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Learning Dexterous Grasps That Generalise To Novel Objects By
Combining Hand And Contact Models

Marek Kopicki, Renaud Detry, Florian Schmidt, Christoph Borst, Rustam Stolkin, and Jeremy L. Wyatt

Abstract— Generalising dexterous grasps to novel objects is
an open problem. We show how to learn grasps for high
DoF hands that generalise to novel objects, given as little as
one demonstrated grasp. During grasp learning two types of
probability density are learned that model the demonstrated
grasp. The first density type (the contact model) models the
relationship of an individual finger part to local surface features
at its contact point. The second density type (the hand configu-
ration model) models the whole hand configuration during the
approach to grasp. When presented with a new object, many
candidate grasps are generated, and a kinematically feasible
grasp is selected that maximises the product of these densities.
We demonstrate 31 successful grasps on novel objects (an 86%
success rate), transferred from 16 training grasps. The method
enables: transfer of dexterous grasps within object categories;
across object categories; to and from objects where there is no
complete model of the object available; and using two different
dexterous hands.

I. INTRODUCTION

Transferring dexterous grasps to novel objects is an open
problem. We present a method that infers grasps for novel
objects from as little as one training example. It generalises
a human chosen grasp type (e.g. rim, pinch) trained from
one or two examples, to a novel object of potentially quite
different shape. We demonstrate learning and transfer of six
grasps types to 31 different grasps of 18 objects, and for
two different dexterous hands. The results show the ability
to generalise a grasp within and across object categories, and
with full or partial shape information. The method requires
no knowledge of the human defined object category (e.g.
cup, box) when learning or performing transfer.

There has been progress in learning generalisable grasps.
One class of approaches utilises the shape of common
object parts to generalise grasps across object categories [8],
[11], [15]. This works well for low DoF hands. Another
class of approaches captures the global properties of the
hand shape either at the point of grasping, or during the
approach [2]. This global hand shape can additionally be
associated with global object shape, allowing generalisation
by warping grasps to match warps of global object shape
[12]. This second class works well for high DoF hands, but

Marek Kopicki, Rustam Stolkin and Jeremy L. Wyatt
are with the University of Birmingham, England. Email:
{msk,stolkinr,jlw}@cs.bham.ac.uk. Renaud Detry is
with the EECS department, University of Liege, Belgium. Email:
renaud.detry@ulg.ac.be. Florian Schmidt and Christoph Borst are
with the German Aerospace Center (DLR), Wessling, Germany, Email:
{florian.schmidt,christoph.borst}@dlr.de. The work
described here is protected by Patent Application (UKIPO 1309156.6).
We gratefully acknowledge support by the FP7-IST-600918 (PaCMan),
FP7-IST-248273 (GeRT), the Swedish Research Council (VR), the Belgian
National Fund for Scientific Research (FNRS).

Fig. 1. Objects used: the four objects on the left were used solely as
example grasps, the ten objects on the right were solely used as novel test
objects. The four at the back were used as either training or test, but not
for both at the same time, e.g. we transferred a pinch grasp from the coke
bottle to the vitamin tube, and a pinch support grasp vice versa.

generalisation is more limited. We achieve the advantages
of both classes, generalising grasps across object categories
with high DoF hands.

Our main technical innovation to achieve this is to learn
two types of models from the example grasp, and then
recombine them when inferring a new grasp. Both models are
probability density functions. The first is a contact model of
the relation between a finger part and the local object shape at
its contact. We learn one such model for each rigid link in the
hand. Each model can generate many possible independent
placements for its link on a new “query” object. Given these
models the next problem is to find a hand configuration that
combines a good subset of placements in a kinematically
feasible grasp. To address this we learn a second type of
model, a hand configuration model from the example grasp.
We then use this hand configuration model to constrain the
combined search space for the link placements.

