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Abstract— A representation for structured activities is devel-
oped that allows a robot to probabilistically infer which task
actions a human is currently performing and to predict which
future actions will be executed and when they will occur. The
goal is to enable a robot to anticipate collaborative actions
in the presence of uncertain sensing and task ambiguity. The
system can represent multi-path tasks where the task variations
may contain partially ordered actions or even optional actions
that may be skipped altogether. The task is represented by an
AND-OR tree structure from which a probabilistic graphical
model is constructed. Inference methods for that model are
derived that support a planning and execution system for the
robot that attempts to minimize a cost function based upon
expected human idle time. We demonstrate the theory in both
simulation and actual human-robot performance of a two-way-
branch assembly task. In particular we show that the inference
model can robustly anticipate the actions of the human even
in the presence of unreliable or noisy detections because of its
integration of all its sensing information along with knowledge
of task structure.

I. INTRODUCTION

Robots are potentially powerful tools for assisting people
in a broad range of applications including industrial manu-
facturing and assembly [1], as well as personal services [2].
Most prior work in human-robot collaboration has focused
on two research topics: acquiring skills by demonstration
or teaching, and how to properly engage with users [3].
However, the uncertainty of real-world action detection —
of belief as to what the human agent is doing at any given
time — has been largely engineered out of the problem. For
robots that share an environment with humans, the timing
and identity of the human’s actions change how and when the
robot should react to make the interaction fluent, effective,
and safe. Thus, maintaining a representative belief about the
past, current, and future state of the human in the face of
perceptual uncertainty and human variability is important for
improving daily human-robot interaction.

In this paper we focus on the specific interaction scenario
in which a human is performing one of a variety of assembly
tasks during which the robot must anticipate which parts
the human will need and when. Even though the partial
ordering of possible human actions is available to the robot
before collaboration, the branch choices the human selects
are never explicitly communicated. Futhermore, the timing
of human actions is naturally variable due to sources such
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Fig. 1: Station where a Universal UR10 robot assists a human by
fetching and removing bins as needed by anticipating actions of the
human.

as mistakes, differing expertise, and physiological state.
Therefore, understanding when and what human actions
occur must be implicitly inferred from perception, action
duration priors, and task constraints. However, noisy and
miscalibrated sensors, systematically occluded vision, and
tracking failures render action detection uncertain. To recover
from this uncertainty, the robot should utilize its information
as effectively as possible.

We developed a probabilistic representation of human
action which models the human’s task, inferring both which
action branches the human chooses and when each action
is likely to have occurred, if ever. By modelling detector
reliability, incorporating timing distributions, and reasoning
over the full sensor history, the robot makes efficent use of
its knowledge, integrating evidence over time to improve its
belief about the human. Furthermore, by encoding human
task constraints and action ordering structures, the system
improves its robustness as the robot understands how its
actions effect how the human acts. After inferring the hu-
man’s state, we utilize a cost-based planner to optimize the
robot’s action plan with respect to the posterior human action
distributions, reducing the expected cost for an arbitrarily
defined system cost function.

The work present here greatly expands prior results in
[4] by accommodating task structures that are not simple
linear, sequential actions. In that work, the only inference
to be performed was when future actions were likely to
be performed and for the robot to anticipate accordingly.
Here the system can respond to acyclic task structures with
partially ordered actions we call multi-path tasks, where
the human only performs actions along one path through



the graph. This representation is powerful since it allows
us to encode different task goals, arbitrary action ordering
possibilities, and optional actions.

We organize the remainder of our paper as follows. After
discussing selected related work, we develop the represen-
tation and inference method for modeling multi-path tasks,
assessing the likelihood that a given branch of the task
is being performed, and predicting when a particular sub-
task will occur. Using these predictions we construct a
planning and action system for the robot that attempts to
minimize a cost function based upon expected human idle
time. We demonstrate the theory in both simulation and
actual human-robot performance of a simple two-way-branch
assembly task. In particular, we show that the inference
model can robustly anticipate the actions of the human even
in the presence of unreliable or noisy detections because
of its integration of all its sensing information along with
knowledge of task structure.

