure 2. Communication between the higher
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Figure 2. Software Block Diagram

level nodes is conducted using ROS messages, while the lower level motor controllers use proprietary
code developed by the Jet Propulsion Laboratory (JPL). The bridge between these two is provided
by the RoMan client node, which exposes the motor controllers to the ROS system. Through this
organizational scheme, the higher level behavior ROS nodes send goals to lower level planner ROS
nodes, which send velocity commands through the RoMan Client to the limb and track motor
controllers.

The highest level nodes consists of Behaviors. These behavior nodes interact with the World Model
to detect relevant objects, collect information about those objects, and perform complex, high level
manipulation planning to interact with the world. These behaviors utilize the ROS ActionLib stack
to provide feedback to the World Model about object attributes learned by the behavior. These
behaviors are run via behavior trees, which will be expanded upon in Section 2.2.2. To consolidate
motion commands, all behaviors utilize the Whole Body Planner (WBP) for actions resulting in
physical movement of the platform. Through a message to the WBP, a node can command the
sensor head, arms, and/or tracks of the platform for manipulation and perception behaviors. The
exception is for coarse base navigation (Section 3.1), which uses a separate planner. The WBP
simplifies the integration of behaviors developed by various collaborators by providing a unified
motion framework, and allows for interchangeability of motion planners. The WBP utilizes two
limb motion planners. The first was developed at Carnegie Mellon University and uses the MoveIt!
Motion Planning framework (Chitta et al., 2012). The second was developed at the University of
Washington and uses the AIKIDO Motion Planning library1. The WBP is capable of issuing a
goal to both of these planning frameworks, and arbitrating between the planned trajectories before
executing the chosen path.

2.2.2. Behavior Tree
To compound multiple modular behaviors into a single task, the behaviors are sequenced through
a “Mission Executor.” The Mission Executor parses through a behavior tree representing the steps
necessary to complete the overarching task, with appropriate failure modes. Each behavior is largely
modular and does not depend on the completion of a single behavior before it can be run. A simple
example of a behavior tree is shown in Figure 3a. This tree has two behavior nodes: “Grasp Object”

1 https://github.com/personalrobotics/aikido

Field Robotics, June, 2022 · 2:1232–1262

https://github.com/personalrobotics/aikido


1238 · Kessens et al.

(a) Simple (b) More Complex

Figure 3. Behavior tree examples.

and “Place Object.” The Mission Executor reads the tree, and first checks the grasp object condition.
Finding it to be false, the Mission Executor begins the behavior to Grasp Object called debris. Once
the object is grasped, the executor moves on to the place behavior. Similarly, upon finding the place
object condition to be false, it begins the place object behavior. This behavior has a decorator “once”
telling the mission executor that if this behavior fails it should not be repeated, while other behaviors
(e.g. grasp object) would default to repeating until they are successful. This “once” decorator is used
for behaviors that should not be repeated, for example if the behavior may cause damage to the
platform. Figure 3b shows a slightly more complex behavior tree example. This is an example of
simple logic for moving an object of unknown weight. First the robot attempts a “Lift Object”
behavior, and if that fails it is assumed that the object is too heavy to lift off the ground to move.
The next option for moving that object is to drag it across the ground, and so the robot will continue
to the “Drag Object” behavior (Colledanchise and Ögren, 2017).

For the manipulation task, the Mission Executor synthesizes a number of individual modular
behaviors into a single, robust mission. The use of the Mission Executor allows for easy integration
of a wide variety of behaviors, which are either functions written specifically to interact with the
Mission Executor, or using a wrapper to communicate the necessary information. This system allows
for a single manipulation experiment to utilize eight distinct behaviors, without explicitly depending
on past behaviors and with different error responses for each behavior. While certain behaviors may
be set to repeat in the event of a failure, other failures are allowed to be fatal to avoid damaging
hardware. The design modularity simplified testing, enabling behaviors to be run individually, or
in smaller sub-mission sets. Additionally, behaviors can be easily replaced in order to test new
methods and algorithms without affecting the rest of the behavior tree. The use of the RCTA
Mission Executor simplified integration, testing and execution of experiments, while also increasing
the robustness of mission execution.

2.3. Calibration
For a complex electromechanical system to perform well, it is critical that the system understands
the relationships among its components. Therefore, we detail our calibration methods relating our
sensory components to one another, as well as relating sensor head to the end effector.

2.3.1. Multi-Sensor Calibration
Multi-sensor calibration is an enabler for various downstream autonomy applications, including
robust state estimation, depth-vision object detection, mobile manipulation, and directed perception.
While online calibration is the ultimate goal of many researchers, the community still lacks
generic approaches for performing multi-modal calibration across diverse sensor configurations.
Multi-calibration systems typically support sets of one or two sensing modalities (Maddern et al.,
2012), (Kümmerle et al., 2018), (Zhou et al., 2018), (Levinson and Thrun, 2013), (Pandey et al.,
2014), (Scaramuzza et al., 2007), (Le and Ng, 2009), often with separate processes for each modality.
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(a) RoMan (b) Benchtop

Figure 4. Visualization of actuated calibration accuracy. For each sub-figure, the left column shows data collected
by a static camera; the right column shows corresponding actuated camera data. Lidar scans, point clouds, and
fiducial coordinate frames from both cameras are visualized to demonstrate effective data fusion.

Here, we present a unified graph-based representation that jointly calibrates any number of 2D
laserscan, 3D point cloud, or color image sensors, with a particular emphasis on rapidly recalibrating
embodied systems. We extend prior work (Owens et al., 2015) to support actuated cameras. Our
approach is a target-based approach, which helps ensure accurate data association across sensors at
the cost of requiring a planar target with visual fiducials. Similar to our work, (Pradeep et al., 2014)
use calibration targets to calibrate a series of cameras and manipulator joints. Here, we also calibrate
both the pose of an actuated sensor with respect to a kinematic chain, but also the pose of the root
of the kinematic chain itself. Specifically, we define the following node types in the optimization:

• Pose: 6 Degree-of-Freedom (DoF) pose of a coordinate frame relative to the parent node frame.
Fixed transforms, Sensor poses and Actuator poses derive from this type.

• Actuator State: 1 DoF joint configuration of a kinematic chain at a given time.
• Observation: The simple geometric primitive used to describe a calibration object detection.

Line segments are formed by 2D laser scanner detections, Plane segments correspond to
3D point cloud detections, and Point detections represent the origin location of a detected
fiducial tag.

We demonstrate the actuated sensor calibration on two mobile manipulator sensor configurations
as well as a benchtop setup, and compare results with a benchmark calibration tool (Rehder et al.,
2016). Visualizations of the data projection after calibration for a robot platform and the benchtop
setup are shown in Figure 4. We use the benchtop configuration to compare the estimated transform
between an actuated camera at a given joint configuration with a separate static multi-sensor
calibration taken for the same joint configuration. Our calibration framework and a widely used
camera calibration toolbox were used for static calibration.