Given these two learned models we can infer grasps for
novel objects. When presented with a novel query object
we use a Monte Carlo procedure to construct a third type
of density function (called the query density) over possible
contact points on the new object. We again construct a query
density for every link of the hand. We then use these densities
in two ways to select the new grasp. First we pick a link,
and draw a contact point for it on the object from the query
density. Then we sample a hand configuration to obtain the
complete set of link poses. The whole solution is then refined
using simulated annealing on the product of all the query
densities and the hand configuration density. The paper starts
with a survey of related work (Sec II); continues with the
representations employed and the learning process (Sec III);
followed by a description of the process for finding a grasp
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for a novel object. We finish with an experimental study
(Sec VI) and a discussion.

II. RELATED WORK

In robotics, mainstream grasp planning has traditionally
relied on force analysis [3]. Unfortunately, the strengths
of force analysis become mitigated in scenarios where the
object models that the robot can recover (from memory or
sensing) are incomplete or erroneous. Some authors have
explored ways of directly linking perceptions to action pa-
rameters. Symmetry principles have been used to reconstruct
the occluded side of unknown objects [23], and thereby allow
the definition of grasp contact points on occluded surfaces
[4]. Others have parameterised grasps by looking for shapes
that are likely to fit into the robot’s gripper [9], [17]. Popovic
et al. [17] computed grasps applied to object edges detected
in 2D images. Another class of methods search 3D range data
for shapes closely matching the geometry of the gripper [9].

Instead of hard-coding the function that computes grasp
parameters from vision, a growing number of researchers
have focused on methods that learn the perception-action
mapping from experimental data [7], [16]. A subclass of
these focused on learning a mapping from incomplete object
views to grasp parameters [1], [8], [11], [15], [14], [19],
while another subclass has aimed at transferring grasps
across objects whose complete 3D shape is known [2],
[12]. When addressing the problem of grasping a partially-
perceived object, authors have developed means of learning
how to place the wrist of the gripper with respect to the part
of the object that is perceived by the robot’s vision system
[8], [11], [15], [14]. When working with two-finger grippers,
the wrist completely parametrises the gripper pose [11]. In
order to plan grasps for a three-finger hand, Kroemer et al.
[15] and Detry et al. [8] let the robot learn a hand preshape,
and relied on compliance or force sensing to close the hand.
Alternately, Kroemer et al. [14] also relied on control policies
to adapt the fingers to the visual input. Saxena et al. [19]
learned a three-finger grasp success classifier from a bank of
photometric and volumetric object features.

Hillenbrand et al. [12] addressed the problem of transfer-
ring a multi-finger grasp between two objects of known 3D
shape. A known object’s geometry is warped until it matches
that of a novel object, thereby also warping grasp points on
the surface of the known object onto candidate grasp points
on the novel object. Ben Amor et al. [2] exploit this warping
method to transfer grasps taught by a human hand (using a
data glove) to contact points for a robot hand on a novel
object. Our work is, in spirit, most similar to the work of
Ben Amor et al. [2] and Hillenbrand et al. [12], and to the
work of Saxena et al. [19]. We compute a full hand grasping
configuration for a novel object, using a grasp model that is
learned from a single or a few example grasps. Our method
performs best when a full shape model of the target object
is available, but it is also applicable to partially-modelled
objects. One difference with [12] is that they transfer grasps
within the same object shape category, whereas we are able
to transfer grasps to different object categories.

III. REPRESENTATIONS

This paper addresses the problem of transferring grasps
across objects. Given one or more grasp examples, we aim
to capture the configuration of the hand and its fingers with
respect to neighbouring object surfaces, and to adapt the hand
and fingers to the shape of a novel object.

We assume that the robot’s hand is formed of a palm,
and a number of finger phalanges. We refer to the palm
and phalanges as parts of the hand, denoted by Hi (i =
1, ..., N ). Our approach relies on a pair of models that capture
two complementary aspects of the grasping process. The
first model, referred to as the contact model, captures the
configuration of one hand part Hi relative to local features
from the object’s surface. Given the 3D model of an object
that the robot has not grasped yet, contact model Mi allows
the robot to compute a set of poses for the hand part Hi.
When a robot is equipped with a N -part hand, up to N
contact models can be instantiated.