II. RELATED WORK

In robotics there has been significant recent study on the
role of prediction on the fluency of human-robot interactions,
along with the development of learning and planning algo-
rithms that perform action selection in a collaborative con-
text; such work usually presumes sensing is straightforward
and that the challenge is making the right action decision.
For example, [5] uses an adaptive Markov model to assign
confidence about predictions of the human partner’s actions.
The uncertain predictions are used in a cost-based framework
to select the best action. In both that work and subsequent
efforts [6] the benefits of employing anticipatory actions in
a human-robot task are well observed in human trials. In all
these systems the actions of the human are presumed to be
clearly and reliably observed.

In the robotics literature there is a variety of approaches
to anticipating the actions of humans. These efforts vary in
how much a priori knowledge the system has about the task
or domain. Huber et.al. [7] provides the robot has complete
knowledge of the sub-tasks performed by the human. Fish
et. al. [8] and Tenorth [9] collect detailed statistics about the
human performance of the specified task and predict duration
variability over time. Koppula and Saxena [10] learn likely
sequences of human action from observation training data.
At run time, the robot instantiates a set of probabilistically
weighted “anticipatory temporal conditional random fields”
to predict which actions the human may take and when. The
work presented here also explicitly models possible future
sub-task sequencings and maintains a probability for each
based upon prior info and current observations. But our
possible futures are defined by an a priori task description.

Wilcox et. al. use strict temporal constraints to develop
robotic schedules for human-robot collaborative assembly
with the addition of preferences which optimize the plan
over the constraints [1]. While they accommodate human
variability by using different preferences for different be-
havior models, they do not address the issue of perceptual
ambiguity. We note that the work presented here also frames
action selection as minimum cost planning in the face of

probabilistic beliefs about when the human will perform
various sub-tasks.

Finally, computer vision research, specifically activity
recognition, has also developed many approaches to mod-
eling activities composed of sequences of actions. Perhaps
the most relevant work is that of Shi et. al. [11] where a
Dynamic Bayes Network variant was proposed to recognize
partially ordered sequential action. Albanese et al. [12] uses
probabilistic Petri nets to detect events while [13] learns
an activity’s decomposable structure of “actionlets” with
a probabilistic suffix tree; given that data structure, early
prediction of sub-action can be done. In [14], Tang et. al.
demonstrated how to use variable-duration Hidden Markov
Models to learn an action’s latent temporal structure and
showed it helps to improve detection results in the presence
of noisy sensors. This is analogous to the work here where
sensing information is integrated with a structural description
of the task to improve action detection.

III. REPRESENTATION AND INFERENCE

In [4], we developed a representation, inference procedure,
and reactive planning system in the context of linear chain
tasks. The system modeled the task as a known sequence
of human actions, incorporating duration knowledge, task
constraints, and detector observations simultaneously. Given
a history of task constraints and detector observations up to
the current time and an estimate of these values in the future,
the system inferred the distribution over when human actions
occurred or will occur.

The key development in that work was representing the
chain as a sequential Bayes net where the state variables
were the beginning and ending times of each of the actions.
Duration models allowed for conditioning the end times upon
start values, detectors were designed that provided diagnostic
information as to when an action was occurring, and on-line
inference procedures were developed that incorporated not
only all detections viewed up to the current time but also
task constraints such as whether the robot had performed a
necessary action that would enable the human to progress in
his task.

In this paper we significantly extend that work to allow
for task variations where the human is not limited to a strict
sequential chain but can be considered as “multi-path”: the
task may be a partially ordered one where certain actions
can occur in a variety of orderings, or even a set of multiple
tasks where some actions may be skipped altogether. We
achieve this extension by allowing the tasks to be specified by
an AND-OR tree structure and automatically constructing a
probabilistic graphical model that reflects the branches of the
specification. In addition we extend the state representation
to include the possibility that an action never occurs — it
never starts and thus never completes.