Table 1 shows the results of comparing a static calibration at three different joint configurations
with the expected calibration from a single actuated sensor calibration. The results show that for all
poses, the pose difference between the static and actuated versions of our framework is within 1-3 cm
in translation and 1-4 degrees rotation. For the second collection, the Kalibr toolbox produced a large
difference between both the static and actuated versions of our software, which can be explained
by the fact that Kalibr also optimizes intrinsic camera calibration parameters, while our framework
uses pre-calculated intrinsic parameters. Table 1 also shows the difference between the estimated
intrinsics for each trial, demonstrating the variation in intrinsic parameters for a single algorithm,
suggesting more data are needed to properly optimize these parameters.
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Table 1. Actuated versus static comparison. For three distinct actuation states, datasets for static calibration
were collected and compared to an actuated calibration. The first two columns are rotation and translation
differences from a static baseline calibration, MSG-Cal, (Owens et al., 2015) to another static calibration, Kalibr,
(Rehder et al., 2016), and an actuated calibration. (Rehder et al., 2016) also estimates camera intrinsic parameters,
which are shown in remaining columns, showing wide estimate variation for these critical parameters.
Experiment 1r (deg) 1x (cm) fx fy cx cy

Kalibr static 0.155 0.61 964.6 1010.3 977.4 607.9
MSG-Cal actuated 1.536 1.58 1052.0 1049.4 976.9 605.1
Kalibr static 10.892 6.76 1012.0 1055.9 977.9 594.1
MSG-Cal actuated 3.896 2.44 1052.0 1049.4 976.9 605.1
Kalibr static 0.103 0.52 963.8 1010.2 977.1 609.6
MSG-Cal actuated 2.590 1.27 1052.0 1049.4 976.9 605.1

2.3.2. Hand-Eye Calibration
In addition to calibrating the multiple sensor systems, we also needed to maintain calibration
between the sensors and the actuators. For example, initial testing revealed that vibrations during
base mobility could cause drift in the transform between the pan-tilt unit (PTU) holding the
RealSense™. To correct for this, we implemented an automated hand-eye calibration (HEC) routine.
Prior to the implementation of this module, we would have to manually ensure that the pointcould
of the manipulator generated by the Realsense™would match up with the 3D model generated using
the robot kinematics.

First, all joints from the pan-tilt unit to the end effector were individually calibrated in an effort
to maximize the accuracy of the raw transform. We then attached an AprilTag in a known pose on
the end effector so that the camera could accurately compute the transform independently from the
linkage, based on the perceived pose of the AprilTag. The ROS TF tree with the robot’s URDF was
then used to compute the transform based on the linkage, and the two results were then compared.

Finally, we moved the end effector through a sequence of locations throughout the workspace,
capturing effects not included in the kinematic model, such as imperfect manipulator rigidity.
Transforms at each location were then converted into point clouds, and we used the Iterative Closest
Point (ICP) algorithm to find the most appropriate transforms for operational use.

Though this approach helped us correct for the aforementioned drifts in transforms, it has a two
major short comings. Firstly, we have no way to identify when the transforms have drifted. Hence,
we have to perform the HEC routine at regular intervals, which leads to wasted time. Secondly,
since the HEC routine requires the end effector to move through a sequence of locations stored in
advance. This means that the robot workspace has to be free, when performing HEC.

3. Component Actions
3.1. Coarse Base Navigation and Localization
To enable reliable traversal of an unstructured environment, RoMan uses a hierarchical navigation
system. This system generates trajectories to goal positions based on obstacle locations and platform
localization provided by a metric simultaneous localization and mapping (SLAM) system. A local
planner extracts trajectory segments within a fixed horizon and deviates as needed based on fast
moving or unmapped obstacles. A local controller then sequences velocity commands to follow the
prescribed trajectory segment. Together, these modules enable the platform to complete navigation
sub-goals required to achieve its mission.

The SLAM system is used by RoMan to determine the pose of the robot in an absolute or
relative reference frame, as well as to track the locations of obstacles in the environment. The
system is based on the OmniMapper (Trevor et al., 2014), which collects relative measurements
between subsequent locations along the robot’s trajectory, as well as loop-closure measurements to
prior locations when they are revisited. The measurements between subsequent locations consist
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of platform track odometry and iterated closest point (ICP) (Segal et al., 2009) alignment of 3D
LiDAR sensor data at these locations for mapping. Loop closure measurements are made from ICP
point cloud alignments using the current estimated trajectory as an initialization point. This set
of measurements is organized in a nonlinear factor graph and optimized via GTSAM (Dellaert and
Kaess, 2006), which computes the maximum-likelihood trajectory. LiDAR data is then rendered into
a negative log-odds occupancy grid along this trajectory to accumulate a global costmap.

Navigation goals are generated by the behavior tree (see Section 2.2.2) to the navigation system
in the form of goto-region goals. These goals specify a desired goal pose together with an arrival
radius. The arrival radius allows the navigation system to make adjustments to the final pose
to avoid coming into contact with any obstacles, which improves the reliability of the navigation
system. The navigation system generates global plans from the robot’s current location to a safe
pose within the goal region, which are kinematically feasible via the search-based planning library
(SBPL) (Likhachev and Ferguson, 2009). The global plan is re-computed during traversal as new
map information is discovered.

Local segments of the global plan are evaluated by the local planner along with the most recent
point cloud to prevent collision with fast moving obstacles not incorporated into the global map.
This local segment is then sequenced to the motor controller as a series of track velocity commands.
These components enable RoMan to navigate its environment to achieve its mission goals.

3.2. Object Recognition and Pose Estimation
In some instances, RoMan will be expected to interact with objects known to the system. Such
interactions can be more efficient if the known information is used. Thus, we took two approaches
to recognizing objects and estimating their poses: one based on neural networks, and the other based
on search.

3.2.1. Neural Network Approach
Our neural network based approach to object recognition and pose estimation allows us to detect
and localize objects from single RGB frames. Our pipeline first detects all instances of the desired
object classes in the image. We estimate the pose of each object instance by detecting class-specific
semantic keypoints.

Object Detection is performed using the maskrcnn-benchmark (Massa and Girshick, 2018)
implementation of Faster-RCNN (Ren et al., 2015), trained with the RCTA dataset (Narayanan
et al., 2020).

Keypoint-based Pose Estimation is performed by detecting semantic keypoints using a
stacked-hourglass neural network. The error between the keypoints’ rays and a deformable model
of that object class is minimized to estimate the position and orientation of the object. This form
of pose estimation was first proposed in (Pavlakos et al., 2017).

Training and Data Collection One of the primary limitations of our pipeline is the large
number of keypoint annotations required to train our pose estimator for each new object class.
This problem is especially challenging because the RCTA program had a large number of unique
object classes that are not present in existing datasets. We mitigated this problem by generating an
automatic labeling pipeline, which used an RGB-D scan of an object to create a three-dimensional
model that could be labeled with keypoints. The labels could be projected from the three-dimensional
model to the original two-dimensional images, drastically speeding up labeling. This pipeline is
further described in (Narayanan et al., 2020).

3.3. Perception via Search Approach
Our PErception via SeaRCH approach or PERCH (Narayanan and Likhachev, 2016) estimates the
3-DoF pose (x, y, yaw) of an object of interest through a search for the best possible explanation of
the observed scene in a space of rendered scenes. We used PERCH to estimate the 3-DoF pose of a
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known container with a hinged lid, which was fed to a manipulation planner that RoMaN used to
open the container.

The task of accurately estimating the container pose is particularly difficult in the presence of
high occlusions. The large size of container and its close proximity to the robot during manipulation,
necessitated by planner and workspace constraints, occluded large parts of the container from the
onboard Realsense camera. However, by rendering a set of candidate 3-DoF poses, PERCH is able
to recreate such scenarios and find a rendered scene that corresponds closely to the observed scene.
Specifically, PERCH minimizes the following objective function:
J(O1:k) =

∑
p∈I

OUTLIER(p|Rk)︸ ︷︷ ︸
Jobserved(O1:K ) or Jo

+
∑
p∈Rk

OUTLIER(p|I)︸ ︷︷ ︸
Jrendered(O1:K) or Jr

(1)

in which OUTLIER(p|C) for a point p and a point cloud C is defined as follows:

OUTLIER(p|C) =
{

1 if minp′∈C ||p′ − p|| > δ

0 otherwise
(2)

where δ is the sensor noise resolution, I is the input point cloud, O1:K are objects in the scene, Rk
is a rendered point cloud with k objects, and Jr is the cost associated with a rendered point cloud
corresponding to a given candidate pose. The set of candidate poses are generated by uniformly
discretizing the (x, y, yaw) space and local ICP (Chen and Medioni, 1992) is used to refine every
rendered pose to account for discretization artifacts.

