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I. INTRODUCTION

Autonomous grasping is a problem that receives continu-
ous attention from our community because it is both key to
many applications, and difficult to solve. The complexity of
robot grasping is counter-intuitive. For us humans, planning a
grasp is a trivial task that requires neither considerable effort
nor time to solve, it is difficult to imagine the tremendous
challenges that our brain has to overcome in order to allow
us to interact with objects with such ease. Firstly, much
information is missing. The weight, mass distribution, or
friction of an object are impossible to measure prior to
manipulating an object, and these properties have a dramatic
impact on the behavior of a grasp. We thus have to infer
from past experience or common sense the most likely values
for them, and adapt to actual object properties during the
grasp. Another key piece of information that is missing is
the object’s 3D shape. Humans and mobile robots perceive
the world from a single viewpoint, making the back and often
the sides of an object inaccessible through our senses. We are
thus forced to consider grasps for which at least one finger
comes in contact with a part of the object that we cannot
perceive. Further, the faces of an object that we do perceive
are sampled through noisy sensors yielding unreliable depth
or color. To complete the list of challenges associated with
grasping, we note that grasps are parametrized in a high-
dimensional space: six parameters to fix the position and
orientation of the gripper, plus the parameters that define
the shape of the hand – 25 for a human hand, 4 in the
case of the Barrett hand considered in this paper. The space
to explore to plan a grasp is high dimensional, and, given
the mechanical complexity of grasping, good solutions are
sparsely distributed.

In traditional grasp planning, we engineer a mapping
from vision data to action parameters. Given the difficulties
listed above, designing such a program by hand is a tedious
task. Instead, research on grasping is now turning towards
learning grasp planners from grasp examples, yielding a
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direct mapping from vision to grasp parameters. A learning-
based grasp planner does not necessitate the operator to
input hundreds of rules defining how to plan a grasp based
on the shape of an object; it instead extracts those rules
automatically from grasp examples. A common requirement
of grasp learning algorithms is thus a database of grasp
examples, representative of a variety of objects and relative
hand-object configurations.

A database of grasp examples can be created either with a
real robot, or in simulation. When using a real robot, grasp
examples are generated either via teleoperation, kinesthetic
teaching, human imitation, or autonomous exploration. In
either case, each grasp takes at least a dozen seconds to
execute. The process can be sped up by running the grasps
in simulation, although the process of collecting or creating
objects and hand models expensive. In either case, creating
a grasp database is an expensive task. Fortunately, a set of
grasp examples can often serve to train or test different grasp
planners, allowing research groups to share grasp data. The
Columbia Grasp Database is one example of such an effort
[5]. Other groups have published object databases [1], [2],
[9], [8], [11] that can be used in combination with a simulator
to produce grasp data.

We are currently constructing a database of robot grasps,
with a focus on providing rich perceptual information char-
acterizing each grasp. Our aim is to create a database that
can be readily used with limited resources, to train/test a
variety of grasping algorithms.

Grasp algorithms come in all sorts of colors. Some learn
a mapping from photometric images to grasp parameters,
others rely on depth data or a 3D mesh. Certain algorithms
make very few assumptions on the dynamics of grasping
or object shape, and require a vast number of examples to
build a workable model. Others focus on a smaller family
of objects or object parts and are designed to work with a
small training set. Some algorithms learn the position of the
gripper and let the robot compute orientation and preshape
parameters online from perceptual data, while other work
attempts to model both the robot’s wrist pose and the finger
preshape.

In order to reach a large group of researchers, we are
constructing a setup that can provide, for each grasp, the
following data, both before and after a grasp attempt: (1)
the pose of the hand, (2) the kinematic configuration of the
fingers, as well as the 3D poses of their links, (3) a mesh
model of the object, and its pose, (4) one RGB-D image and
four point clouds; three are placed at 2π

3 radians facing the
object and one taken from the viewpoint of the gripper. We



aim to collect grasps of at least a hundred household objects,
with hundreds of grasps per object.

