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ABSTRACT

As part of a future mission to Mars currently studied by
NASA and ESA, the Mars Sample Return campaign aims
to bring back the sample tubes collected by the Perse-
verance rover. In this paper, we propose a two-stage ap-
proach for estimating the pose of the sample tubes de-
posited on the Martian surface. In the first stage, key-
points are obtained using data-driven techniques; then,
PnP combined with RANSAC is used to obtain the trans-
lation and rotation of the tubes. In this work, the results
on the first stage are reported. Specifically, three repre-
sentations are implemented and evaluated to localize 2D
keypoints on the tubes for a later matching with their cor-
responding 3D coordinates to obtain their pose. The so-
lution was trained and evaluated using a dataset collected
at the NASA’s Jet Propulsion Laboratory.

Key words: MSR, object pose estimation, keypoint esti-
mation.

1. INTRODUCTION

As identified by the Planetary Science Decadal Survey in
2011 [1], the Mars Sample Return (MSR) is a high pri-
ority long-term goal for NASA. This MSR campaign is
based on a 3 mission concept [2]. The first mission, cur-
rently ongoing by NASA’s Perseverance rover, consists of
collecting rock samples and storing them in sealed tubes,
which will be left on the surface of Mars for a future
mission to return them to Earth. The second mission, a
Sample Retrieval Lander (SRL), would collect the sample
tubes and load them into an Orbiting Sample (OS) pay-
load in a Mars Ascent Vehicle (MAV). The MAV would
release the OS into Martian orbit. For the last mission,
a Sample Return Orbiter (SRO) would retrieve the OS in
Martian orbit and come back to Earth.

This work focuses on the second mission, in which the
SRL would collect the tube samples. In detail, the SRL
would be comprised of a Sample Fetch Rover (SFR) pro-
vided by ESA, a Sample Transfer Arm (STA), the previ-
ously mentioned OS and MAV. From these, the SFR, see

Figure 1. Illustration of ESA’s SFR rover collecting a
sample tube

Figure 1, is meant to collect the samples autonomously
in a short period [3]. Therefore, it must be capable of ef-
ficiently and accurately estimating the tubes’ pose on the
Martian surface. On top of that, tube detection must be
robust to dust, shadows, poor lighting conditions, diverse
terrain, and possible occlusions, among other challenges
[4]. Moreover, the nature of the problem implies a limi-
tation in the resources such as memory, CPU, and GPU.
Finally, tube detection is required to work on the rover’s
stereo navigation cameras, but also on a monocular wrist
camera mounted on a robotic arm to pick up the tubes.
Therefore, the vision system must be capable of inferring
tube position and orientation by using monocular images
only.

Because the estimation of the pose has been widely stud-
ied, the proposed framework is based on state-of-the-art
techniques for object pose estimation (OPE). OPE is a
problem from the image processing and computer vision
field that aims to infer the relative position and orientation
of an object using as input either grayscale, color, or/and
depth information. For achieving this objective, through-
out the years both traditional and data-driven techniques
have been proposed. In fact, in the last years, OPE has
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grown due to its multiple applications such as augmented
reality, self-driving cars, and robotics [5].

Although the classical image processing algorithms for
this task are mature and transparent, their reliance on
fixed matching procedures and handcrafted features limit
their performance. On the other hand, deep-learning-
based techniques offer higher accuracy and more versatil-
ity. Nonetheless, their drawbacks regard the consumption
of high computing resources and the difficulty to interpret
their decisions. Therefore, mixing the two techniques has
been found to be the recommendable approach for accu-
rate, lightweight, and predictable systems.

As previously mentioned, memory and computational
power are limited; thus, lightweight solutions are needed.
Because of the tubes’ symmetry, it is not necessary to get
the full 6D pose. However, this represents an additional
challenge when defining keypoints to be easily distin-
guishable. On the other side, we count with prior knowl-
edge about the dimensions of the tubes and the number
of classes (just sample tubes). All these restrictions and
problem-specific peculiarities were considered in the pro-
posed solution.