A. AND-OR representation of a task

We begin by defining a representation for the multi-
path task. While a thorough exposition would involve a
discussion of a formal grammar representation, here we
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Fig. 2: An complex activity represented by (a) an AND-OR tree
representation of a task and (b) the equivalent acyclic finite state
machine

simply state that the tasks are described as AND-OR trees
of sub-tasks where sub-tasks are either primitives actions or
compositions. Primitives are analogous to the actions in our
earlier work on linear chains [4] and, as described below, are
assigned probabilistic detectors. The composition elements
are represented by ANDs or ORs of smaller elements.

Figure 2 provides an example of a task whose components
are primitives a,b,c and d. The task requires that first a and
b are performed without an ordering constraint, followed by
c and then by an optional action d. This task structure can be
represented by the illustrated AND-OR tree or the analogous
finite state machine.

As in our earlier work we will produce a Bayes network
representing the temporal structure of the task with network
variables being the start and end time of each element. And
as before, inference over the network will determine the
probability density of these variables given the sensor detec-
tions. However, these variables will no longer be restricted
to representing only primitive actions.

The proposed representation is analogous to grammar-like
or FSM descriptions in prior work from both robotics (e.g.
[2]) and computer vision [11, 15]. One restriction for this
work is that the length of the “string” of actions produced
must be finite since the resulting Bayes net must explicitly
represent every action that occurs.

B. Primitive actions and detectors

We refer to atomic actions of a task as primitives. These
are actions that are not decomposed within our system and
which are defined to have a start and end time; for some

primitive action A we denote these variables A.s and A.e.
These variables admit integer value between 1 and T (the
assumed maximum length of the task), as we operate in
discrete-time fashion.

For each primitive actions we have two important densi-
ties. The first is a duration model P (A.e|A.s) representing
the prior information about the duration of action A. In
our implementation we use Gaussian model derived from
training data: P (A.e|A.s) ∝ N(A.e−A.s;µDur(A), σDur(A)

if T ≥ A.e ≥ A.s ≥ 1, or 0 otherwise.
The second density is an observation likelihood

P (ZA|A.s,A.e). For each primitive action we construct
a visual detector that outputs a detection score DA[α, β]
representing how consistent the observed data is with
the action starting at time α and ending at time β for
every possible(α, β) of the entire input sequence. Then
the likelihood can be computed based on that detection:
P (ZA|A.s = α,A.e = β) = hADA[α, β] for some constant
hA.

The choice of DA reflects the sensitivity and reliability of
the sensing system in being able detect the action A. If, for
example, there was no available sensing, then DA would
be a constant, effectively eliminating any impact on the
inference. In the example scenario that will be test in section
V our sensing will involve tracking hand positions as the
human reaches for a bin of parts. The detector for the human
reaching into a specific bin is a mixture of two factors. The
first is a Gaussian with mean µPos(A) being the bin location
and variance Σ0 determined by the accuracy of the hand
tracker while successfully tracking the hand; the variance is
the same for all bins. The second factor is a constant wm

— representing a uniform distribution that arises when the
tracker has failed (“missed”) and is returning arbitrary values.
The larger wm is, the less confident the system is in its
sensing. A wm of infinity would correspond to the constant
value mentioned earlier — no available sensing information.

C. Sequence of actions: AND

First we desribe the simpler composition: the task S is a
fixed sequence of a number of primitive actions, for example
A, B, C. To represent this composition we use the notation
AND-rule: S → ABC As before we represent the start and
end time as S.s and S.e. Also, as before ZA denotes the
visual observation of primitive action A, and define Z =
ZS = ZA,B,C . The example network is shown in figure 3.

In our network, we define the start and the end of a task
according to its subtasks (S.s = A.s, S.e = C.e). Also we
assume the end of an action is the start of the next one
(A.e = B.s, B.e = C.s). These are denoted as red edges in
the network. The remaining conditional probabilities required
are the duration values and the observation likelihoods of the
primitives.