3.4. Local Base Control
Base movement for manipulation was achieved using a technique separate from that described in
Section 3.1 to perform short, precise movements to bring RoMan within grasping distance. While
the SLAM based navigation provides robust movement over long distances with obstacle avoidance
and localization, manipulation requires the ability to move to precise locations, close to objects
which the platform cannot maneuver over. This Intrinsic Controller (IC) uses track odometry and
IMU data for localization, and is not exposed to the map frame of the transformation tree, or
the occupancy grid generated by the SLAM solution. As such, it does not avoid obstacles and is
unsuitable for long distance navigation. This controller also has access to the wrench data being
obtained by force-torque sensors in the wrist of both arms. Beyond approaching graspable objects,
the IC is used to move when holding an object, whether it is a heavy object being dragged or a light
object being lifted and moved to a different location.

Goals are sent to the IC in terms of the desired end effector location and a wrench threshold for
the movement. The IC then calculates the necessary base location to achieve the end effector goal,
and executes a base trajectory to achieve that goal. The wrenches on the end effectors are monitored
throughout the movement, and any wrench exceeding the set threshold will result in a halt of the
base movement and return a specific error noting the wrench threshold has been exceeded. This
stops RoMan from damaging the end effector or arm, and can inform higher level planners of the
attributes of an object being manipulated, based on how difficult it is to move.

3.5. Grasp Planning
3.5.1. Task Compliant Grasp Region Selection
When inspecting a manipulation workspace, the platform must be capable of inferring structure
from the complex array of visual signatures with which it may be presented. This information must
be intelligently utilized to plan grasps that are not only geometrically compliant with the task at
hand, but are within the force capabilities of the system. An example of a manipulation scene is
depicted as an RGB image in Figure 5 (left), where an aluminum truss, safety barrier, and 4x4 wood
block rest atop a wooden pallet. In this example, while the yellow and black safety barrier (tipped
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Figure 5. Left: An example of a debris pile RGB image containing a safety barrier, aluminum truss segment, 4x4
wood section, and pallet. Center: A point cloud of the same workspace captured with RealSense D435. Right:
Object candidates for grasping singulated with geometric adjacency from the Locally Convex Connected Patches
algorithm (Stein et al., 2014).

on its side) may present an obvious target to a naive grasp selection methodology, a human observer
(possessing advance geometric reasoning) may identify that the safety barrier is wedged into the
aluminum truss, rendering it more difficult to extract than the wood piece beneath it. Our aim,
therefore, is to imbue the platform with the ability to similarly identify force interactions between
objects within the scene, in order to choose suitable grasps that expedite disassembly of the pile.

As RoMan is intended to operate within complex unstructured environments, we begin by
assuming that it possesses little to no a priori knowledge of either intrinsic or extrinsic properties of
possible manipulands within its vicinity. This assumption necessitates developing an understanding
of the geometric context of the scene utilizing only the sensory inputs available, being that of color
imaging and 2.5D depth, as depicted in Figure 5 (center). The first step in this process of scene
interpretation is to cluster individual depth elements (points within the pointcloud) into distinct
objects, a problem often termed singulation, which in this implementation was afforded by the
Locally Convex Connected Patches algorithm (Stein et al., 2014), with a singulation of the example
workspace shown in Figure 5 (right).

Once a reasonable attempt to discriminate between objects within the scene has been made, the
geometric regions representing grasp candidates that are furnished as a result must be selected be-
tween based on suitable criteria. Parallel work is presently investigating means of inferring the latent
support structure within the pile through vision and iterative interaction, but for the purposes of this
paper, a naive approach of selecting the topmost object along the line of gravity, and within reach of
the selected arm, proved sufficient. This was achieved by designating a priority point, nominally at
the origin of the shoulder coordinate frame for the arm that would be grasping objects, then finding
the object candidates with the centroid closest to that priority point. Grasps were then synthesized
using the pointcloud of that selected object, while treating points surrounding it as collisions.

3.5.2. Grasp Pose Synthesis
The second stage of the grasp planning process involves synthesizing mechanically stable hand
configurations about the geometry of the target object. Despite accommodating the ability to
grasp previously unseen objects, this is where we recruit a priori knowledge of the gripper to
inform suitable placement locations on the object. This understanding is distilled into a library of
8 geometric object primitives and associated relative hand positions known to afford viable grasps,
each pair of which forms a grasp prototype, such as those depicted in Figure 6. Points within the cloud
representing the target object are sampled, and grasp prototypes randomly chosen from the library
(or a subset) are fit to the surrounding points producing a “grasp score” developed in (Bowkett et al.,
2021) via the kernel methods described in (Detry et al., 2017). This score represents the quality of
the match between a given prototype and the object pointcloud for the sampled grasp pose.

Once a sufficient number of potential grasps have been sampled and their respective matching
score calculated, they are checked for a range of failure conditions, including a viable approach
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Figure 6. Hand positions (in gray) associated with representative geometric object primitives (in white). These
pairs form sets of grasp prototypes that may then be fit to a given task scene to produce a set of candidate grasp
poses. This range of shapes serves as an object agnostic base set, intended to accommodate common shapes,
which can then be extended with affordance specific primitives such as a crate handle.

angle for the gripper (to prevent grasping from underneath), defined as an R3 approach vector
and R deviation angle tuple; R3 position within the workspace; and collision with surrounding
points in the cloud. If a candidate passes all of these conditions (which are in increasing order of
computational complexity), it is checked for reachability with the platform specific arm kinematics,
using an external library such as MoveIt! or AIKIDO. A vector of all grasps that pass this final
check is then returned by the grasp planner, ordered via the grasp score that represents the match
quality between the geometric primitive and the target object pointcloud.

3.6. Arm Planning and Simulation
3.6.1. Arm Planning
The manipulation planning component of our software pipeline receives goal arm configurations
or grasp poses (generated as detailed in Section 3.5) as input for manipulating the environment.
Our planning component is a metaplanner composed of two independent and parallel frameworks
- one implementing Anytime Repairing A* (Likhachev et al., 2004) and another implementing
Generalized Lazy Search (Mandalika et al., 2019). The two frameworks independently receive the
goal position or pose and invoke motion planning algorithms to generate efficient and safe plans for
the arms. Since ROMAN’s environment is highly unstructured, this redundancy allows the robot to
more robustly generate efficient plans in any environment. An Arbiter implemented as a ROS node
receives plans from both the frameworks and returns to the joint controllers the first plan received.

Motion planning in continuous spaces is computationally hard. Therefore we represent the
8-dimensional space of the arm as a graph where the vertices represent joint configurations of
the arm, and the edges connecting nearby vertices represent motions between joint configurations.
We run ARA* and GLS to search the graph for the shortest feasible path in the available planning
time. Path feasibility is evaluated by collision checking against a voxelized representation of the
debris and obstacles around RoMan, while path optimality is determined by the length of the path.

ARA* is a fast anytime heuristic search algorithm that runs several iterations of A* on the graph
with decreasing inflation in the heuristic. The algorithm terminates when the available search time
is exhausted or when the optimal path on the graph has been determined. ARA* efficiently reuses
search efforts from previous iterations and continuously lowers the sub-optimality bound over the
solutions it returns by decreasing the inflation in the heuristic. Our implementation is based on the
Search-based Motion Planning Library (SMPL)2 and MoveIt! (see Section 3.6.2).

