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Robot Trajectron: Trajectory Prediction-based Shared Control for
Robot Manipulation

Pinhao Song1, Pengteng Li4, Erwin Aertbeliën1,2, Renaud Detry1,3

Abstract— We address the problem of (a) predicting the
trajectory of an arm reaching motion, based on a few seconds
of the motion’s onset, and (b) leveraging this predictor to
facilitate shared-control manipulation tasks, by reducing the
operator’s cognitive load through assistance in their anticipated
direction of motion. Our novel intent estimator, dubbed the
Robot Trajectron (RT), produces a probabilistic representation
of the robot’s anticipated trajectory based on its recent position,
velocity and acceleration history. By taking arm dynamics
into account, RT can capture the operator’s intent better
than other SOTA models that only use the arm’s position,
making it particularly well-suited to assist in tasks where
the operator’s intent is susceptible to change. We derive a
novel shared-control solution that combines RT’s predictive
capacity to a representation of the locations of potential
reaching targets. Our experiments demonstrate RT’s effec-
tiveness in both intent estimation and shared-control tasks.
We will make the code and data supporting our experi-
ments publicly available at https://gitlab.kuleuven.
be/detry-lab/public/robot-trajectron

I. INTRODUCTION

As robotic hardware improves, teleoperated robot appli-
cations emerge at an increasing rate, in domains as varied
as subsea maintenance, surgery, or assistive devices. While
simple, direct teleoperation is at times feasible, integrators
often prefer a form of shared control, where a human
operator and an autonomous agent work in tandem, reducing
the cognitive load of the operator, and/or improving safety
or performance by filtering operator noise and exploiting
sensor feedback at a rate that surpasses human capacity. For
instance, in robot manipulation controlled by brain-computer
interfaces (BCI), the inherent noise in brain signals leads to
considerable effort on the part of the patient to realize precise
manipulation. With shared control, the user can achieve their
goal with increased smoothness and eased effort.

Anticipating the user’s intended motion during execution
is a crucial component of the shared control paradigm. This
ability is usually referred to as intent estimation. Current in-
tent estimators assume that the user has a predefined goal and
maintains a consistent intent while taking actions to achieve
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that goal [1], [2], [3], which does not always hold true.
Furthermore, most intent estimators rely on position-based
methods, which consider only the distance between gripper
position (past or predicted) and each goal to infer the user’s
intent [4], [1], ignoring the robot dynamics. For example,
position-based MaxEnt IOC like [5], [2], [3] assumes that
the user approximately optimizes a cost function which is
the cumulative distance between the robot and the goal, and
infers the user’s intent based on this assumption.

This paper addresses the aforementioned challenges
through two primary contributions: First, we propose Robot
Trajectron (RT), a model that anticipates the trajectory of
a robot’s end-effector during a reach-to-grasp motion, i.e.,
RT predicts the end-effector’s future trajectory. RT bases
its prediction on the motion’s recent dynamics (position,
velocity, and acceleration in the past few seconds), by
contrast to prior works that only consider the positions of
waypoints of the arm’s recent motion [4], [1]. Our model is
data-driven, and it learns the robot behavior with few strict
assumptions. This characteristic allows it to make predictions
with short-term historical dynamics while maintaining noise
resiliency, resulting in a fast response to a change of intent,
which contrasts with prior work that assumes a fixed intent
[5], [2], [3].

Second, we also propose a novel shared-control paradigm
that leverages RT as an intent estimator. Our shared-control
paradigm follows the basic idea of Artificial Potential Fields
(APFs) [6] to guide the robot towards its goals. To flexibly
balance RT’s vs. the user’s, we propose a straightforward
agreement mechanism that reinforces the RT’s authority in
cases of consensus, yet permits the user to override in case of
conflict. To assess the efficacy of the approach, comprehen-
sive experiments are conducted with both simulated data and
real-world teleoperation tasks. We show that the proposed
shared-control paradigm outperforms the prevalent MaxEnt
IOC, especially in the case of intent change.