In this work, we propose to estimate the full pose of the
sample tubes using monocular RGB images based on a
two-stage approach designed to fit the limited memory
and computational resources. For achieving this, first,
the positions of the tubes are obtained using a modified
off-the-shelf object detector. Next, a set of keypoints of
the obtained region of interest in the previous step, are
predicted using an image regressor. Finally, the pose is
obtained using a traditional method. Our contributions
are as follows:

• We propose a new representation for encoding the
position of keypoints that aims to improve the key-
point detection.

• A two-stage approach for sample tube pose esti-
mation is defined by combining deep-learning tech-
niques for keypoint estimation and traditional meth-
ods for pose computation.

• An experimental evaluation of the proposed repre-
sentations and framework is provided, which aims
to find the most suitable architecture to meet the re-
quirements and constraints.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews previous works. Section 3 describes the
proposed method. Experiments and results are presented
in Section 4. Next, in Section 5 we present our conclu-
sions. Finally, in Section 6 the next steps and future work
are defined.

2. RELATED WORKS

Regarding the problem of object pose estimation, from
a technical point of view, the proposed state-of-the-art
solutions can be divided into 1) Traditional approach:
Geometry-driven approach in which the pose estimation
is computed with classic methods based on handcrafted

features. 2) End-to-end approach: Data-driven ap-
proach in which the detection and pose estimation steps
are done together in a single forward pass through a neu-
ral network. 3) Two-stage approach: First regress 2D
keypoints using deep learning techniques, then infer 6D
pose parameters by mapping the relationship of 2D to
3D coordinates. From there, the proposed framework be-
longs to the two-stage approach since we obtain first a set
of custom keypoints which are used to predict the pose
by matching them to their corresponding 3D points, see
Section 3.

2.1. Traditional techniques

Traditional solutions can be classified into 1) Point-pair
based features: A model description is created based on
global oriented point pair features and matches them lo-
cally with a Hough voting scheme such as in [6; 7]. 2)
Template-based: Match the input image and the tem-
plate to obtain the 6D pose of the matched template as
the pose estimation result. An example of this technique
is [8] where gradient orientations and/or surface normals
are used to obtain a new binary representation and capture
the appearance of the object in a set of templates covering
different views. 3) 3D local features: 3D features are ex-
tracted from the RGB-D images and classified to estimate
the 6D pose, such as in [9].

Although traditional methods based on the previously
mentioned techniques have had considerable success in
the computer vision field, the reliance on fixed match-
ing procedures and handcrafted features limit their per-
formance. Moreover, they have difficulty handling tex-
tureless objects as well as processing low-resolution im-
ages [5]. Therefore, alternative solutions were explored
that better suit our problem, because the image of the tube
has low resolution and is faintly textureless.

2.2. Data-driven techniques

Several end-to-end techniques have been proposed to di-
rectly predict the 6D object pose from monocular RGB
images. BB8 [10], is a method that first identifies the 2D
objects using a segmentation model in a two-level coarse-
to-fine manner to find the centers of the objects and then
applies a Deep Network based on [11] to estimate 3D
points which are then matched via PnP. SilhoNet [12],
a framework that first creates feature maps concatenated
with features from a set of rendered object viewpoints to
obtain a 3D vector of the center of the object and combine
it with an L2-normalized quaternion to get the 6D pose.

In the last years, more sophisticated solutions have been
proposed. For example, EfficientPose [13] is an exten-
sion of the 2D detector EfficientNet [14], with two extra
subnetworks on top of it to predict the rotation and trans-
lation of one or more instances. RePose [15], a fast it-
erative refinement method based on an encoder-decoder
architecture. Here, the encoder uses pre-trained weights
and the decoder is trained on the Levenberg-Marquardt
optimization [16] with the output features from a deep
texture rendered of the template 3D model and the output
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Figure 2. Proposed framework

of a U-Net from the RGB image to obtain the final pose
after a defined number of iterations.

