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Abstract— An important aspect of human perception is an-

ticipation, which we use extensively in our day-to-day activities

when interacting with other humans as well as with our

surroundings. Anticipating which activities will a human do

next (and how to do them) in useful for many applications,

for example, anticipation enables an assistive robot to plan

ahead for reactive responses in the human environments. In this

work, we represent each possible future using an anticipatory

temporal conditional random field (ATCRF) that models the

rich spatial-temporal relations through object affordances. We

then consider each ATCRF as a particle and represent the

distribution over the potential futures using a set of particles.

In extensive evaluation on CAD-120 human activity RGB-D

dataset, for new subjects (not seen in the training set), we

obtain an activity anticipation accuracy (defined as whether one

of top three predictions actually happened) of 75.4%, 69.2%

and 58.1% for an anticipation time of 1, 3 and 10 seconds

respectively. Finally, we also use our algorithm on a robot for

performing a few reactive responses.
1

I. INTRODUCTION
For a personal robot to be able to assist humans, it is

important for it to be able to detect what a human in
currently doing as well as anticipate what she is going to do
next and how. The former ability is useful for applications
such as monitoring and surveillance, but we need the latter
for applications that require reactive responses (e.g., see
Figure 1). In this paper, our goal is to use anticipation for
predicting future activities as well as improving detection (of
past activities).

There has been a significant amount of work in detecting
human activities from 2D RGB videos [2], [3], [4], from
inertial/location sensors [5], and more recently from RGB-D
videos [6], [7], [8]. The primary approach in these works is
to first convert the input sensor stream into a spatio-temporal
representation, and then to infer labels over the inputs. These
works use different types of information, such as human
pose, interaction with objects, object shape and appearance
features. However, these methods can be used only to predict
the labeling of an observed activity and cannot be used to
anticipate what can happen next and how.

Our goal is to predict the future activities as well as
the details of how a human is going to perform them in
short-term (e.g., 1-10 seconds). We present an anticipa-
tory temporal conditional random field (ATCRF), where we
model the past with the CRF described above but augmented
with the trajectories and with nodes/edges representing the
object affordances, sub-activities, and trajectories in the
future. Since there are many possible futures, each ATCRF
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(a) Robot’s RGB-D view. (b) Heatmap of object affordances.

(c) Heatmap of trajectories. (d) Robot opening the door.

Fig. 1. Reactive robot response through anticipation: Robot observes
a person holding an object and walking towards a fridge (a). It uses our
ATCRF to anticipate the object affordances (b), and trajectories (c). It then
performs an anticipatory action of opening the door (d).

represents only one of them. In order to find the most likely
ones, we consider each ATCRF as a particle and propagate
them over time, using the set of particles to represent the
distribution over the future possible activities. One challenge
is to use the discriminative power of the CRFs (where
the observations are continuous and labels are discrete) for
also producing the generative anticipation—labels over sub-
activities, affordances, and spatial trajectories.

We evaluate our anticipation approach extensively on
CAD-120 human activity dataset [6], which contains 120
RGB-D videos of daily human activities, such as having
meal, microwaving food, taking medicine, etc. Our algo-
rithm obtains an activity anticipation accuracy (defined as
whether one of top three predictions actually happened) of
(75.4.1%,69.2%,58.1%) for predicting (1,3,10) seconds into
the future. Our experiments also show good performance
on anticipating the object affordances and trajectories. For
robotic evaluation, we measure how many times the robot an-
ticipates and performs the correct reactive response. Videos
showing our robotic experiments and code are available at:
http://pr.cs.cornell.edu/anticipation/.

II. APPROACH

Our goal is to anticipate what a human will do next given
the current observation of his pose and the surrounding en-
vironment. Since activities happen over a long time horizon,
with each activity being composed of sub-activities involving
different number of objects, we first perform segmentation
in time. Each temporal segment represents one sub-activity,
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Fig. 2. Figure showing the CRF structure and the process of augmenting
it to obtain multiple ATCRFs at time t for an activity with three objects.
For the sake of clarity, frame level nodes are shown only for one temporal
segment.

and we then model the activity using a spatio-temporal graph
(a CRF) shown in Figure 2-left.

However, this graph can only model the present observa-
tions. In order to predict the future, we augment the graph
with an ‘anticipated’ temporal segment, with anticipated
nodes for sub-activities, objects (their affordances), and
the corresponding spatio-temporal trajectories. We call this
augmented graph an anticipatory temporal CRF (ATCRF).

Our goal is to obtain a distribution over the future possibil-
ities, i.e., a distribution over possible ATCRFs. Motivated by
particle filtering algorithm [9], we represent this distribution
as a set of weighted particles, where each particle is a
sampled ATCRF. Partial observations become available as
the sub-activity is being performed and we use these partial
observations to improve the estimation of the distribution.
Since each of our ATCRF captures strong context over
time (which sub-activity follows another) and space (spatial
motion of humans and objects, and their interactions), each
of our particles (i.e., possible future) is rich in its modeling
capacity. Our experiments in Section III will show that this
is essential for anticipating human actions.

Anticipated temporal segments are generated based on the
available object affordances and the current configuration of
the 3D scene. For example, if a person has picked up a
coffee mug, one possible outcome could be drinking from it.
Therefore, for each object, we sample possible locations at
the end of the anticipated sub-activity and several trajectories
based on the selected affordance.

III. EXPERIMENTS
We performed an extensive evaluation on CAD-120 human

activity RGB-D dataset. For a new subject (not seen in the
training set), we obtain an activity anticipation accuracy
(defined as whether one of top three predictions actually
happened) of 75.4%, 69.2% and 58.1% for an anticipation
time of 1, 3 and 10 seconds respectively. Fig. 3 shows how
the performance changes with the future anticipation time.

We also consider the following scenario for evaluating
our algorithm on the robot for an assistance task: Robot is
instructed to refill water glasses for people seated at a table,
but when it anticipates an interaction with the cup, it waits
for the interaction to complete before refilling. The robot
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Fig. 3. Plot showing how robot anticipation metric changes with the future
anticipation time.

considers the three top scored anticipations for taking the
decision. We considered 40 pour instructions given during
10 interaction tasks, and obtained a success rate of 85%,
which is the fraction of times the robot correctly identifies
its response (’to pour’ or ’not pour’).

The accompanying video shows PR2 robot performing two
assistive tasks based on the generated anticipations. In the
first task, the robot assists in the activity by opening the
fridge door when it sees the person approaching the fridge
with an object. In the second task, the robot serves a drink
without spilling by anticipating the person’s interactions with
the cup.

IV. CONCLUSIONS
In this work, we considered the problem of using antici-

pation of future activities. We modeled the human activities
and object affordances in the past using a rich graphical
model (CRF), and extended it to include future possible
scenarios. Each possibility was represented as a potential
graph structure and labeling over the graph (which includes
discrete labels as well as human and object trajectories),
which we called ATCRF. We used importance sampling
techniques for estimating and evaluating the most likely fu-
ture scenarios. We also extensively evaluated our algorithm,
against baselines, on the tasks of anticipating activity and
affordance labels.
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