To summarize, the main contributions of this paper are:
• A trajectory prediction model Robot Trajectron, which

considers the dynamics of the robot’s motion and out-
puts a probabilistic representation of its future motion.
In addition, in the specific case of a tabletop scenario,
we provide a means of mapping RT’s prediction onto
the objects that stand on the table.

• A novel shared-control paradigm is proposed to assist
the operator in approaching a goal (i.e., an object) that
lies near the predicted trajectory.

• Comprehensive experimental validations are conducted
in both a simulation and a real-world grasping task to
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show the effectiveness of our method.

II. RELATED WORK

Trajectory Prediction. Trajectory prediction involves esti-
mating future trajectories based on observed paths, which
applies not only to pedestrians [7], [8], [9] but also to
vehicles [10], [11]. Recently, deep learning methods, due to
their strong ability to model social interactions and agents’
momentum, have largely outperformed traditional methods.
Recurrent Neural Networks (RNNs) have been explored first
due to their ability to process sequential data [12], [13].
However, given past trajectories, there can be numerous
potential future trajectories. Early RNN-based methods like
Social-LSTM [12] which can only generate a single path,
fail to capture the multimodal nature of trajectory predic-
tion, which limits its applicability. To handle this challenge,
generative architectures have been introduced into trajectory
prediction, including Generative Adversarial Network (GAN)
[14] and Conditional Variational Autoencoder (CVAE) [15],
[16], [11]. For instance, Trajectron [16] follows the CVAE
framework and models future velocities using Gaussian
Mixture Models (GMMs). This approach provides an explicit
distribution of all possible trajectories, offering practicality
and flexibility in various applications.

Trajectron shows promise as a robot manipulation intent
estimator, but it faces various challenges. The first challenge
stems from dealing with 3D data instead of 2D scenarios for
which it was designed. Another challenge lies in utilizing
Trajectron’s output to understand the intent. To overcome
these difficulties, RT works in 3D space, and maps the
predicted trajectory to the distribution of potential goals (i.e.,
objects).
Intent Estimation in Shared Control. To efficiently assist
users, it is crucial for the system to comprehend their intent.
Early studies [17], [18] suggest that mandating explicit
intent specification is inefficient and sometimes unfeasible
(e.g., BCI-controlled setting). Consequently, contemporary
research places emphasis on harnessing implicit cues such
as user commands and environmental sensing to deduce user
intent. One prevalent approach is to employ a Hidden Markov
Model (HMM) for intent inference, treating intent as the
model’s latent state [19], [20], [5]. Additionally, Bayesian
networks [21], [22] have also been explored for intent esti-
mation. One of the intent estimation milestones is MaxEnt
IOC [23], which inspires a lot of shared control works and
achieves promising performance in the cluttered environment
[24], [2], [3]. MaxEnt IOC assumes that the user is an intent-
driven agent who seeks to optimize a cost function which is
the exponential of the reward. The prevailing way to design
to reward is to use the negative distance between the robot
and the goal [5]. The distribution over goals can be inferred
from the likelihood which is mapped from the rewards of all
previous steps.

However, the methods mentioned above ignore motion
dynamics and follow a consistent-intent assumption that does
not always stand. In this paper, we build a shared control
system based on RT, which provides assistance in reaching

the goal along a predicted trajectory and promptly adapts to
the intent change by considering dynamic information.

III. ROBOT TRAJECTRON

This section introduces our intent-prediction model Robot
Trajectron (RT). We consider a scenario where an operator
wishes to move a manipulator towards one of multiple
objects sitting on a table. RT assumes that the user is in the
act of guiding the robot from a starting position (usually a
rest position) towards a goal (one of the objects). The model
predicts the robot’s expected future trajectory based on the
trajectory it has followed from its start position to its current
position. In addition, the model also produces a map that
shows where the trajectory is likely to intersect with the
table plane.