2 https://github.com/aurone/smpl
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Figure 7. The RoMan robot performing a container opening task in simulation.

GLS is a computationally efficient, lazy shortest path planning algorithm. Evaluating the collision
status of edges on the graph is a major computational bottleneck in robot motion planning.
GLS delays collision checking until absolutely necessary. GLS operates with the key insight that
interleaving lazy search and collision checking reduces the total planning time stemming from search
efforts (such as vertex expansions) as well as collision checks. We use the open source implementation
of GLS3 and AIKIDO (see Section 3.6.3).

The amount of clutter in the environment and the position of the obstacles relative to the initial
manipulator state affect the planners’ relative performance. Since both planners forward propagate
the search tree, GLS is affected by the obstacles in the number of edge evaluations and graph
operations it needs to perform before terminating. ARA* is affected by how close the weighting
heuristic is to the true cost. In general, we observed that as the amount of clutter in the environment
increased, saving on edge evaluations allowed GLS to outperform ARA*, while ARA* outperformed
GLS in sparser environments since edge evaluation did not involve as many complex geometric tests
(i.e. edge evaluation was cheaper and GLS was optimizing for it unnecessarily).

3.6.2. Simulation: MoveIt!
In our pipeline, we used simulation tools for the following two problems -

1. Setting up the system in simulation to exhaustively test the planner before employing it on
the real robot.

2. Generating demonstrations in simulation, and further using these demonstrations for manip-
ulating articulated objects.

Using simulation for system testing - For setting a reliable test pipeline, we developed
software support that enabled us to run the motion planning algorithms used on RoMan in
simulation. Using the ROS + MoveIt! (Coleman et al., 2014) framework, we set up a simulation
of the robot performing the container opening task. This simulation was visualised using the RViz
framework (Kam et al., 2015).

Generating demonstrations from simulation - The Experience-graph based planner has
the ability to use demonstrations for executing a given task. Because RoMan’s 7 DoF arm is not
compliant, it was not possible to use kinesthetic demonstration. Therefore, the demonstration that
we used for motion planning was generated in simulation. As shown in Figure 7, the end-effector
is moved using a computer mouse in the simulator to demonstrate a container opening maneuver.
This demonstration is then embedded into the Experience-graph, as explained in Section 3.7.1.

3 https://github.com/personalrobotics/gls
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Figure 8. An illustration of ROMAN’s view of its environment (left), the camera input visualized in simulation
(middle), and the voxelized representation necessary for obstacle avoidance (right).

3.6.3. Simulation: AIKIDO
Manipulation planning in unstructured environments requires a tight integration of real-time
perception data, motion planning algorithms to generate safe and efficient motions, and controllers
that command the robot actuators. We use the C++ library AIKIDO (Srinivasa et al., 2020) for
integration.

Kinematics, Dynamics and Safety. AIKIDO (Artifical Intelligence for Kinematics, Dynamics and
Optimization) is tightly coupled with DART (Dynamic Animation and Robotic Toolkit) (Lee et al.,
2018b), a physics simulator used to perform kinematics and dynamics computations for motion
planning. The simulation platform is also used to perform collision tests to generate safe motions of
the arms. Since ROMAN operates in an unstructured environment, we use DART to interpret dense
point cloud data obtained from the sensors as a voxelized representation, as seen in Figure 8, to
perform fast collision tests during motion planning. AIKIDO uses the ROS framework to visualize
simulations in RViz (Kam et al., 2015).

Motion Planning. AIKIDO provides an interface to the Open Motion Planning Library
(OMPL) (Şucan et al., 2012) planners. In our experiments for manipulation planning, we use
Generalized Lazy Search (GLS) (Mandalika et al., 2019), an optimal and efficient motion planning
algorithm implemented as an OMPL planner. The planner searches for the shortest path on an
explicit graph in the 8-dimensional configuration space of the arms. The vertices in the graph rep-
resent possible configurations of the arms, and the edges represent motions between configurations.
We use AIKIDO and DART to generate a graph free of self-collisions with the robot, and AIKIDO’s
OMPL interface to GLS to search for collision-free paths online. Further details on the planning
algorithm are provided in Section 3.6.1.

3.7. Manipulation
3.7.1. Manipulation of Articulated Objects
To manipulate articulated objects, RoMan utilizes a graph-search based motion planning algorithm
known as Experience-graphs (E-graphs) (Phillips et al., 2012). This algorithm can make use of
past experiences or demonstrations to speed-up the search. We provide RoMan with user generated
demonstrations that it utilizes to manipulate articulated objects.

On RoMan, the E-graph algorithm is demonstrated on a container opening task. The object
manipulation module coordinates the operation of the limb and gripper through the container
opening task space via a motion planner equipped with the E-graph algorithm. The container, which
is placed in front of RoMan, needs to be opened to retrieve a bag located inside this container. To
do this, the state of the container lid (i.e. its angle relative to the container body) is initialized to
zero and added to the motion planner state space. The object manipulation module takes as input
the 6D pose of the container and a user generated demonstration that takes the lid of the container
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from a “closed” state (where the angle between the lid of the contained and the ground plane is
0 degrees) to an “open” state (where the angle between the lid of the contained and the ground plane
is greater than 90 degrees). The object manipulation module then uses the E-graph motion planner
to generate a series of limb trajectories interleaved with gripper commands. These trajectories and
commands are executed open loop, without remapping the low-level object perception to the open
state.

Experience graphs - An experience graph, Ge, contains a set of previously planned paths. The
original planning problem is represented using a graph G. The heuristic function He is computed
such that the planner is biased towards picking edges from Ge, than from G. It does so by explicitly
penalizing the planner when an edge from G is chosen, rather than from Ge. Formally, this is
stated as

hE(so) = min
π

λ−2∑
i=1

min{εEhG(si, si+1), cE(si, si+1)} (3)

where hE(so) is the E-graph heuristic for a state so, hG is the heuristic function for G, π is a path
〈s0...sλ−1〉 and sλ−1 = sgoal, cE is the cost of an edge in GE , and εE is a scalar ≥ 1. The benefit
of using edges from Ge is that it reduces the amount of exploration of G, which is typically a much
bigger graph then Ge.

Demonstration-based Experiences - The E-graph framework can be used for incorporating
user-generated demonstrations in Ge. Since the demonstration shows how to manipulate a given
object, another variable is added to the state-space that tracks the state of the object being
manipulated. As a result, both G and Ge are updated to account for this added dimensionality
in the state-space. In addition, the heuristic, He also has to be updated to account for the added
dimensionality. In the rest of this section, we briefly describe how the user-generated demonstration
is embedded into the E-graph, and how resulting updates are made to the state-space and the
heuristic function.

The original planning problem is represented using a graph G = 〈V,E〉, where each vertex v ∈ V
represents a robot state, and edges e ∈ E connect neighboring robot states. The user-generated
demonstrations are denoted as D = 〈T1...Tm〉, where each Ti is a set of discretized trajectories
corresponding to the ith object in the environment. Tb = {〈ab11...a

b
1k〉...〈abl1...ablk〉}, where abij ∈ Tb is

the jth point in the ith trajectory for object b, and abij ∈ IRn+1. The extra dimension corresponds
to the state of the object being manipulated, which we term z. We represent the full state of the
robot as coord(v) ∈ IRn, and the state of the object b at abij as zcoord(abij) ∈ IRn+1. There is no
prior model for any of the objects the robot interacts with.