The classical computer vision algorithms for pose esti-
mation are transparent and easy to verify. However, deep-
learning approaches offer better performance and versa-
tility since they do not rely on handcrafted features. Nev-
ertheless, the main drawback of these is their black-box
natures, making them difficult to validate. Moreover, they
also require thousands of examples to train and tend to
consume more computing resources. Therefore, mixing
these two technologies is recommendable for accurate
and high-performance systems [17].

2.3. Two-stage techniques

In Pavlakos et al. [18] and Park et al. [19] the au-
thors propose a pipeline that includes object detection,
keypoint localization, and pose optimization. [18] use
a Stacked hourglass CNN to predict a set of semantic
keypoints represented as heatmaps. Then, the pose is
estimated by maximizing the geometric consistency be-
tween a parametrized deformable model and the 2D key-
points. On the other hand, Pix2Pose[19] proposes an au-
toencoder architecture designed to estimate the 3D coor-
dinates per pixel.

Tekin et al.[5] propose to predict 2D projections of the
corners of the 3D bounding box around our objects. For
obtaining the 2D projections, they use a modified version
of YOLOv2 [20]. Zakharov et al. in DPOD [21] esti-
mate dense 2D-3D correspondences between an RGB in-
put image and the object 3D models using auto-encoders
[22]. Given the 2D-3D correspondences, [5; 21; 19] use
PnP combined with a RANSAC scheme algorithm to ob-
tain the pose of the objects.

Many recent works have shown that a two-stage ap-
proach, which first detects keypoints and then solves a
PnP problem for pose estimation, achieves remarkable
performance [17; 23]. Therefore, our solution is based
on this approach.

3. PROPOSED APPROACH

In this work, we focus on solving the problem of sample-
tube pose estimation using a two-stage approach. Indeed,

Figure 3. Keypoint representation encoding for the 7th
keypoint

to the best of our knowledge, we found that deep learn-
ing combined with traditional methods produces better
results as stated in [17]. The proposed framework, see
Fig. 2, combines data-driven and traditional techniques.
We first introduce the object detector, which obtains the
position of the tubes. Having the localization of the tubes
in the image, a cropped ROI is then passed to the next
stage. In the keypoint detector, a set of predefined key-
points are identified through a color encoding scheme.
Finally, the pose is estimated using a PnP algorithm in
combination with a RANSAC voting scheme. The last
stage is not part of this work but is aimed to be presented
in a future paper.

3.1. Sample tube detection

Inspired by [24], as a first stage, we aim to reduce
the searching space, processing time, and computational
power by localizing the object(s) of interest visible in the
input image. During the last decade, various CNN [25]
algorithms have been proposed to tackle the task of object
detection, such as the family of region proposal methods
R-CNN [26], Fast R-CNN [26] or Faster R-CNN [27],
Mask R-CNN [28] along with the family of YOLO algo-
rithms [29; 20; 30] or other methods such as SSD [31].
Motivated by [32; 33; 34; 35], we decided to choose an
object detector based on YOLOv3 as it has been proven
to have an overall good accuracy, and it is faster com-
pared with the other methods. However, the accuracy of
YOLOv3 is not the best, but to detect the sample tube
coarsely, we can tolerate these small detection errors as
the idea of using this detector first is to reduce the size of
the image to just the ROI of the detected object and pass
it to the next stage.
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Figure 4. Color encoding for a single keypoint

3.2. Keypoint definition and representation

Following the two-stage approach, given the cropped re-
gion of a sample tube, the objective is to regress the po-
sition of a set of keypoints to estimate the pose of the
object. Thus, we defined a set of keypoints as shown in
keypoint detector in Fig. 2. In total, eight keypoint were
defined in [23]. In a nutshell, a keypoint is a point easily
distinguishable, so we defined the most prominent cor-
ners in an anti-clockwise direction as our keypoints.

Having the keypoint defined, next, a suitable representa-
tion is needed. There are mainly two options to repre-
sent the localization of the keypoints: sparse and dense
representation. The former represents the keypoints as a
simple 3D bounding box [5; 10] or custom coordinates
[18]. On the other hand, by dense representation, we re-
fer to encode information about the keypoint localization
in each pixel [23; 21; 19].