A. Model Architecture

RT models the probability distribution of the robot’s future
trajectory, conditioned on the trajectory it has followed to this
point. Let us denote the position, velocity, and acceleration
of the gripper at a time t with Xt, Ẋt, and Ẍt. Let us
also denote by x = [X(1:Tobs), Ẋ(1:Tobs), Ẍ(1:Tobs)] ∈ RTobs×9

the history of position, velocity and acceleration from the
beginning of the motion to the current time, and by y =
Ẋ(Tobs+1:Tobs+T ) ∈ RT×3 the future velocity.

Our aim is to model p(y|x), i.e., future velocities con-
ditioned on past positions, velocities and accelerations. As
noted in the literature [25], a simple RNN representation of
p(y|x) may struggle with multimodal distribution, i.e., cases
where multiple future trajectories are compatible with a sin-
gle past trajectory. Instead, we mimic the CVAE framework
[25], [16] and introduce a latent variable r, to facilitate the
encoding of a low-dimensional, multi-modal representation
of trajectory data:

p(y|x) =
∑
r

pψ(y|x, r)pθ(r|x). (1)

We encode the probability distributions shown above with
neural networks, and tune their parameters to maximize the
likelihood of a dataset (x(i),y(i)) by maximizing, per CVAE
practice [26], [25], the β-weighted evidence-based lower
bound (ELBO):

max
θ,ψ,φ

Er∼qφ(r|x,y)[log pψ(y|x, r)]

− βDKL(qφ(r|x,y)||pθ(r|x)),
(2)

where qφ(r|x,y) approximates pθ(r|x), and θ, φ and ψ
denote the learnable parameters of the neural representation
underlying pθ, qφ and pψ .

In accordance with the CVAE framework, pθ, qφ and
pψ are probability distributions. We model pθ and qφ with
Bernouilli distributions whose parameters are generated with
multi-layer perceptrons (MLPs) fed by LSTM trajectory
encoders (see Fig. 1). We denote by θ` and φ` the parameters
of the two LSTMs that encode the past and future trajectories
respectively, and by θm and φm the parameters of the two
corresponding MLPs, with θ = (θ`, θm) and φ = (φ`, φm).
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Fig. 1: The architecture of the Robot Trajectron. The red
lines denote the train-only operations, while the green lines
denote the predict-only operations. See text for details.

Formally, the Bernoulli parameters of pθ, denoted with Bθ,
are obtained with:

Bθ = MLP(hTobs ; θm), (3)

where hTobs is derived by the past-trajectory LSTM as

ht = LSTM(ht−1,xt; θ`). (4)

The Bernouilli parameters of qφ, denoted with Bφ, are
obtained with Bφ = MLP([hTobs ;h+];φm),where hTobs is
obtained with Eq. 4 and h+ is obtained with the future-
trajectory LSTM as ht = BiLSTM(ht−1,yt;φ`).

We model future velocities pψ with velocity-space Gaus-
sian Mixture Models (GMMs) updated at each timestep.
We denote the parameters of the GMMs at time t with
Gt = {(µtc,Σt

c, α
t
c)}Cc=1, where C is the number of Gaus-

sian components. The decoder models future velocities with
GMMs parametrized as follows:

[Gt,ht] = LSTM([ŷt−1, r,ht−1];ψ), (5)

where

r ∼

{
qφ(r|x,y), for training
pθ(r|x), for testing,

(6)

and initializing the decoder with hTobs . We predict the
velocity at time t via sampling, as ŷt ∼ GMMs(Gt). We
note that instead of encoding Σ with the six parameters of its
matrix representation, we encode it with the six parameters of
the lower-triangular matrix L of its Cholesky decomposition
Σ = LTL. This representation improves training stability
and it allows us to effectively sample from a Gaussian with
the simple expression µ+Lz, z ∼ N (0, 1).