To account for the new dimension z, we create a new set consisting of the states the robot can
possibly be in. This set contains the vertices in the original graph, but repeated for each possible
value of the new variable z. We call this set Vorig. The states in the demonstration may not necessarily
fall on any state in the original graph. Hence, we construct a new vertex set Vmanip, which contains
states from Vorig and all the states from the demonstration.

Due to the additional dimensions, the connectivity of the graph also changes. The new edge
set Emanip is a combination of edges from the original graph Eorig (replicated for each value of
z), edges that come from demonstrations Edemo, “bridge edges” Ebridge, and “Z-edges” Ez. Bridge
edges connect demonstration states to states in the discretized original graph. To make such a
connection, we check if (1) the two states fall into the same discretized bin, and (2) if they share
the same z-value (i.e. the manipulated object must be in the same state). Z-edges generalize the
demonstrations to create edges on the object’s constraint manifold that may not have existed in
the demonstrations. Based on this new graph, we introduce a heuristic function that guides the
planner to modify the object towards the goal configuration. The heuristic function estimates the
cost of getting the robot in contact with the object plus the cost of manipulating the object so that
the variable z moves through all the required values to become zgoal. For further details about the
planner, see (Phillips et al., 2016).
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3.8. Manipulation of Heavy Objects
One potential mission concept of interest is to support larger vehicle mobility by removing
obstructions from roadways. Many of the objects that may be encountered, such as the “czech
hedgehog” anti-vehicle barrier, are of sufficient mass that to lift them directly with the robotic
gripper would exceed the force or torque they are designed to sustain, potentially damaging the
system. Such objects may be maneuvered by only partially supporting their weight, allowing portions
to remain resting upon the ground, while guiding their motion by pushing or dragging. Even with
such accommodations, the simple task of raising one section of an object to affect a dragging motion
imparts significant torque on the gripper, if its orientation is kept rigid during an upward Cartesian
motion.

To reduce the torque experienced by the gripper during the lifting motion, we can allow the
orientation of the gripper to deflect forward as the centroid moves upward, twisting the grasp
in unison with the object as it rotates about the remaining ground support(s). This is termed
wrench-reactive compliance, and amounts to applying software compliance to the mechanically rigid
system, specified in anisotropic fashion so as to permit select axes to comply while others remain
fixed along the specified motion path. The compliance is defined in a hybrid frame (denoted hyb),
which is located at the origin of the end-effector frame (ee), but whose orientation is set to that of
the platform base (robot), so as to prove intuitive to a human operator. For example, by specifying a
non-zero torsional compliance about the Y-axis (in FLU coordinates), the motion controller will only
allow rotational deflection about the Y axis during a Cartesian motion. The deflection is calculated
by transforming the force torque pair, or wrench W , measured at the wrist into the aforementioned
hybrid frame through equation 4, where AdTb2a is the transposed adjoint transformation of a wrench
from frame a to frame b (Murray et al., 1994), and Rrobot2ee is the rotation between the instantaneous
end-effector frame and the robot base frame.

Adhyb2ee =
[
Rrobot2ee 0

0 Rrobot2ee

]
, Whyb = AdThyb2eeAd

T
ee2ftWft . (4)

The anisotropic compliance is then specified via a 6x6 diagonal matrix, Chyb, which converts
the hybrid frame wrench into a deflection in twist coordinates, being the dual space of wrenches
(Murray et al., 1994). This may then be transformed back into the frame of the end-effector so as
to produce the deflection introduced by the compliance Gee2eedefl

, as is calculated via

Chyb := diag(cfx , cfy , cfz , cτx , cτy , cτz ) , T deflhyb = ChybWhyb (5a)

T deflee = Adee2hybT
defl
hyb , Gee2eedefl

= eT̂
defl
ee (5b)

Example compliance factors used during lift of an anti-vehicle barrier are 0.2 rad/Nm in Y
rotation, 0.005m/N in X translation; greater detail on the approach is given in (Bowkett et al.,
2021). The ATI wrist force-torque sensor is used to affect the above compliance, in addition to
triggering safety stops to prevent mechanically damaging wrench, and detecting contact when a
“move to grasp” behavior is invoked.

4. Integrated System Testing
Having fully integrated the hardware and software systems onto RoMan, we now demonstrate and
evaluate the platform’s ability to perform two different tasks autonomously. First, we attempt to
remove a heavy object blocking a notional road to facilitate the continued movement of a vehicle
convoy. Second, we attempt to retrieve an item from a closed container. Each scenario relies on
the successful execution of the full stack of services. When failures occur, we assess the root of the
failure, which can be in the interplay between components and not just the individual components
themselves.

Note that the experiments in this project were not generally set up for formal statistical analysis
as their purpose was largely to establish baseline primitives for autonomy. The graphs and tables
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Table 2. Baseline tele-operable actions
Actions Tele-Operable (Y/N) Avg. Execution Time Description
Goto Object Y 1min 22s∗ Approach/coarse navigation
Pre-manip Object N 10s Prep for manipulation
Look Y ≤1s Sensor head control
Grasp N 26s Grasp planning and execution
Drag Y 12s Local base control
Move Arm N 5s Arm planning
∗Distance from start to target was roughly 20 meters.

given are therefore to be taken as descriptive guides to performance. In two cases, namely Table 3
and Table 5, we can state statistically significant findings, given the reasonable assumption of
independent trial runs.

4.1. Heavy Debris Removal
A debris clearing task within a vehicle convoy scenario demonstrates many of RoMan’s strengths and
facilitates a better understanding of human-scale manipulation. In this scenario, a soldier instructs
RoMan to advance ahead of the team to unidentified debris. RoMan receives an a priori location of a
general area containing debris and proceeds to navigate toward this location. Once RoMan is within
the debris region, various aforementioned detection techniques are used in an attempt to identify
objects (see Section 3.2). An identifiable object may include items such as a Czech hedgehog, which
is a standard anti-mobility device. Identification of such objects can speed up the grasping process
due to its known properties. Other debris objects, such as a fallen tree, are considered unknown.
Subsequently, RoMan performs a pre-manip routine, grasps the object, determines if it is light
enough to move freely or too heavy and must be dragged, and manipulates the object accordingly.

Even for a human, removing heavy debris is challenging. RoMan’s execution requires minimizing
adverse effects on the mission and potential human teammates; therefore, robustness and speed
are critical. Robustness involves both software and hardware considerations, such as providing
subsystem loop-closures and enforcing limits to prevent overtaxing actuators. Mobile manipulators
are notoriously slow, even when tele-operated.

To provide a baseline with which to compare RoMan’s autonomous functions, we ran a series
of experiments under human tele-operation. Table 2 shows which capabilities were able to be tele-
operated. During our baseline trials, autonomous-only capabilities had dynamically configurable
parameters which were set on-the-fly as needed. These parameters fine-tune the behaviors and
required discernment based on past experience.

Currently, several of the decisions RoMan makes are predetermined, including limb selection,
grasp priority location, grasp prototypes, lift distance, and drag distance. We chose reasonable
configurations based on the baseline trials. Future work may rely on the Mission Planner to arbitrate
these decisions. The next section describes our baseline setup and debris pile arrangement in more
detail.

4.1.1. Experimental Setup
The heavy debris consisted of a single tree branch or Czech hedgehog blocking a path. The
Czech hedgehog was approximately 18 kg and 1.3 cubic meters in volume. The tree branch
spanned a minimum of 3 meters, with multiple branches protruding from the trunk (see Figure 9).
The characteristics of either object’s graspable point only needed to conform with the Camhand
gripper specifications, such as friction grip payload and stroke range. Other objects, such as traffic
barriers/walls and barrels were used as immovable structures to constrain the path.