Executing thousands of grasps on a real robot is a
prohibitive task. Yet, building a database exclusively in a
simulator is not ideal either, as the correlation between the
outcome of simulated grasps and grasps executed on a real
robot is limited [3], [7], [4]. Our strategy is to test a large
number of grasps in a simulator, and to validate a fraction of
those on a real robot platform, equipped with the same hand
as the simulator. Validation will be performed by making
the robot execute grasps that are as close as possible to a
subset of the grasps tested in simulation. Evaluation of grasp
success will be similar to that of the simulator. Validation
data will, for instance, serve to compute the correlation
between simulated and real-world outcomes, allowing users
to associate credibility to the simulated data.

Our database will open several research avenues. Highly
generalizable grasp models will be trained on the real data
exclusively. Models that require a very large training set will
have the choice of including simulated grasps in the training
set, using the validation data to weight the applicability of the
model. Another avenue of interest is to evaluate whether the
success of the simulator in predicting real-world outcomes
depends on object features, and to learn what sorts of objects
(and in what pose) lead to good or bad simulations.

To simulate grasps, we opted for the VREP simulator.
VREP is free for research and education, and many of
its components are open-source. The advantage of VREP
over other simulators such as Gazebo or GraspIt! are its
robustness, ease of use, and stability. While we aim to
provide a database that is accessible to users who do not
wish or do not have the means of running a simulator,
we will provide interested users with the ability to easily
reproduce our results, and possibly complement them with,
for instance, additional camera views, or different grasp
success tests, with minimal effort. VREP is an ideal code and
data sharing platform. It runs on Linux, Mac, and Windows,
and it offers bindings to a number of different languages
including Matlab.

We will make the database freely available to the commu-
nity as soon as it is ready, and provide means of extending
the database to interested parties.

II. NEUROPHYSIOLOGY OF GRASPING

We plan to use this database to support applications of
machine learning and models of neurophysiological grasp
control. Machine learning methods (e.g. decision trees, con-
volutional networks, etc.) are typically more effective with
greater numbers of training examples. In particular, the
difference between performance on test vs. training data

(overfitting) becomes smaller with more training data [10]. A
larger training dataset therefore allows one to train a more so-
phisticated system without overfitting. Using simulations, we
hope that it will be practical to obtain 105 or more labelled
grasps, and that this will support learning of sophisticated
grasp controllers that generalize well to new objects.

We are interested in modelling the neural systems that
control hand shape in primate grasping, particularly the
anterior intraparietal area (AIP), frontal area F5, and related
areas. Such a model would draw primarily from recordings
of neural spikes in these areas, in different conditions of
viewing and grasping objects. A large database of object
shapes, hand postures, and grasp outcomes will provide
further constraints that complement the neuron recordings.
We hope that this will lead to more realistic and informative
neurophysiological models.

We note that Kappler et al. [6] are currently working on
a similar database.

III. ACKNOWLEDGEMENT

We thank Marc Freese and the V-REP team for their help
setting up the simulation environment.

Index Terms— Grasping, Database, Manipulation, Neuro-
physiology

REFERENCES

[1] The kit object database: http://i61p109.ira.uka.de/
ObjectModelsWebUI/.

[2] The princeton shape benchmark: http://shape.cs.
princeton.edu/benchmark/.

[3] Y. Bekiroglu, K. Huebner, and D. Kragic. Integrating grasp planning
with online stability assessment using tactile sensing. In IEEE
International Conference on Robotics and Automation, 2011.

[4] A. K. Goins, R. Carpenter, W.-K. Wong, and R. Balasubramanian.
Evaluating the efficacy of grasp metrics for utilization in a gaussian
process-based grasp predictor. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2014.

[5] C. Goldfeder, M. Ciocarlie, H. Dang, and P. Allen. The Columbia
grasp database. In IEEE International Conference on Robotics and
Automation, 2009.

[6] D. Kappler, J. Bohg, and S. Schaal. Leveraging big data for grasp
planning. In IEEE International Conference on Robotics and Automa-
tion, 2015.

[7] J. Kim, K. Iwamoto, J. J. Kuffner, Y. Ota, and N. S. Pollard.
Physically based grasp quality evaluation under pose uncertainty. IEEE
Transactions on Robotics, 2013.

[8] G. W. Kootstra, M. Popovic, J. A. Jørgensen, K. Kuklinski, K. Mi-
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