B. Trajectory Prediction

Once trained, RT allows us to obtain the most likely future
velocities by sampling from its GMMs, as:

rbest = argmax
r

pθ(r|x), (7)

ŷml = argmax
y

pψ(y|x, rbest). (8)

The position trajectory is obtained by integration as:

Xt
ml = Xt−1

ml + Ẋt
ml ·∆t, (9)
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Fig. 2: Overview of the proposed shared control. vg denotes
the velocity towards the most likely object, given the pre-
dicted trajectory. vtr denotes the velocity along the trajectory
predicted by RT. vu denotes noisy user command. See text
for details.

where ŷml = Ẋ
(Tobs+1:Tobs+T )
ml and ∆t is the time interval.

C. Target Selection

The trajectory derived above (9) is conditioned on the
robot’s motion alone. Motion is however not the only cue
that informs intent. An understanding of the robot’s envi-
ronment, obtained through vision for instance, often plays
a complementary role. In this section, we assume a tabletop
scenario and the availability of the locations of target objects
disposed on the table, and we discuss means of combining
those object data to trajectory data.

We first use RT to compute a probabilistic representation
of locations where the robot’s motion is likely to intersect
with the table plane. To this end, we first convert the velocity
GMMs (5) into position GMMs with:

µtc,p = µt−1c,p + µtc∆t,

Σt
c,p = Σt−1

c,p + Σt
c(∆t)

2,

αtc,p = αtc,

(10)

where µtc,p, Σt
c,p, αtc,p are the mean, covariance and prior

of component c at time t in the position GMMs, which are
initialized to the last position in the past trajectory and zero
matrices at time Tobs, respectively.

To derive which object is intended from the position
GMMs in 3D space, we take an intersecting section at the
table plane htab and obtain 2D position GMMs. Given a
position of an object denoted as g, its probability can be
obtained from the 2D position GMMs as:

p(g|ξ, htab) = 2DGMMs(g|{Gt}Tend
t=Tobs+1, htab) (11)

where ξ is the past trajectory, and Tend is the end time of the
process represented by Eq. (10). The goal with the highest
probability will be the intended goal.

IV. SHARED CONTROL

In this section, we explain how we use RT to assist the user
in a reaching motion. Our method is illustrated in Fig. 2. RT
utilizes the robot’s motion as input and produces (a) the most
likely trajectory and (b) a table-plane GMM representation
of likely target points. Considering both outputs from RT and



the user’s command, the shared-control system generates a
final velocity command to control the robot.

We design our method based on Artificial Potential Fields
(APFs) [6], a widely adopted shared-control algorithm,
which creates attractive/repulsive fields that guide the motion
towards a goal and steer away from obstacles. Our solution
uses two attractor fields. First, a Goal Attraction Field (GAF)
guides the motion towards the object identified via Eq. (11):

Uga (p) = wg‖ g − p ‖, (12)

where g is the position of the goal with the highest proba-
bility p(g|ξ, htab), and p is the position of the robot. wg is
the goal attraction weight, which we calculate as:

wg = min(γ · p(g|ξ, htab), ν), (13)

where γ is an amplification coefficient, and ν is a threshold
that we set to 0.1 in our experiments. According to Eq.
(13), the goal attraction weight is linked to the probabil-
ity generated by RT, which serves as a valuable indicator
of uncertainty. If RT is confident that the current motion
points unambiguously towards a certain goal, it significantly
influences the motion towards that goal.