The second model, referred to as the hand configuration
model, captures a set of whole hand shapes close to the
whole hand shape in the example grasp. The role of the
hand configuration model in inferring a grasp for a novel
object will be to rapidly constrain the search space for the
hand part positions. The hand configuration model is learned
from the same grasp data as the contact models.

A. Kernel Density Estimation

Much of our work relies on the joint probabilistic mod-
eling of SE(3) poses and surface descriptors. As a result,
this paper makes extensive use of probability density func-
tions (PDFs) defined on R3 × SO(3) × R2, where SO(3)
is the group of 3D rotations, and surface descriptors are
parametrized by two real numbers. This section explains how
we define these density functions.

We represent PDFs non-parametrically with a set of pose-
descriptor pairs (or particles) x`{

x` : x` ∈ R3 × SO(3)× R2
}
`∈[1,L] . (1)

The probability density in a region of space is determined
by the local density of the particles in that region. The
underlying PDF is created through kernel density estimation
[20], by assigning a kernel function K to each particle
supporting the density, as

pdf(x) '
L∑
`=1

w`K(x|µ`, σ`), (2)

where µ` is the kernel mean point, σ` is the kernel bandwidth
and w` is a weight associated to x` such that

∑
` w` = 1. We

use a kernel that factorises into three functions defined on
the three components of our domain, namely R3, SO(3), and
R2. Denoting the separation of x into a position, orientation,
and feature by (p, q, r), we define our kernel with

K(x|µ, σ) = N3(p|µp, σp)Θ(q|µq, σq)N2(r|µr, σr) (3)

with kernel mean point µ = (µp, µq, µr) and kernel band-
width σ = (σp, σq, σr), and where Nk is k-variate isotropic



Fig. 2. An example object point cloud (black dots) with a selected point, its
surface normal (blue axis), 1-st highest principal curvature (red axis), second
lowest principal curvature (green axis), composing a complete frame shown
in the right panel.

Gaussian kernel, Θ corresponds to a pair of antipodal von-
Mises Fisher distributions which forms a Gaussian-like dis-
tribution on SO(3) (for details see [10], [22]). The value of
Θ is given by

Θ(q|µq, σq) = C4(σq)
eσq µ

T
q q + e−σq µ

T
q q

2
(4)

where C4(σq) is a normalising constant.

B. Surface Features

All objects considered in the paper are represented by
point clouds. Each point x is characterised by a feature,
comprising a 3D position p, a 3D orientation q, and a surface
descriptor r:

x = (v, r), v = (p, q) (5)

The surface descriptor corresponds to the local principal
curvatures [21]. Curvatures at point p are recorded along two
directions that both lie in the plane tangential to the object’s
surface, i.e. perpendicular to the surface normal at p. The
first direction, k1, is the direction of highest curvature. The
second direction, k2, is perpendicular to k1. The curvatures
along k1 and k2 are denoted by r1 and r2 respectively,
forming a 2-dimensional feature vector r = (r1, r2). The
surface normals and curvatures are computed using the PCL
library [18].

The surface normals and curvatures allow us to define a
reference frame v at each object point p, with the exception
of r1 ≈ 0, when the principal directions are chosen randomly,
as it is in the case of planar surfaces. Fig. 2 illustrates surface
normals and curvatures.

The procedure described above allows the computation of
a set of features (pose-descriptor pairs) {(v`, r`)} from a
given object point cloud. In turn, the set of features defines a
joint probability distribution, further referred to as the object
model:

O(v, r) ≡ pdfO(v, r) '
L∑
`=1

w`K(v, r|µx`
, σx) (6)

where O is short for pdfO, x` = (v`, r`), kernels K are
defined in Eq. (3), and all weights are equal w` = 1/L.

