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INTRODUCTION

Tactile feedback obtained during grasping of an object is
crucial for a number of tasks in robotics. It allows to identify
object properties and recognize its class, or to localize an
object in a robot hand and assess quality and stability of the
applied grasp [1]–[3]. The accomplishment of these tasks
greatly depends on the choice of data representation, i.e.
features that are used to capture signal properties, as it was
was shown for visual data [4]–[7]. The representation of
tactile data should not only provide robustness to real-world
conditions, but also serve a wide variety of applications and
be flexible to adapt to their specific requirements.

In previous works tactile signal have been typically rep-
resented using a manually crafted set of features based on
prior knowledge about the properties of the inputs. Early
works aimed at identifying simple primitive shapes in ob-
ject imprints in the tactile matrices (points and lines [8],
[9]). Recent works use higher level geometric properties
of pressure patterns, such as their position, area or higher-
order moments [1], [3], [10], [11]. Other approaches build on
features developed at Computer Vision, such as SIFT [12].
A very limited amount of work have aimed at unsupervised
extraction of features by applying to tactile data the K-means
algorithm or covariance analysis [13]–[15].

SPATIO-TEMPORAL HIERARCHICAL
MATCHING PURSUIT

Using of a pre-defined set of feature can limit capability
of the representation to serve different applications and may
results in capturing characteristics that have minor impor-
tance for a task [11]. In contrast, in this work we generate
representation of tactile data directly from raw input signals
without the need of specifying discriminative characteristics
a-priori. This may be achieved using unsupervised feature
learning techniques and deep learning methods [5]. We
propose the Spatio-Temporal Hierarchical Matching Pursuit
(ST-HMP) that in an unsupervised manner learns properties
of a time series of tactile sensor measurements, see Fig. 1.

The ST-HMP is based on the concept of hierarchical
feature learning realized using sparse coding. It builds on
the recently introduced the Hierarchical Matching Pursuit
(HMP) [16] that is a multilayer sparse coding network
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Fig. 1. (Left) Example of grasp execution with the three finger Schunk
Dextrous Hand (SDH) [3]. (Right) Tactile measurements create a sequence
over time in which information in consecutive frames is correlated.

creating a representation from raw data, layer by layer, with
an increasing receptive field size. This approach has been
successfully used for visual object recognition [17] and as
such is limited to spatial signals (images). However, in grasp-
ing temporal information is crucial for good performance [2].
We propose a method to extend the HMP framework to
spatio-temporal feature learning.

In order to compute the ST-HMP, we first sample a large
collection of spatial (or spatio-temporal) patches from tactile
matrices and use them to learn codebooks in an unsupervised
fashion by applying K-SVD With the learned codebooks, the
ST-HMP computes sparse code features using the orthogonal
matching pursuit (OMP). Then, features extracted from con-
secutive frames are repeatedly max pooled over the space and
time dimensions at several scales with an increasing size of a
receptive field (cell) creating a spatio-temporal pyramid, see
Fig. 2. A final feature vector for the whole tactile sequence is
the concatenation of aggregated sparse codes in each spatio-
temporal cell. For algorithm details, we refer the reader to
our recent publication [7].

EXPERIMENTAL EVALUATION

In order to demonstrate universal properties of the ST-
HMP we considered two typical classification problems for
tactile data: (1) grasp stability assessment and (2) object
instance recognition. We performed extensive evaluation on
six synthetic and real databases that were collected using
the Schunk Dexterous, Schunk Parallel and iCub hands for
several sets of objects of widely diverse characteristics. The
robot hands and objects sets are presented in Fig. 3.

First, we evaluated the effect of encoding not only spatial,
but also temporal information. Thus, we separately applied
the original spatial HMP to each frame in a grasping se-
quence, and then added temporal information by computing
the ST-HMP descriptor. The results confirmed that adding
temporal dimension highly improved accuracy for the HMP
for all considered cases, see Fig 4.

Second, we compared the ST-HMP with the state-of-the-
art methods that in different ways encode temporal infor-
mation, such as Hidden Markov Models (HMMs) [3] [18],
Gaussian Processes (GP) with recursive kernels [2], Dynamic



Fig. 2. Schematic illustration of a partition of data in: (Left) the spatial
pyramid with the partition 1-2-3, (Middle) the temporal pyramid with the
partition 1-2-4, and (Right) the smallest possible cell in the given spatio-
temporal pyramid. The size of a cell in which features are max-pooled at
each pyramid level is marked with a color. In the 3-level spatial pyramid
the matrix is divided into S = 1 + 22 + 32 cells giving the original HMP
of the size 14 × M , where M is the size of the codebook. The 3-level
temporal pyramid partition gives T = 1 + 2 + 22 cells. In this case, the
dimensionality of the ST-HMP feature vector obtained for the whole tactile
sequence for the spatio-temporal pyramid pooling is equal to 14× 7×M .

Fig. 3. (Top) Five robot hands used to collect databases. From left: the
model of the 3-finger Schunk Dexterous Hand (SDH), 3-finger SDH, 3-
finger SDH with Weiss tactile sensors, 2-finger Schunk Parallel Gripper,
5-finger iCub hand. (Bottom) Object sets used to collect databases. The
numbers below the images indicate the database collected using the hand
and object set depicted above. All databases are annotated with an object
class and the databases (1) and (2) additionally with information about grasp
stability. Figures are reproduced with permission from [1], [2], [18].

Time Warping (DTW) [1], decision trees [2], and techniques
based on SVMs and AdaBoost [18] [2]. In all these cases pre-
defined types of features have been used, such as geometric
properties of contact regions or higher order moments. The
ST-HMP outperformed the previously published methods by
a large margin, see Fig 4. Please note the variety of the
analyzed cases, i.e. different classification tasks and types of
data collected for different object sets and robot hands. The
detailed analysis can be found in [7].

Fig. 4. Experimental comparison of the proposed ST-HMP with the original
HMP, and the previously published results [1]–[3], [18]. The numbers above
the images indicate one of the six database id. We evaluated our method for
two tasks: grasp stability assessment (1-2 bar groups) and object instance
recognition (3-7 bar groups). Support Vector Machines (SVMs) with a linear
kernel were used as a classier in all cases. We closely followed the setups
from the previous publications.

CONCLUSIONS AND FUTURE WORK

We proposed a new descriptor named Spatio-Temporal
Hierarchical Matching Pursuit (ST-HMP) that captures prop-
erties of a time series of tactile measurements. It is based
on the concept of unsupervised hierarchical feature learning
and extracts rich spatio-temporal structures from raw tactile
data without the need to predefine discriminative data char-
acteristics. An extensive evaluation on several synthetic and
real databases showed that the ST-HMP can be successfully
applied to tactile data originating from different robot hands
and objects, and is an universal descriptor that can be applied
to different classification tasks. In the future, we plan to
investigate a principled way to make the ST-HMP applicable
to multi-modal data, such as finger positions and joint angles.
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