Our second attractor field helps the robot along RT’s
predicted trajectory during segments of the motion where
Eq. (11) does not allow us to confidently select a goal.
Assuming that ptr is the first point of the most likely
predicted trajectory, we build the Trajectory Following Field
(TFF) as:

U tr
a (p) = wtr‖ ptr − p ‖, (14)

wtr = max(
lpred

lpast + lpred
, ζ), (15)

where lpast and lpred are the length of the past trajectory
and the predicted trajectory, respectively, and ζ is a threshold
that we set to 0.7 in our experiments. wtr is the trajectory-
following weight. TFF can provide more assistance early on
in the reaching motion, reducing the noise and stabilizing
the prediction of RT. Combining two fields, we define the
robot velocity as:

vr = vu − (∇Uga (p) +∇U tr
a (p))

= vu + wg
g − p
‖ g − p ‖

+ wtr
ptr − p
‖ ptr − p ‖

= vu + wgvg + wtrvtr,

(16)

where vg and vtr are the velocities generated by the GAF and
TFF, respectively. vu is the user velocity command, and vr
is the velocity command sent to the robot. vr considers both
the position of the intended goal and the predicted trajectory.

Even though vr takes RT’s uncertainty into account to
trade between user commands and AI assistance, the user
will still feel a strong impedance if they change their intent
(pick a different goal) when the robot is near one of the goals.
To address this issue, we propose an agreement mechanism
that balances the weight of the user and AI:

ag = max(
vuvg

‖ vu ‖‖ vg ‖
, 0), w′g =

√
agwg, (17)

atr = max(
vuvtr

‖ vu ‖‖ vtr ‖
, 0), w′tr =

√
atrwtr, (18)

where ag and atr are the agreement of goal control and
trajectory control. The agreement mechanism allows the user
to regain authority despite a high RT confidence. Finally, the
user command, the GAF and TFF may at times conflict with
one another, causing oscillations. We therefore introduce a
soft switch control in Eq. (16) as:

vr = (1− w′g)(vu + w′trvtr) + w′gvg. (19)

Accordingly, when the confidence of the goal is low, the
robot will tend to follow the user command and the predicted
trajectory. When the confidence of the goal is high, the
robot will tend to be attracted by the intended goal. With
the agreement mechanism, the robot will mainly follow the
user’s command when it conflicts with the AI.

V. EXPERIMENTS

To comprehensively evaluate the proposed method, we
conducted one evaluation of RT in simulation, one shared-
autonomy experiment on a real robot, and a change-of-intent
experiment. Our research platform for the experiments is
Franka Research 3 with a Microsoft Xbox joystick as the
control interface.

A. Experiment in the Simulation Dataset

In this experiment, we aim to demonstrate the performance
of RT on a simulation dataset. Following the practice in
trajectory prediction [27], [16], we adopted the widely-used
evaluation metric Average Displacement Error (ADE) and
Final Displacement Error (FDE). ADE calculates the average
distance between all the ground-truth and estimated positions
in the trajectory, while FDE calculates the distance between
the endpoints of ground-truth and predicted trajectories. Best-
of-20 and Most likely trajectories are sampled to compute
these metrics. To provide a point of reference, we establish
a baseline using the Vanilla Residual LSTM, which outputs
the velocity of each step, with a hidden state size of 128. All
the models are trained with Adam optimizer, with a learning
rate of 0.001 and batch size of 256. The models are trained
on a single RTX 4070Ti GPU.
Data Collection. We collected data with a Franka robot
simulated in Pybullet. To collect one trajectory, we randomly
sample a reaching target point on the table and move the
gripper to approach it along a random approach vector,
from a random initial joint configuration. To control the
movement, we used the MMC controller [28]. The velocity
of the gripper is calculated by:

ve = k(0T−1e
0T e∗), v′e = ve + z∗ ‖ ve ‖, (20)

where k is a gain term, 0Te ∈ SE(3) is the end-effector
instantaneous pose in the robot’s base frame, 0Te∗ ∈ SE(3)
is the desired end-effector pose in the robot’s base frame,
ve,v

′
e ∈ R3 are the velocity and the noisy velocity of the

end-effector, and z ∈ R3 is a noise variable sampled from
the uniform distribution U(−1, 1). The noisy velocity will
be applied to the end-effector with a frequency of 20Hz.
According to Eq. (20), the noise level is dependent on the
magnitude of the velocity. Finally, we generate 100,000



Fig. 3: Visualization of RT. The most likely trajectory and the 2D table GMMs are shown. The green line denotes the past
trajectory, while the red line denotes the predicted trajectory.
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Fig. 4: (a) The set up of the shared autonomy experiment.
(b) A demonstration assisted by the proposed method. (c)
The weight change in Fig. b. (d) The distribution change of
each goal in Fig. b.