The key metrics from this experiment were the number of human interventions and the emergency
stop (E-stop) count. Human interventions are performed by an experienced RoMan Operator,
and are limited to tele-op maneuvers to skip over non-recoverable behaviors, on-the-fly behavior
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Figure 9. Left: RoMan dragging a tree branch. Right: RoMan in front of a Czech Hedgehog.

Figure 10. Behavior pipeline for the Debris Clearing Sequence.

Figure 11. Experimental setup showing start and target location.

parameter tuning/calibration, and/or resetting hardware driver nodes (e.g. Camhand drivers, RS-
Limb servers, etc.). Tele-op maneuvers were performed using an XBox wireless controller. Parameter
tuning and calibration changes were made using RQT, a ROS GUI with a number of plugins. The
Linux terminal interface was used to monitor the status of the system, and to reset any hardware
drivers or other issues. E-stop was engaged for any unexpected behaviors and limb elmo mech server
failures. By design, an E-stop also powered down RoMan’s grippers.

For the experiments, RoMan started at least 30 meters away from the debris pile. The test
sequence then follows: (1) navigate to debris region, (2) move base within RoMan’s task space using
an inverse reachability lookup for the closest object in front, (3) move limbs from travel posture to a
preset stow posture, (4-5) adjust sensor head and base, (6) move limbs from stow posture to preset
pre-grasp, (7) grasp planning and execution, (8) lift using wrench-reactive compliance, (9) drag object
a predetermined distance, (10) lower, again using wrench-reactive compliance, (11) move base back
a predetermined distance to accommodate subsequent limb motions, (12-14) open gripper, sequence
through preset limb postures to reset to travel posture, (15) navigate past previously blocked path.
Steps (1-5), (9), (11), and (15) were tele-operated for the baseline trials. A condensed version of
the test sequence is shown in Figure 10. We also wish to note anecdotally that, while we did not

Field Robotics, June, 2022 · 2:1232–1262



Human-scale mobile manipulation using RoMan · 1251

actively control lighting conditions, successful experiments were performed indoors and outdoors at
varying times of day.

Special considerations were taken for the baseline trials since the tele-operator has certain
advantages in terms of situational awareness. For example, having a third person point-of-view of the
test run. Thus, we limited the tele-operator to only PointCloud data from the Velodyne, Hokuyo laser
scans and RealSense imagery since these are used by the navigation stack. Furthermore, autonomous
control speeds for the base and PTU sensor head were set to the maximum tele-operable speeds of
0.3 meters per second and 0.3 radians per second, respectively.

4.1.2. Results
A total of 25 end-to-end autonomous runs and 10 baseline tele-operated runs were conducted. Table
3 shows the percentages of the runs in which human interventions were needed to complete the
mission. The number of interventions ranged from zero to at most three. We expected potential
hardware failures requiring reset, which contributed to a majority of interventions in both our
baseline and autonomous trials. Precarious gripping and inherent platform shaking attributed to
objects slipping out or breaking during dragging. This source of intervention could be minimized
with Mission Planning, which was not available during these experiments. We were checking for
failure conditions using various sensors, and Mission Planning would have used this feedback to
determine the best recovery method. Secondly, hardware robustness over time has affected the
intervention count. Actuators such as limb and track motors potentially see more failures as more
energy is used up. At lower power budgets, brownouts have occurred. Loss of calibration also affected
behaviors such as navigation and grasping. For example, the PTU on RoMan regularly changed its
zero crossing due to hardware slipping. During the experiments, we discovered about a 20% offset in
the wheel odometry. This contributed to poor state estimation and loop closures during navigation.
Lastly, errors at the behavior level, such as incorrect ROI selection and infeasible grasping approach
axes, required manual correction via ROS dynamic reconfigure.

From a statistical significance standpoint, Table 3 shows no interventions in 50% of 10 Baseline
runs (i.e. 5 ‘successes’ in 10 runs), and no interventions in 16% of 25 Autonomous runs (i.e.
4 ‘successes’ in 25 runs). If we take the probability of such ‘success’ to be 0.5 for non-autonomous
runs as the rule, it is of interest to test whether autonomous runs have a significantly different
success rate given the data. Here, our one-side null hypothesis is that autonomous runs have a geq
0.5 probability of success of non-intervention versus the alternative hypothesis of < 0.5. We apply
the binom.test of R (Team et al., 2013) (an ‘exact’ test based on binomial probabilities), and find
that the probability of this null hypothesis being true is 0.00004, in which case we clearly reject
the null hypothesis and accept the alternate: Autonomous runs need more interventions. This seems
self-evident even without a test, but it’s worth considering the formal results which also gives a
useful 95% confidence interval for success in autonomy of (0, 0.33), or 0% to 33%.

While our results show the success rate with 0 human interventions well below the baseline,
performing the same comparison for all missions allowing at most one intervention indicates that
the autonomous operation outperformed the baseline 64% to 60%. That trend continued for higher
numbers of interventions. Note that most of the interventions were due to hardware failures, which
required a simple driver node reset. A breakdown of intervention types is shown in Table 4.

Figure 12 shows the success rates for each of the behaviors in the debris clearing sequence. The
behavior success is determined by whether or not the robot meets the criteria for the underlying
actions to return success. Typically, if the behavior fails, a human intervention is required to advance

Table 3. Percentage of Human Interventions
Mode Number of Interventions

0 ≤1 ≤2 ≤3
Baseline 50% 60% 90% 100%
Autonomous 16% 64% 92% 100%
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Table 4. Percentage of Intervention Types
Mode Types of Interventions

Reset Parameter Teleop
Baseline 33% 66% -
Autonomous 53% 7% 40%

Figure 12. Success Rates by Behaviors

the mission. The re-execution of the behavior is recorded as additional attempts. Non-recoverable
failures will result in cease of attempts of subsequent behaviors and mission failure. On average,
the elapsed mission time for baseline and autonomous runs are 3m 26s and 2m 43s, respectively.
This is a 22% increase in execution speed for autonomous missions which is attributed to about
a 4 second delay for each action needing human initiation. However, navigation in particular was
always faster through teleop. Recovery through human interventions increased cycle times on average
of 15 seconds for resets, 10 seconds for parameter changes, and 4 seconds for teleop. A breakdown
of average execution times for each action is shown in Table 2.

Grasping proved to be the least robust behavior. Much of this was due to the gripper overheating,
causing grasping execution to fail. A few less obvious reasons include the gradual drift in the PTU
calibration, which mounts the RealSense camera, and non-ideal preparation for manipulation poses,
which set RoMan up for unreachable grasps. Although grasp had the highest failure rate, it was
exercised the most, followed by the drag behavior. This made sense because during drag, the branch
would sometimes slip out, and another grasping attempt would follow. In certain cases, we declare
a complete mission failure, and many behaviors such as prep for mobility and/or navigate to target
would not be attempted. Examples of non-recoverable failure cases include prolonged debugging
and/or replacing damaged hardware.

4.2. Container Opening and Bag Retrieval
A second manipulation scenario was created to highlight the more delicate capabilities of RoMan and
the RCTA software stack. In this scenario, RoMan locates a known container, opens it, retrieves an
unknown item from within, and delivers the item to a specified location. However, the manipulation
task requirements and workspace constraints of the manipulator limited admissible base goal poses
such that the non-holonomic navigation was unable to reliably position the robot for the task.
Therefore, for the purposes of these experiments, RoMan started with the container adequately
within its workspace.