To obtain the best performance, three representations for
encoding the localization of the keypoints are evaluated:
using heatmaps, color encoding, and masked color en-
coding. Fig. 3 shows the three representations for a sin-
gle keypoint. The heatmap is obtained by placing a 2D
Gaussian distribution with the peak at the location of the
keypoint. In the color encoding, each pixel in the rep-
resentation can be interpreted as a vector pointing to a
certain keypoint. Finally, the masked color encoding is
obtained by combining a binary segmentation mask of
the tube with its color-coding.

Because numerous correspondences are beneficial for ob-
taining high-quality 6D poses [21], we expect that a dense
representation will outperform the sparse one. Our color
representation is inspired by the vector-field representa-
tion from [23] since it is reported to be robust against
occlusions. Therefore, because we expect to face chal-
lenges such as shadows, occlusions due to dust covering,
and poor lighting conditions; by using this representation,
we aim to have a strong representation for encoding the
localization of the keypoints.

For obtaining the color encoding. 1) We compute the hor-
izontal and vertical distances of each pixel w.r.t the loca-
tion of a keypoint. 2) Using these distances, the magni-
tude and orientation of vectors pointing to the keypoint
per each pixel are obtained. 3) The orientations are en-
coded in a color format using the Hue value in an HSV
color space. At the same time, the magnitude of the vec-
tors is encoded as the Value. 4) The HSV images are
transformed to RGB for visualization purposes. A repre-
sentation of this process is shown in Fig. 4

3.3. Keypoint estimation

Having the representations of the keypoint defined, we
propose to regress the keypoint representations and seg-
mentation masks of the tubes using an architecture based
on a U-Net. We adopted this architecture since it only
needs a few annotated images and has a very reasonable
training time [36]. Moreover, it has been proved to per-
form well in segmentation tasks where fine predictions
are required. Unlike other previous solutions [21] which
use an encoder-decoder network as a feature extractor, the
U-Net skip connections concatenate the activations from
the encoder to the decoder, which duplicates the number
of channels in the decoder. This action helped us to re-
lieve the bottleneck problem and reduce the loss and im-
prove the quality of the results. The architecture of the
model is shown in Fig. 6.

3.4. Estimation of the pose

Once the localization of the keypoints is obtained, the
next stage is to compute the pose of the tubes. For achiev-
ing this, we decided to use the traditional Perspective-n-
Point (PnP) algorithm in combination with a RANSAC
voting scheme. This combination is popular in the state-
of-the-art since it is computationally fast and obtains ac-
ceptable results. The PnP matches the 2D localization
of the keypoints with their 3D correspondences to obtain
the rotation and translation vectors, i.e. the 6D pose of the
object. Instead of using a physical object of the sample
tube, a 3D rendering [37] was used instead for obtaining
the measures of the 3D coordinates.

4. EXPERIMENTS AND RESULTS

In this section, we introduce the dataset used in the ex-
periments. Next, the parameter and training schemes are
detailed. Finally, we compare the performance of the pro-
posed representations and obtain the predicted keypoints.

4.1. Dataset

In this work, we used a dataset collected at the NASA’s
Jet Propulsion Laboratory (JPL) [4] to evaluate our
model. This dataset composed of outdoor images was ac-
quired at JPL’s Mars Yard to simulate the environmental
conditions that the SFR will face on Mars. These diverse
conditions include different terrain formations, different
lighting conditions, and object occlusions provoked by
rocks or dust covering (with different amounts of cover-
age). The images were acquired using four FLIR Black-
Fly S cameras, forming two stereo pairs with baselines of
20cm and 40cm. The cameras were placed at two differ-
ent heights of 1m and 2m trying to replicate the Persever-
ance rover’s onboard cameras (HazCam and NavCam).
The dataset comprises RGB images of 5472×3648px,
ground truth segmentation masks with their associated
bounding boxes, and rotation and translation information
for a small portion of samples. The dataset in total con-
tains 824 images with 4852 annotated instances of tubes,
out of which 256 of those have an associated 6D pose.
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Figure 5. Sample tube detection architecture.