C. Contact Model

A contact model Mi encodes the joint probability distribu-
tion of surface features and the 3D pose of the ith hand part
Hi. Let us consider the hand grasping some given object.
The (object) contact model of hand part Hi is denoted by

Mi(U,R) ≡ pdfMi (U,R) (7)

where Mi is short for pdfMi , R is the random variable mod-
eling surface features, and U models the pose of Hi relative
to a surface feature. In other words, denoting realisations
of R and U by r and u, Mi(u, r) is proportional to the
probability of finding Hi at pose u relatively to the frame of
a nearby object surface feature that exhibits feature vector
equal to r.

Given a set of surface features {(v`, r`)}, a contact model
Mi is constructed by selecting a set of features from the
neighbourhood of the hand part Hi (Fig. 3). We proceed with
a soft selection which associates, to each surface feature x` =
((p`, q`), r`), a weight that exponentially decreases with a
squared distance to Hi (Fig. 4). The weight is given by

wi` = exp(−λ||p` − ai`||2), (8)

where λ ∈ R+ and ai` is a point on the surface of Hi, the
closest to p`.

The contact model is approximated as

Mi(u, r) '
∑
`

wi`N3(p|µpi` , σpi)Θ(q|µqi` , σqi)N2(r|µr` , σr)

(9)
where all weights are normalised

∑
` wi` = 1, u = (p, q),

and where (µpi` , µqi`) = ui` is the centre of a kernel
computed from `-th feature pose v` and the i-th hand part
pose si from their mutual geometric relation (see Fig. 3)

si = v` ◦ ui` (10)

or equivalently ui` = v−1` ◦si, multiplying both sides of (10)
by v−1` . ui` represents frame si of hand part Hi relatively
to feature frame v` and independently on the world frame
encoded by si itself.

Sum 9 involves only terms for which x` = ((p`, q`), r`)
belong to the neighbourhood of Hi, {x` : ||p`−ai`|| ≤ δ, δ ∈
R+}. If the neighbourhood of a particular hand part Hi is
empty, the corresponding contact model is not instantiated
and it is excluded from any further computation.
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Fig. 3. Contact model: i-th hand part (solid rectangle) with frame si, its
neighbourhood (rounded dashed contour at distance δ from the hand part),
point cloud (dots), world frame W , `-th feature with frame v` and the
corresponding closest point on the part surface ai`.



Fig. 4. Example top grasp of a mug represented by a point cloud (left). The
colorful regions at contacts between fingers and the object are rays between
features and the closest hand part surfaces (middle). The black curves with
frames at the fingertips represent the range of hand configurations in Eq. (12)
(right).

λ in (8) and the bandwidths σpi , σqi , σr in (9) were
hand tuned and kept fixed in all the experiments. The time
complexity for learning each contact model from an example
grasp is Ω(|r||O||Tr|) where |Tr| is the number of triangles
in the tri-mesh describing the hand part, |O| is the number
of points in the object model.

D. Hand Configuration Model

The hand configuration model, denoted by C, encodes a
set of configurations of the hand joints h ∈ RD (i.e. joint
angles), that are particular to example grasps. The purpose
of this model is to allow us to restrict the grasp search space
(during grasp transfer) to hand configurations that resemble
those observed while training the grasp.