Given all the conditional probability tables computed, we
use a message-passing algorihtm with forward and backward
phase to perform inference and the output will be the poste-
rior distributions of the start and end of every actions: P (Z)
and P (S.s|Z), P (S.e|Z), P (A.s|Z), P (A.e|Z), . . . [4].
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Fig. 3: A composition element represented by a sequential AND
of primitive actions

D. Branching: OR

Here we describe a more complicated composition: the
task S is defined as either subtask A or B (with some prior
probability, for example 30%, 70%), denote as the OR-rule:
S → A(30%)|B(70%) where A, B can be primitive actions
or further compositions. We call this situation ”branching”:
the task either takes the branch A or branch B.

The network will include the nodes S.s, S.e and the all
components in A, B (that can also be described in recursive
manner). Two possible cases can happen: S is A, or S is B.
In the first cases, we would have S.s = A.s, S.e = A.e, and
we need to denote that B, which we write as B.s = B.e = -1.
We use ∃A and !A to denote the event A happens (A.s, A.e
> 0) or not (A.s = A.e = -1).

A standard approach to realizing ”OR” in Bayes network
is using a ”switching” variable [16]. In this example, it will
be S.i, shown in Figure 4.

The timing of S can be presented in term of timing of A
and B, such as:

P (S.e = α,Z) = WAP (A.e = α,ZA|∃A)+

WBP (B.e = α,ZB |∃B)

whereWA = P (∃A)P (ZB |!B)andWB = P (∃B)P (ZA|!A)

Practically the inference’s forward and backward pro-
cesses are perform on A, B, then the results are combined
for S. The weight of A and B depends on 2 factors:
the prior probabilities P (∃A), P (∃B) and the likelihood
P (Zx|x.s, x.e) for every primitive action x in A and B. For
example strong detection of actions in subtask A would make
S more likely to be A than to be B.

E. Inference

Combining the AND-rule and OR-rule for composition,
one can define more complicated sequence of actions. For
example S → (AB|BA)C(D|∅) is the task that consists of
action A, B in any order, follows by action C, and ends with
optional action D.

The message-passing algorithm is used to perform infer-
ence. Besides values between 1 and T, the distribution of
the timings now also include special value -1, which means
the action does not happen. We have a very rich output:
the posterior probabilities of all branchings (probabilities

Fig. 4: A task element S represented by A OR B.

of an action happens or not) and the distribtion of when
an action starts or ends. From this output, we can also
compute probability that the action x is being performed
at time step t, for every x and t. Note that inference is
performed at every time-step. The network is initialized
with all likelihoods initialized to be a prior uniform value
using the expected detection score (Dv[−1,−1]). As new
observations are obtained, the likelihoods are recomputed.

IV. EXAMPLE APPLICATION DESCRIPTION

We first present a human-robot collaborative application
we use to motivate our investigation. A human sits at a table
across from a robot collaborator who is safely out of reach
of the human, but who can move a set of bins both into and
out of the reach of the human (Fig. 1). Each bin contains
a variable number of Baufix toys, a wooden construction
set of screws, nuts, and bolts, which can be used to make
small model vehicles and other designs. The bins are kitted
so that a number of the bins could be used to construct a
few different models.

For the task, the human is instructed to begin building
a model from the pieces in the bins,. Their reaches are
generally restricted to widthdrawl one part from a bin at
a time. Since the human cannot withdraw from a bin not in
reach, this imposes a task constraint which the robot must
satisfy for the pair to complete the task. When the human
needs to reach for a part from a bin not in the workspace,
they are instructed to wait until the robot has delivered the
bin they need. Based on observations of the human gathered
from sensors in the environment, combined with a model of
the task, the robot begins delivering bins the human might
need. There are only M slots (M = 3 for our experiments)
in the human’s workspace into which the robot can place
bins, so eventually the robot must decide to remove unneeded
bins and deliver more demanded ones. When more than one
construction is possible, the knowledge of which one the
human was performing is not made explicit and must be
inferred by the activity of the human.