The size, shape, and operation of the container is the only prior information available to the
robot. The container pose estimate relies on a search for the known size and shape, and the container
opening algorithm must understand how the lid is hinged to be able to open it properly - this is
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captured as the object state, the lid angle relative to the container base, in the articulated object
manipulation planner’s e-graph, see Section 3.7. However, the placement of the container within the
workspace is not known, and the robot has no a priori information about the item it retrieves from
within the container.

This scenario was implemented as a manipulation pipeline within the RCTA software stack.
Operation of the pipeline was governed by the RCTA Mission Executor following a container opening
and item retrieval behavior tree.

4.2.1. Experimental Setup
The first pipeline module, Container Pose Estimation, was handled by a search-based perception
algorithm called PERCH (see Section 3.3). A ROS interface was created between PERCH and
the RCTA Mission Executor packages, allowing for simpler parameter adjustment and consistent
control and data messaging. Additionally, the source code for PERCH was optimized to run on
the computing resources available on the RoMan platform by filtering the input point cloud and
reducing the point density. These modifications result in a version of PERCH capable of rapidly
determining the pose of the container within the accuracy required for the object manipulation
planner.

Early setup runs revealed that from position to position, there was a varying offset in the container
pose along the handle axis, possibly due to point cloud inconsistency at the back of the container. A
ROS parameter was added to adjust the reported container center and account for this inconsistency,
which sometimes resulted in damage to hardware. The PERCH pose was also checked visually via
rviz during every run to prevent this. However, unless the pose was obviously catastrophic, RoMan
was allowed to attempt to open the container.

During testing human interventions are used if the RoMan was in a potentially hazardous position,
or if a failed step can be recovered to complete the run. When a step has failed and been recovered
by human intervention the entire run is marked as a failure, and the step which caused the failure is
recorded. Interventions are performed by an experienced RoMan operator using a terminal interface
and RViz tools.

Additionally, the grasp executor parameters were modified to facilitate container opening. First,
trial and error identified a set of grasp primitives that favored consistent item retrievals while
balancing processing time. Then, the allowable limb approach cone was modified to better suit the
item retrieval task, as RoMan must be able to grab the item from inside the container while avoiding
the open lid and sides. Fortunately, these modifications did not affect performance, as the grasp
planner was consistently able to find over 60 grasp candidates within the container.

Figure 13. Left: RoMan positioned in front of the container, acquiring a pose estimate. Middle: RoMan at the
pre-grasp configuration prior to moving to grasp the handle. Right: RoMan after opening the container, prior to
grasp release.
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Figure 14. Container opening experiment. Left: range of positions attempted, shown in yellow. Right: success
rates for each position.

The behavior tree was also modified to add intermediate limb positions. Observations during
development indicated that using the basic limb planner to move the limbs into “pre-grasp” and “pre-
manipulation” poses before attempting the more complex lid opening and item grabbing movements
was helpful. Adding these steps increased success rates of the more complex tasks by reducing the
chances of large inverse joint winds, avoiding manipulation singularities, and reducing more complex
planning spaces.

Finally, breaking up some of these large, repeated limb motions into small chunks reduced
mechanical faults, avoided dangerous near-collisions, and allowed RoMan to keep its limbs close
enough to its center of gravity to avoid shaking that caused the PTU to lose calibration.

4.2.2. Results
The complete test sequence involved (1) a preset limb move, (2) the opening of the container
via OMP, (3-5) a sequence of three preset limb movements to transition from a post container
manipulation pose to the preset pre-grasp pose, (6) grasp planning and execution, and (7) a preset
movement to remove the item from the container.

The experiments were setup indoors, with no base movement. The container was placed in front
of RoMan inside the workspace of both limbs, and the behavior tree was executed. During initial
setup, a successful position that was consistent with prior testing and demonstration was chosen as
the control. 25 control trials were run, with a completely autonomous end-to-end success rate of 56%.

After the control trials, the container was moved to test the robustness of the behavior to
positional accuracy. First, the container was moved away from the robot, along the container
handle axis. These trials proved relatively unsuccessful. The required movement was “cramped”
and the arm had trouble maneuvering around the lid. The container was then moved laterally,
in the negative y direction of robot frame. Trials were then performed by moving the container
progressively further away from the robot. During these first 74 non-control trials, the container
handle yaw did not change. The results are shown in Figure 14 as starting locations colored by
how often the container opening task completed successfully. Because the range of the motion was
relatively large in comparison to the manipulator’s constrained task space to include handle release
and arm retraction without closing the lid, there were only a small set of positions from which the
task could be completed. Generally, the task was robust (represented in green) when the manipulator
was able to stay toward the interior of its workspace. As the task required motions closer to the
edges of the workspace, probability of success fell (yellow and red) due to increased sensitivity
to error.

The second grouping of trials involved taking three non-adjacent, relatively successful container
positions and varying their yaw. After trials at 5 degrees counter-clockwise (CCW), it was apparent
that CCW was not only relatively unsuccessful, but also potentially harmful to the robot. Therefore,

Field Robotics, June, 2022 · 2:1232–1262



Human-scale mobile manipulation using RoMan · 1255

Table 5. Effect of Yaw Angle
Yaw -5 0 5 10
Success 5 13 12 3
Failure 8 2 3 5
Rate 38% 87% 75% 38%

Table 6. Success Rates by Module
Module Success
PERCH 99%
OMP 73%
Grasp Planner 95%

additional trials were performed at only 5 and 10 degrees clockwise (CW). The results are shown in
Table 5.

According to Table 5, a yaw angle that stays within the [0, 5] interval has greater container-
opening success than a yaw angle set outside those limits. Here we test this as a two-sided hypothesis,
with the null hypothesis being that there is no difference in the proportion of success rates for yaw
angle inside or outside the [0, 5] interval. We use the prop.test of R (Team et al., 2013), which is
a two-sample test for equality of proportions with Yates continuity correction. The test result is to
give the null hypothesis a probability of 0.00245, and we thus accept the alternative hypothesis that
indeed a yaw angle in the [0, 5] range is advantageous in container opening.

Table 6 shows a breakdown of the success rates by module. The single greatest failure point was
the container opener. The most likely explanation is that the system constraints throughout the
motion require paths that get too close to workspace singularities. The grasp planner performed well.
Most grasp module failures could be attributed to execution or motion planning errors, particularly
when the arm failed to plan around the sides and lid of the container (probably due to common
difficulty in resolving the point cloud data at the back of the container). PERCH failure was also rare.

Overall, RoMan successfully demonstrated autonomous container opening and bag retrieval, and
proved moderately tolerant to variation in container position and orientation.

5. Discussion
5.1. Lessons Learned
Constructing a highly complex, autonomous, electromechanical system involves seemingly endless
decisions throughout the program’s entire life cycle, often requiring compromises due to resource
scarcity. In this section, we provide some lessons we learned through both success and failure in the
hopes that others might improve their ability to make wise decisions. While many are well known,
it is easy to forget or discount, and reminders are prudent.

1) Plan and devote adequate resources to maintaining equipment. Proper maintenance
is often undervalued and considered a lower, “nice to have” priority, because it is easy to take an
optimistic view that relatively few problems will arise. This view results in resources being allocated
to other areas considered higher priorities. However for us, inadequate staffing—resulting in only the
bare-essential maintenance activities—contributed to repeated hardware problems, hampering both
development and testing. In particular, because the program shared a small number of personnel
for maintenance across all tasks, we found ourselves waiting on repairs on more than one occasion,
while needs of other tasks were deemed higher priority. Our maintenance staff had to perform at
a Herculean level at times to make up for the shortfall. Do not give maintenance resources short
shrift.