In order to boost the generalisation capability of the
grasping algorithm the hand configuration model encodes
the hand configuration that was observed when grasping the
training object, but also a set of configurations recorded
during the approach towards the object. Let us denote by
ht the joint angles at some small distance before the hand
reached the training object, and by hg the hand joint angles at
the time when the hand made contact with the training object.
We consider a set of configurations interpolated between ht

and hg , and extrapolated beyond hg , as

h(γ) = (1− γ)hg + γht (11)

where γ ∈ R. For all γ < 0, configurations h(γ) are
beyond hg (see Fig. 4). The hand configuration model C is
constructed by applying kernel density estimation to {h(γ) :
γ ∈ [−β, β], β ∈ R+}:

C(h) ≡
∑

γ∈[−β,β]

w(h(γ))ND(h|h(γ), σh) (12)

where w(h(γ)) = exp(−α‖h(γ)−hg‖2) and α ∈ R+. α and
β were hand tuned and kept fixed in all the experiments. The
hand configuration model computation has time complexity
Ω(|Γ|) where Γ is the size of the set of values of of γ used
in Eq. 12.

IV. INFERRING GRASPS FOR NOVEL OBJECTS

After acquiring the contact model and the hand configu-
ration model the robot is now presented with a new query

object to grasp. The aim is that the robot finds a grasp such
that its parts Hi are well-placed with respect to the object
surface, while preserving similarity to the example grasps.

First of all we combine the contact models with the
observed point cloud for the object to obtain a set of query
densities, one for each hand part. The ith query density Qi
is a density over where the i-th hand part Hi can be on the
surface of new object (see Fig. 5). From the query densities,
a hand pose is generated as follows. We randomly pick a
hand part j. We randomly sample, from the corresponding
query density, a pose for part j. We sample poses for all
other hand parts, from the hand configuration model aligned
to match the pose of part i, yielding a kinematically feasible
hand configuration that is compatible with the pose selected
for part i. We refine the grasp by performing a simulated
annealing search in the hand configuration space, to locally
maximise the grasp likelihood measured as the product of the
hand configuration density and the query densities for all the
hand parts, thereby ensuring adjustments of the remaining
hand parts to make contacts with surface patches of similar
local curvature to their contact models. We repeat the entire
process a fixed number of times, and select the most likely
kinematically feasible grasp.

The optimisation procedure generates several possible
grasps, each with its likelihood. Each grasp has a set of
hand part poses that independently comply with the contact
models, while jointly complying to the hand configuration
model. The following subsections explain in detail how to
create approximate query densities for a given query object,
and how grasp optimisation is carried out using simulated
annealing.

A. Query Density

This section explains how query densities are constructed.
A query density emerges from the combination of a contact
model with an object point cloud O. The ith query density
Qi models where the i-th hand part Hi can be placed to
grasp the object, given the features observed on the object’s
surface. Specifically, Qi models the pose distribution of Hi

in the world frame.
The contact model Mi models viable poses for Hi rel-

atively to surface features. Intuitively, a contact model is
constructed by finding pairs of matches between the features
that belong to Mi and the features of O, and by representing
the distribution of poses for Hi that are suggested by these
matching pairs.

The above procedure can be described in probabilistic
terms as an integration over (v, r) ∈ O and (u, r) ∈ Mi,
yielding query density Qi:

Qi(s) ≡ Zi
∫
Pi(s|v, u)O(v, r)Mi(u, r)dvdudr (13)

where Zi is a normalisation constant, while O and Mi satisfy

∫
O(v, r)dvdr = 1,

∫
Mi(u, r)dudr = 1 (14)



Fig. 5. Visualisation of two query densities (right) for two contact models
(left) of a handle grasp. Each contact model is created for a single hand
part (blue) for an example mug (left). A query density is a distribution over
poses of the corresponding hand part (red cloud) for a new “query” mug.

Furthermore, the conditional density Pi represents pose mul-
tiplication s = v ◦ u, O and Mi contribute to the weight of
pose s through the common feature variable r.