We presented in our previous paper [4] a cost-based
planner which optimizes bin delivery and removal timings
given the posterior distributions generated by the inference.
The planner attempts to minimize expected sum squared wait
times, which we use to reduce both total wait time and
the maximum wait period. The planning is mostly identical,
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except that costs are now weighted by the posterior branch
probabilities which come from the OR-rules.

V. EVALUATION

A. Task Descriptions

We developed a simple, illustrative task to demonstrate
the types of behavior our system exhibits in a collaborative
assembly scenario. The human attempts to assemble one of
two possible toys whose parts are each separated into 4 bins
and the robot has no prior knowledge as to which toy the
human will be assembling. The two toy models have an
identical assembly structure and the base structure, in bin
A1, is the same for both. However, each model is a different
color, and all successive parts past the base are in different
bins. Thus, the human needs bins B2, B3, and B4 for model
B and C2, C3, and C4 for model C. We require that the
human perform one reach for each part in the bin and there
are total of 14 parts that need to be assembled, 6 in bin A1,
1 in bin B2/C2, 1 in bin B3/C3, and 6 in bin B4/C4. The
bin A1 is already in the human’s workspace when the task
starts and takes enough time that both bin B2 and bin C2

can be delivered before the human finishes with it. Since
there are so few reaches into the second and third bins, the
human does not provide the robot with a large amount of
information to disambiguate between the two models.

Since the robot cannot determine which model the human
is building before reaching into one of the bins in a branch,
the robot almost always begins by delivering both B2 and C2.
Assuming the robot does not remove bins preemptuously, a
problem we explored more heavily in our previous work, the
best case scenario is when the robot only delivers bins *3

and *4 in the branch the human performing. In the worst
case, the same bins are delivered in the branch the robot is
not performing, followed by the two in the branch they are.

B. Simulation

We developed a simulator which allowed us to evaluate
our planner in a controlled environment. The human agent
was programmed to reach towards bins based on random
times drawn from our duration model. If a necessary bin
was not available in the workspace, the agent would remain
stationary and wait.

In order to investigate the behavior of our system in the
face of action detection ambiguity, we modifed the detector
to demonstrate a false hand position. For each reach, the
target position was randomly perterbed from the center of
the bin along the row of bins by a value drawn from a
Gaussian. Thus, some reaches will mistakenly appear as they
are reaching towards the middle of two bins or even into
another bin. We use the variance this Gaussian to control
the “detector reliability”, as higher variances make it more
difficult for the robot to disambiguate what action the human
is performing. For high reliability, we use σ = 1 cm, and
for low reliability, we use σ = 20 cm.

Likewise, in the robot’s inference model, we alter the
parameters of the sensor model to control the “detector
confidence”. By adjusting the variance weighing factor in the
likelihood function, which determines how much to smooth
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Fig. 5: Distributions of results from a set of N = 50 simulated tri-
als for each detector performance/detector confidence combination:
Reliable Detector (RD), Unreliable Detector (UD), High detector
Confidence (HC), and Low detector Confidence (LC). For each
condition, in half the trials the simulated human built model B and
half built model C, each without prior knowledge by the robot. As
the robot’s estimation about its detector reliability better matches
the the actual stocastic processes, the human’s typical wait time
improves, the variance of the wait times is reduced, and its worst-
case wait time is limited.

the distance measure to the center of the bin reach location,
we are able to expand and contract the area where bin reaches
produce responses. Given the bins are about 15 cm apart,
we use a high confidence value of σ = 6 cm and a low
confidence value of σ = 10 cm.

The results of our simulation trials can be found in
Fig. 5. Generally, when the robot has confidence in its good
detectors (RD, HC), after perceiving a reach into the B2 bin,
it commits by immediately delivering B3 and B4. Thus, the
human waits very little or not at all.

