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I. UNDERVALUED COMPLEXITY OF OBJECT PLACING

Despite the large scientific interest on robot learning for
object picking tasks [1]–[4], the research on object placing
is too limited. Commonly, placing is simplistically considered
as a trivial task, but real life manipulation problems indicate
the exact opposite. A placing task can have different levels of
complexity, ranging from the simplest tabletop placing of an
object, to more complex cases such as loading a dishwasher
and assembling industrial parts. In this paper we argue that
assembly can and needs to be seen as a complex placing task.
Thus, the need for systems with advanced placing capabilities
becomes evident.

We consider machine learning algorithms, as a potential
approach for dealing with the different variants of the placing
task and introducing autonomy to the robotic system. Thus,
exploiting the capability of machine learning algorithms for
knowledge generalization, a generic approach could be de-
veloped for dealing with the wide range of object placing
problems. Also the robotic system can be considered as
autonomous since re-programming between small variants of a
placing task may not be required. As a result, the manipulator
could be able to adapt to a variety of environments and perform
a placing task independently of the manipulated object or the
placement location.

There exists prior work that applies machine learning tech-
niques to find suitable placing locations in cluttered envi-
ronments [5], [6] or learn a low cost manipulator to place
and stack objects [7]. Furthermore, ways of compensating for
uncertainties that arise due to the interaction with physical
objects or imperfect sensors within a robotic assembly scenario
have also been considered in [8].

However, the described approaches focus on only one of
the two modules that are needed for developing a complete
intelligent and autonomous object placing robotic manipulator.
The work in progress, described in this paper, aims to provide
the framework and a broad description of a robotic manipula-
tion system that bridges the gap between those two modules,
namely the cognition and the control one. Furthermore, we
plan to implement those modules using machine learning
algorithms. This would affect the manipulator’s capability to
deal with a larger variety of object placing tasks and objects
to be manipulated.

II. DESCRIPTION OF A ROBOTIC MANIPULATION SYSTEM

In this section we will describe the main parts of a robotic
manipulator system, that is the cognition and the control
modules, as shown in Fig. 1. Also, we will discuss possible
machine learning algorithms that could be used to implement
such an adaptive system, together with the rationale behind
their selection.

Fig. 1. Block diagram of an adaptive robotic manipulation system

A. Cognition Module

The cognition module of a placing task, is mainly re-
sponsible for sensing and anticipating the environment. This
involves three main functionalities: (1) obstacle localization;
(2) derivation of placement location; and (3) derivation of
object’s placing pose. At the first step, a segmentation process
will be applied to a captured point cloud. The segmented point-
cloud clusters will then be classified as potential placement
locations or obstacles.

The above described process can be implemented using both
one unsupervised and one supervised learning algorithm. The
first will create the point cloud clusters, and the second will
classify the generated clusters. The classifier’s training set, will
consist of geometric features extracted from the point clouds
of various locations. Such locations, could be tables, pallets,
boxes, e.t.c. Each instance of the training set will be labelled as
suitable or not suitable for placement. Thus, this corresponds
to a binary classification problem.

After the derivation of the placement location, a suitable
placing pose will be derived from the cognition module. The
inputs will be geometric features extracted from both the
placement location and the manipulated objects. The outputs
will be continuous and represent the object’s placing pose.
Thus, this process corresponds to a regression problem. The
training set will consist of suitable placing poses of various
objects on different placement locations. Both the derived



placement locations and the object’s placing pose will be fed
in the control module, which is responsible for the emergence
of the suitable manipulator’s movement.

B. Control Module
The goal of the control module is to learn the parameters

of the controller, in order to place the object on a certain
placement location and with a certain placing pose, as derived
from the cognition module. We plan to address this problem
using a model-based reinforcement learning algorithm.

We choose a model-based method instead of a model-free
because it requires less interactions with the environment and
the learning time can be significantly less. This method re-
quires a good model of the manipulator’s transition dynamics.
The model will generate the probability of reaching a state
given the current state and the applied motor commands.

Another significant characteristic of the reinforcement learn-
ing algorithm is the definition of a reward function. The reward
will be a function of the manipulated object’s state, its final
desired state and the obstacles’ location. The reward function
will be used for the derivation of an optimized policy. The
policy search problem corresponds to finding the parameters
of a policy (controller) that maximizes the expected long-term
reward. This problem will be addressed by employing a policy
gradient-based approach. Finally, the control module should
be able to predict the manipulator’s trajectory in the long run.
This is needed for the derivation of the long-term reward. The
long-term trajectory predictions will be generated by sampling
trajectories from the model.

III. ROADMAP TOWARDS ASSEMBLY

The described system will be applied on object placing
problems of increasing complexity. The first test case will
be palletizing of boxes. This task requires objects to be
placed in such a away that they will fit the pallet. Also,
their positioning should be stable in order to avoid damage
of humans or objects. This test-case will provide feed-back
about the system’s ability to place a large amount of objects
on a defined placement location and avoid obstacles.

The second test case will be kitting of objects. Objects have
to be placed inside a kit which is divided by compartments.
The objects should be placed in a certain position and with
specific orientation in order to fit the compartments. The
robotic manipulation system should be able to match each
of the manipulated objects with the correct compartment
(placement location) and also provide the correct placing pose.

One of the most challenging industrial tasks that involves
objects placing is robotic assembly of parts. It requires both
a suitable cognition and control module for achieving a suc-
cessful implementation. The function of the cognition module
is similar as with the kitting task, since it matches parts with
placement locations which could be holes or compartments.
Additionally, the control module, should be capable of pro-
viding the required motor commands for driving the part to
the desired position and with the appropriate orientation. It
should also be able to provide coordination between sensors
and motors in order to stably join two parts.

IV. CONCLUSION

This paper presented a roadmap towards exploiting robot
learning for object placing tasks. The described robotic ma-
nipulation system will employ machine learning algorithms
for both inferring suitable placement locations and object
placing poses. Furthermore, it will be capable of generating the
required motor commands for achieving a suitable collision-
free movement.

In order to achieve the goal of intelligent autonomous
assembly, the robotic manipulator system will be applied on
test-cases of increasing complexity, namely palletizing and
kitting. Those test cases, will provide feed-back about the
necessary modifications of the system, that will ultimately
make it capable of performing assembly tasks autonomously.
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