Using Bayes rule the integral (13) can be rewritten as
follows:

Qi(s) = Zi

∫
Pi(s|v, u)O(r|v)O(v)Mi(u|r)Mi(r)dvdudr

(15)
If the involved objects are represented simply as a collection
of surface features (5) without uncertainties, O(r|v) becomes
a mapping r(v) : v → r which for any choice of v
uniquely determines r, effectively removing integration over
r. Eq. (15) can be approximated as

Qi(s) '
∫
Pi(s|v, u)O(v)Mi(u|r(v))Mi(r(v))dvdu (16)

Eq. (16) can be computed directly via Monte Carlo in-
tegration [5], [6], which generates a number of weighted
kernels, by repeating the following steps:

1) Sample (v̂`, r̂`) ∼ O, i.e. just pick up random surface
feature from the point cloud

2) Sample from conditional density (ûi`) ∼Mi(u|r̂)
3) Compute kernel centre ŝi` = v̂` ◦ ûi`
4) Compute kernel weight wi` = Mi(r̂`)

Query density (13) can be finally approximated as

Qi(s) '
∑
`

wi`N3(p|µp̂i` , σpi)Θ(q|µq̂i` , σqi) (17)

with `-th kernel centre (µp̂i` , µq̂i`) = ŝi`, and where all
weights were normalised

∑
` wi` = 1.

The bandwidths σpi and σqi in (17) were hand tuned and
kept fixed in all the experiments.

Fig. 5 visualises two example query densities created for
two contact models of a handle grasp (see also Fig. 10).

B. Grasp Optimisation

We now describe how to compute the most desirable
grasp configuration for a new object. Let us denote by
s = (s1, ..., sN ) the configuration of the hand in terms of
a set of hand part poses si ∈ SE(3). Let us also denote

by h = (hw, hj) the hand pose in term of a wrist pose
hw ∈ SE(3) and joint configuration hj ∈ RD. Finally, let
kfor(·) denote the forward kinematic function of the hand,
with

s = kfor(h), si = kfori (h) (18)

We infer a desirable set of grasp parameters by maximising
a product

h = argmax
(hw,hj)

C(hj)
∏
i

Qi
(
kfori (hw, hj)

)
. (19)

where C(hj) is the hand configuration model (12) and Qi
are query densities (17).

In other words, we search for the hand pose h which max-
imises the pose probability of hand parts Hi given surface
features observed on the object, while limiting the search to
hand configurations that resemble those from training.

Product 19 is maximised using a simulated annealing
procedure which is initialised as follows:

1) pick up random hand part i
2) find the corresponding part pose si by sampling from

Qi
3) pick up random hand configuration hj by sampling from

C(hj)
4) compute remaining parts poses s and hand pose h using

forward kinematics
5) evaluate Eq. 19, retain best scoring h.

In the next iterations, the simulated annealing procedure
skips steps 1) and 2) directly generating wrist pose hw in
some neighbourhood of the previous best scoring one.

The entire procedure is then repeated 1000 times, gener-
ating a large number of solutions (grasps) which are then
clustered and ranked, yielding a variety of candidate hand
poses (“grasp clusters”) which are then checked against arm
reachability and workspace constraints. The remaining best
scoring hand pose is then used to generate an approach
trajectory. The computation of the query distribution has
time complexity Ω(|r||O||L|) where L is the number of
kernels in the query density. The query density is calculated
once for each new object for each hand part prior to grasp
optimisation.

V. EXPERIMENTAL METHOD

We tested our method with 18 real objects and two robot
platforms. We performed three experiments. In these we use
two types of point cloud models of objects. Type 1 (a full
object model) is a precise high density point cloud created
by sampling from a CAD model of the object. Type 2 (a
partial object model) is a point cloud gathered from two
views of the object on the fly, using a depth camera, and is
thus more sparse, and more noisy. In Experiment 1 we trained
and tested grasps on objects with full models. In Experiment
2 we trained on objects with full models, but transferred to
objects with partial models. In Experiment 3 we trained and
tested on objects with partial models.