TABLE I: The performance comparison in Traj100k.

Method Best-of-20 (mm) Most likely (mm)
ADE FDE ADE FDE

Vanilla LSTM [29] - - 136.95 115.47
Robot Trajectron 17.82 26.97 30.58 49.94

trajectories, among which 90,000 are for training and 10,000
are for testing. We name this dataset as Traj100k.
Performance in the Traj100k dataset. Results are shown in
Table I. We only report Vanilla LSTM’s most likely results
since it is a deterministic method. RT performs substantially
better than Vanilla LSTM in both Best-of-20 and Most likely
settings. The small error of RT demonstrates the strong
capability to model the future trajectory.
Visualization of the intended point. Fig. 3 shows an
example of trajectory prediction per Eq. (11). Both the most
likely trajectory and the 2D GMMs of Eq. (11) are visualized.
At the onset of the motion, RT’s predicted reaching target is
affected by a large uncertainty. In Iter 2, it can be seen that

TABLE II: Shared autonomy experiment. The total time, the
number of inputs and the average sum of the length of 4
trajectories in one round ltr are used as metrics.

Method Time (sec) Input Average ltr (m)
Teleop. [3] 9.36±0.71 41.8±2.8 2.452±0.246

MaxEnt IOC [3] 7.24±0.33 33.8±1.2 2.007±0.060
Robot Trajectron 7.17±0.43 33.8±1.3 1.981±0.092

several separated Gaussian components are projected at the
table plane, which shows the multi-modal modeling of the
user intent. As the gripper moves, the generated distribution
is increasingly concentrated, which indicates the increasing
confidence in RT’s prediction.

B. Shared Autonomy Experiment

Design. In this experiment, we will compare our shared con-
trol method with two baselines. The first baseline is pure user
control (named Teleop.). The other is the prevalent shared
control method MaxEnt IOC [24], [2], [3], for which we
used the open-source code from the implementation of [3]. In
order to make a fair comparison, we use a constant velocity
to 0.1 m/s with all methods. The velocity controller MMC
[28] is leveraged to control the robot. The experimental
setting is shown in Fig. 4a. 4 small cubes equipped with
ArUCo markers were placed on the table. In each round,
the user was required to sequentially approach the cubes
on the table (4 trials) – at which point, in a real-life task,
an autonomous grasp controller would take over. User input
consists of the direction of the velocity vector, which they
can control via six joystick buttons (two buttons for each
axis). As written above, the velocity is kept at a constant 0.1
m/s. Three metrics are used for comparison: the total time,
the number of inputs (button pushes) and the average sum
of the length of 4 trajectories in one round.
Protocol. We enrolled 10 novice participants from the local
community. They received training in using our 3-axis joy-
stick to control the robot. During the formal experiment, the
order of control methods was randomized for each partici-
pant. When the gripper neared a goal, the robot automatically
performed the grasping action.
Anaylsis. Table II shows that our proposed method uses less
time and fewer inputs and produces shorter trajectories to



Fig. 5: User demonstrations. The blue lines denote the
trajectories fully controlled by the user. The red and green
lines denote the trajectories assisted by MaxEnt IOC and
Robot Trajectron, respectively. As discussed in the text, the
trajectories guided by RT to reach the object are straighter
and smoother.