However, when the robot has confidence in a bad detector
(UD, HC), a variety of cases can occur. Sometimes, detec-
tions are accurate and the robot acts similarly to the (RD,
HC) case. Frequently, the detections are ambiguous, where
there is not strong evidence supporting one bin being the
target and not the other. In this case, the robot usually plans
to deliver both of the next possible bins. Occasionally, a
detection occurs which causes the robot to strongly believe
the other branch is being built, thus causing a worst-case
scenario where the human’s next two anticipated bins are
entirely wrong.

Having low confidence in a bad detector (UD, LC) gener-
ally causes the robot to cover its bases, delivering bins from
both branches regardless of which detections are stronger.
Having low confidence in a good detector (RD, LC) exhibits
similar behavior, except that it is more likely to get a stronger
response from the correct bin, so that it delivers the correct
bins first. However, it is not nearly as fast as having a
properly matched confidence (RD, HC).

C. Real World Example Cases

We also ran experiments with a real human-robot collabo-
rative team. The robot was a 6-DOF Universal Robots UR-10
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Human-Robot Total Wait Times (s)
Reliable Detect. Unreliable Detect.

High Confid. {5.0, 7.9, 20.4} {12.2, 13.6, 21.0}
Low Confid. {8.0, 18.1, 25.0} {16.5, 19.6, 27.3}

TABLE I: Sorted total wait times for N = 3 real-world trials for
each condition. Consistent with Fig. 5, in the reliable detector case,
high confidence performs better than low. Furthermore, the reliable
cases perform better than the unreliable, for both confidence beliefs.
However, more testing is required to confirm that occasionally, an
unreliable detector with excessively high confidence should produce
a very long waiting time.

mounted to a steel table with a Robotiq C-model parallel jaw
gripper. Above the robot, a webcam was mounted to track the
positions and orientations of the bins, affixed with Alternate
Reality (AR) tags. To the side of the human and bins, a
Kinect RGB-D sensor was mounted to sense the behavior
of the human. The entire system is calibrated such that the
locations of the bins are known with respect to both the robot
and the human sensing.

The task the human performed is exactly the same linear
task we tested in simulation. To track the human collabora-
tor’s hands, we used brightly colored surgical gloves and
implemented a color blob tracker on the RGB-D sensor.
In typical operation, we call the hand tracking system a
reliable detector (RD). To produce an unreliable detector
(UD) condition, we alter the RGB-D extrinsic calibration
by 6 cm.

The results for each of the trials, sorted by total wait time,
can be found in figure I. These results seem consistent with
the results obtained in figure 5, but are difficult to verify due
to the small sample size.

VI. DISCUSSION AND CONCLUSION

In this paper, we have proposed a significant extension
of our previous work which allows us to model multi-path
branching in a probabilistic manner. By accomodating the
idea that some actions do not need to be performed by
the human at all, we can greatly expand the application
of our framework to non-deterministic tasks. Since real-
world human-robot interactions rarely have a linear chain
structure, this development will make the system far more
useful. Futhermore, by encoding the task structure that still
exists, the robot can continually integrate new information
and propogate it forward and backwards in time, always
improving its perception of the human’s past, current, and
future states.

By maintaining densities over multiple branch possibil-
ities, the robot can act in a way that does not require it
to commit to a particular branch belief. Thus, the robot is
both generally robust to mistakes, since it maintains a non-
zero belief that alternate branches are the actual branches
and that the absence of detections in the future provides
information which can be used to reassess the likelihood
of missed detections in the past. Furthermore, it can use its
knowledge more effectively to be more or less conservative
when it comes to making projections about which actions the
human will need the robot to do next. The robot can leverage

this information optimize its execution to reduce the number
of supporting actions it must perform.

We have performed experiments which seem to confirm
that by simply adjusting the confidence in your detectors,
you can tune your system to behave more appropriately in
the face of uncertainty. As robots are more broadly deployed,
having simple, intuitive methods which allow users to correct
for percieved mistake-ridden risky behavior, or speed up slow
conservative behavior.

In future work, we should perform a more rigiorous real-
world evaluation of the system with more trials and novice
users. Furthermore, we should show that our model works
under a large range of task structures by generating random,
more complex tasks.
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