The method adapts a known grasp type to a novel object,
and so the training set was organised by grasp type. Six



Grasps on #Succ. #Fail Success rate

Training objects 14 2 88%
Novel objects 31 5 86%

TABLE I
ALL EXPERIMENTS: GRASP SUCCESS RATES.

grasp types were used: rim, pinch, pinch with support, power,
handle grasp with support, and a top grasp. A training object
was placed in front of the robot, and a partial point cloud
constructed from two views. In Experiments 1 and 2 pose
estimation for the full object model was then performed with
a model fitting procedure [13]. In Experiment 3 only the par-
tial point cloud gathered on the fly was used for training. The
training grasp was then taught on the localised object model
(Experiment 1,2) or the partial point cloud (Experiment 3),
and the contact model, and hand configuration model learned.
The training grasp was then executed on the real object. This
real execution was not used for the learning, but to test the
residual failure rate due to localisation errors. After training,
test objects were presented in sequence, a grasp type selected
for each by hand. For each test object the grasp adaptation
procedure ran 1000 times to generate 1000 candidate grasps,
taking a total of 5 secs to compute. These grasps were ranked
by the score h (Eq. 19) and working down the list each was
tested for kinematic feasibility using collision checking and
reachability analysis for the final hand pose. The highest
scoring feasible grasp was then selected to be performed.
Two robot platforms were used. The first was the DLR Justin
mobile robot (Fig. 11), equipped with a 15-DoF DLR II hand
with 4 fingers. The second robot platform (Fig. 6) had a 20-
DoF DLR-HIT II hand with 5 fingers.

VI. RESULTS

Success rates aggregated over all three experiments are
shown in Table I, 88% of the grasps executed on training
objects succeeded, while 86% succeeded on novel objects.
Success here corresponds to the ability to lift up an object at
least 20cm above the table. The training case failures are due
to localisation error. Table II shows the training and test sets
for Experiment 1. For Experiment 2 we trained two grasps:
power and pinch on the bottle and dumpling box respec-
tively, and transfered those successfully the moisturiser and
anti-perspirant (pinch), and spray tin (power) (Fig. 12). In
Experiment 3 we trained on the stapler (rim) and successfully
tested on the bowl and the cutlery holder (Fig. 13). Pictures
of results for Experiment 1 are shown in (Figs. 8-10).

VII. CONCLUSIONS AND DISCUSSION

In this paper we have presented a method that generalises
a single grasp (contacts and trajectories) of an object to
several grasps of other objects with different global shapes.
One essential element of our approach is learning a separate
contact model for each finger phalange how of its pose
relative to the surface is related to local surface feature.
Another is that we learn a hand configuration model based

Platform Training Test

DLR-HIT 2 glass (r), mug2 (r), bottle (ps),
bottle (p), tube (ps) toothpaste (p,ps), cup (r)
dumpling box (w) herring tin (w,ps),

chocsticks box (w),
drops box (ps), tube (p),

Justin mug1 (t,h) mug2 (t,h), glass (t)
bottle (ps) cup (t), tube (ps)

TABLE II
EXPERIMENT 1 SETUP. MUG1 AND 2 WERE ALSO SWAPPED. PINCH=P,

RIM=R, PINCH SUPPORT=PS, POWER=W, TOP=T, HANDLE=H.

on sampling poses near to those on the approach trajectory
in the training example.

The empirical studies we have performed show that: i)
our method can learn from one or two example grasps of
a particular type (e.g. power, pinch, pinch with support);
ii) the system creates grasps for objects we tested with
globally different shapes from the training objects, but which
share some local shapes; iii) for a new object many new
grasps can be generated, ordered by likelihood, and these
form grasp clusters, allowing the selection of grasps that
satisfy workspace constraints; iv) successful new grasps can
also be generated even where shape recovery is incomplete
for the new object; v) this model works for a total of 31
transferred grasps of novel objects made with two different
multi-fingered robot systems.

Future planned work includes automating selection be-
tween types of trained grasps. At the moment we only show
that a trained grasp type can generalise to new objects, and
not that we can automatically choose a grasp type.
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