approach the goal, demonstrating its effectiveness. Notably,
our method achieves comparable performance to the SOTA
method MaxEnt IOC. The superior performance is due to the
early capturing of the robot’s motion. Guided by the smooth
predicted trajectory, the robot can achieve the goal faster.
Fig. 5 shows the trajectories of user demonstrations for 4
cubes. Our method aids in producing smoother and more
direct trajectories leading to the goal. Fig. 4b 4c and 4d
depict the trajectory, shared weights, and goal distributions
within one demonstration. Initially, the user explores the path
to the goal with a low GAF weight wg , providing limited
assistance. In this phase, It is mainly TFF that is at work.
Although the TFF weight wtr is high, the user input does
not align with vtr, leading to a reduction in the agreed TFF
weight w′tr due to the agreement mechanism. After the 15th
iteration, Trajectron is increasingly confident about object
0, which means that GAF is at work while TFF is ceasing
operation. Comparing the original and agreed GAF weights
wg and w′g , we can see that the agreement mechanism then
strengthens the AI’s control, resulting in smoother and more
efficient gripper movements towards the intended object.

C. Experiment of Intent Estimation

In this final experiment, we evaluate the model behaviors
in a situation where the user changes their intent during
approaching.
Design. We pre-recorded 10 change-of-intent trajectories
with the same object setting as in the shared autonomy
experiment. As shown in Fig. 6a, first, the subject will be
required to approach one of the objects, and then switch to
another. The first part of the motions allows us to measure the
robustness of different models to user-input noise, whereas
the second part allows us to measure how well a model
adapts to a change of intent. We replay these trajectories

Object 1 Object 2

Robustness Zone

Adaptability Zone

Change
Radius

(a) (b)

Fig. 6: (a) The illustration of the intent estimation exper-
iment. (b) The results of the intent estimation experiment.
“Acc(ε)” denotes the Robustness Zone accuracy in different
noise levels ε. “Ada” denotes the Adaptability.

to both RT and MaxEnt IOC and evaluate their performance
in the following metrics.
Metrics. In this experiment, we consider both adaptability
and robustness as metrics for they are often conflicting
qualities. We evaluate those as follows: (i) Accuracy: For
each step in the pre-recorded trajectories, the intent estima-
tion model identifies the object with the highest probability
as the goal. We evaluate the accuracy of intent estimation
by dividing the number of correct predictions by the total
number of steps. (ii) Robustness: In the Robustness Zone,
we introduce noise by adding z sampled from a uniform
distribution U(−ε, ε) to the trajectories. We then evaluate
the accuracy of intent prediction at various noise levels ε as
an indicator of robustness. (iii) Adaptability: A model with
good adaptability can quickly perceive the intent change and
make more accurate predictions in the Adaptability Zone. We
measure adaptability by calculating the accuracy of intent
prediction in this zone. These metrics help us assess how
well the models respond to intent change and their ability to
maintain accurate predictions in the presence of noise.
Analysis. The results of the experiment are illustrated in Fig.
6b. From the last column, the Adaptability of our method is
higher than MaxEnt IOC, which is due to perceptiveness to
the dynamic change. Besides, in the less noisy conditions
(ε ≤ 0.01m), our method still outperforms MaxEnt IOC,
because our method can capture the dynamics early on, while
MaxEnt IOC still needs to move close enough to the object
to make correct predictions. However, when the noise level
increases to 0.02m, MaxEnt IOC outperforms our method,
for the reason that RT mistakes the high noise for a signal
of intent change.

VI. CONCLUSIONS

This work addressed limitations related to the consistent-
goal assumption of current shared-control works, by propos-
ing a motion predictor that intrinsically captures user intent.
By considering motion dynamics, RT can promptly adapt
to changes of intent. We combine this predictor to a repre-
sentation of possible goals to build a potential-field shared
control solution. We demonstrated applicability to predicting
future motion trajectories, and effectiveness in shared control
of a physical robot. In future work, we intend to study the
applicability of our work to BCI-controlled grasping.
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