2) When you do not have access to source code, ensure adequate access to source
developers. In particular, we had many problems with our Ethercat interfaces dropping packets,
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slowing down communications, and outright crashing servers. We did not have access to the source
code to resolve the issue ourselves, and we also did not plan sufficient time with or access to the
developer’s resources to adequately fix the problem. Faults resulting from this kind of constraint
continually plagued the effort through its conclusion.

3) Be sure to identify hardware that is as robust as possible to your specific operating
situation. While this sounds obvious, it is easy to underestimate the harshness of the conditions
the robot will actually operate in. Similarly, it is easy to overestimate our ability to avoid problem
conditions by programming intelligently, or by “being careful.” This oversight places an unrealistic
burden on operators at best, and at worst results in losing time and replacing expensive parts. As
one example, we often experienced robot fingers becoming jammed in wooden features, or being
sheared off by unfortunate movements in close proximity to objects being manipulated. If available,
grippers designed to be more robust to the loads we were capable of delivering would have been
prudent. Alternatively, low-level control software to take reflexive action to avoid such situations,
such as applying our wrench-reactive controller more broadly, might have reduced the number of
incidents.

4) Build in fault tolerance whenever possible. Related to the previous point, when designing
your own hardware, ensure fail-safes are in place. Do not rely on operator procedure. As one example,
our actuators did not use a slip ring. They were wired through the joint, but relative encoders were
used, not absolute encoders. In some situations, brown-outs or full power loss resulted in damage
to joints because they were inadvertently over-rotated.

5) Avoid feature creep; keep it simple. At times, we added features/capabilities that simply
over-complicated the system and resulted in more problems than solutions. As one example, we
added a pan/tilt unit (PTU) to acquire a broader range of sensory perception, especially during
manipulation tasks. However, this resulted in one issue after another, including significant calibration
difficulties, occlusion problems, collision concerns, and more hardware failures. Think carefully about
the simplest way to address issues.

6) Clearly define experimental parameters and limits as early as possible. Take care
not to be overly ambitious in the dimension/size of your experimental space. It is particularly easy
to over-extend when aiming at unstructured environments. We continued to identify more and more
parameters to which we wanted to demonstrate robustness, including a variety of paths, obstacle
geometries and number, and lighting conditions. The mission creep and scope ended up becoming
intractable, and some time was lost trying to meet ever-moving goal posts.

7) Plan regular, in-person “sprints” or experiments. There is no substitute for physical
presence. Although the team worked together well remotely throughout the program, our progress
significantly accelerated when we all met in one location for a week-long (sometimes two) sprint.
Team focus increased as the sprint approached, and the event better prepared us for continued, re-
mote collaboration afterward. While we did not run a controlled experiment, we suggest considering
such events at least quarterly.

8) Stay disciplined – formulate and adhere to a consistent, principled pipeline for
documenting and pushing code updates. Occasionally, the desire for rapid development resulted
in code changes being made directly on the robot, subverting the standard commit pipeline. These
actions meant version control was lost, and we spent valuable time tracing hard-to-find changes
that ended up wreaking havoc due to unintended consequences on other subsystems. Development
teams must stay disciplined and true to their processes to avoid trading (potential) short-term gain
for long-term pain.

9) Minimize abstraction layers in code wherever possible and reasonable. When using
a parameter, it is important to know where it is being set and where or how it might be modified. On
more than one occasion, we had to look in five or six files (including the install space) to understand
how a particular parameter value was evolving in order to debug a function. This is rarely ideal.
Whenever possible, collect all parameters relevant to a particular module or task in a central location
to ease the debugging task.
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5.2. Open Research Problems
While our efforts—and those of the broader community at large—have shown great strides toward
realizing human-scale mobile manipulation in recent years, we see several challenges remaining.
In particular, we view the following areas as critical for the community to continue advancing
human-scale robotic manipulation:

1) Improved sampling distributions in manipulation planning. As the environment gets
more cluttered, the planners adopted in this project struggled to adapt their behavior to the
distribution of the obstacles around them. GLS and ARA* are constrained by the initial choice
of explicit graph or motion primitives. An a priori choice of the graph can either result in an
unnecessarily dense graph, leading to large computation times, or a sparse graph that contains, at
best, a low-quality solution, if it contains one at all. While asymptotic, sampling-based algorithms
iteratively densify the configuration space, a large part of their computation time is expended in
sampling narrow or constrained passages and bottlenecks to generate a high-quality solution (Amato
et al., 1998; Wilmarth et al., 1999; Hsu et al., 2003). This issue is further exacerbated in higher
dimensions, as in manipulation planning (Hauser, 2015). This challenge motivates learning sampling
distributions conditioned on the environment and the planning query (start and goal locations).
Recent work has shown promising results in this area (Ichter et al., 2018; Kumar et al., 2019;
Qureshi et al., 2019; Ichter et al., 2020; Chamzas et al., 2020). However, those studies focus on
relatively structured environments, such as manipulating near indoor furniture. In unstructured
environments, such as those addressed in this project, there is a need to capture and learn more
fundamental representations of obstacles to model arbitrary obstacle distributions.

2) Reasoning about the consequences of object manipulation. In this project we do
not explicitly reason about the interactions between objects as we manipulate them, so long as
the arm and the object it has grabbed do not collide with the environment as the arm moves.
However, choosing which object to pick first is itself a discrete task-planning problem, requiring
reasoning about how the adjacent debris would react to picking a particular object off the pile.
While humans do this seamlessly, sometimes even stabilizing the pile with one arm and removing
items with another, RoMan was limited in such capabilities. This situation motivates problems that
go beyond pure geometric planning to reasoning about the dynamic interactions between objects
in the scene. Unstructured environments addressed in this project exacerbate the problem in that
they lend uncertainty to the physical parameters associated with the obstacles.

3) Manipulation strategies conditioned on objects’ physics parameters. This project
was primarily concerned with picking up an object and placing it out of the way, without explicitly
reasoning about the object’s geometry and physics characteristics. In scenarios like this, a human
might regrasp objects to lessen the mechanical load on their arm. For example, when picking up a
heavy log, even if the human initially pulls the log out of the debris by its end, one might reorient and
regrasp the object closer to its center of mass for subsequent (mechanically easier) manipulation.
Such a consideration is not addressed in the current scope of this paper. Thus one of the most
common failure modes we observed was the lifting of heavy objects incurring a large wrench on
the hand triggering a safety stop or, worse, hardware failure. In the environments described in this
paper, the high potential for objects to impose reaction forces beyond the safe limits of actuators
necessitates a greater level of reasoning about robot-environment interactions. This goal requires
intersecting research ideas that aim to generate policies and plans robust to variations in physical
parameters (Burkhardt et al., 2018; Lee et al., 2018a), as well as manipulation strategies that reorient
and regrasp objects appropriately.

6. Conclusions and Future Work
In this paper, we presented the design, integration, and evaluation of a full-stack, autonomous,
robotic system called RoMan, which is capable of exerting human-scale forces on the environment
to perform meaningful work. We demonstrated this capacity through the removal of large, heavy
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barriers, such as a fallen tree in a roadway, and through the opening of a container to retrieve an
object of interest, such as a laptop bag. These were achieved in both indoor and outdoor settings
under a variety of lighting conditions. The resulting capabilities demonstrate the autonomous
capacity to perform human-scale work in environments where humans cannot or should not go,
without introducing onerous cognitive burdens on operating units, foreshadowing the possibility of
future teaming functions.

Having shown the ability to deliver human-scale forces quasi-statically, our future work aims to
extend this capability to dynamic forcing and tool-use paradigms. Additional behaviors will further
coordinate the actions of the manipulators and base in the dynamic realm for increased force delivery.
We also intend to improve speed, as these autonomous activities are still likely too slow for realistic
adoption.
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