Figure 6. Keypoint detector architecture.

As previously mentioned, the dataset used for the experi-
ments comprises a big subset of instances annotated with
a segmentation mask along with a bounding box, and a
small subset with an additional annotation of translation
and rotation. For training the object detection models,
the first set was enough. However, because of the re-
duced size of the samples annotated with their pose, an
additional manual annotation stage was required where
instead of directly labeling the pose of the tubes, the lo-
calization of the defined keypoints and the dimensions of
a 3D model of the tube were enough to obtain an esti-
mation of the pose using the pose estimation algorithms
mentioned before. After this process, 3081 samples were
collected.

4.2. Model parameters

The architecture proposed for the object detector is
based on YOLO [29], an architecture mainly built with
modules of a Convolutional layer, a Batch Normalization
layer, a Leaky ReLU activation function, and a Max
Pooling layer. Thus, if we denote CkBM to denote
each complete module where Convolution-BatchNorm-
LeakyReLU-MaxPool are applied, CkB to denote each
block where Convolution-BatchNorm-LeakyReLU are
applied and Ck to denote each block where a Con-
volution layer and a Linear activation function are
applied, with k representing the number of filters for
the Convolutional layer, then the resulting architecture
has the following structure: C16BM-C32BM-C64BM-
-C128BM-C256BM-C512BM-C1024B-C256B-

-C512B-C36. Additionally, kernels of size 3x3 were
used in every Convolutional layer except in C256B and
C36 where a kernel of size 1 was used. Kernels of size
2X2 with a stride of 2 were used in all the Max Pooling
layers except on the last one where a stride of 1 was
used. Lastly, the Leaky ReLUs activation functions were
implemented with a slope of 0.1.

The architecture proposed for the keypoint detector is
based on a U-Net [36]. The U-Net can be divided into
two main parts: an encoder (E) and a decoder (D). In the
former, the convolutions downsample the feature maps
by a factor of 2. In contrast, the decoder upsample them
by the same factor. In our model, the encoder and de-
coder use modules of the form: (De)Convolution
- Batch Normalization - ReLu. Thus, to de-
note these modules, Ck will represent a module com-
posed of Conv-BatchNorm-ReLU with k filters. Whereas
CDk states for a module of DeConv-BatchNorm-ReLU
with k layers and a dropout of 0.5. Moreover, filters of
4x4 with a stride of 2 were used in all (de)convolutions
layers. Lastly, we implemented Leaky ReLUs in the en-
coder layers with a slope of 0.2, whilst in the decoder
network, simple ReLUs were used. We trained a network
with the next structure: E: C16-C32-C64-C128 D:
CD64-CD32-CD16.

4.3. Training details

The object detector network was trained using pre-trained
weights from the COCO dataset [38], and thus transfer
learning was applied to retrain the network with the im-
ages from the JPL dataset. As for the optimization func-
tion, Adam optimizator was employed, with a learning
rate of 0.003. A loss function based on Mean Squared
Error (MSE) and Cross Entropy was employed to obtain
optimal results, as for this task we are only dealing with
one class to be identified, Binary Cross Entropy turned
out to be more suitable. Notice that, all images were re-
sized to 416x416 to be fed to the network.

All networks for the keypoint detector were trained from
scratch, so the weights were initialized from a Gaussian
distribution with a mean of 0 and a standard deviation
of 0.02. Because in all the representations, we needed to
obtain continuous values, bitwise MSE was used as a loss
function with Adam as an optimizer, with a learning rate
of 0.0002 and momentum parameters of β1 = 0.5, β2 =
0.999. However, since the number of samples is limited,
data augmentation was necessary. For this purpose, the
random jitter technique was applied before the training
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Figure 7. Prediction on a sample of the test set for the proposed representation. Each two rows correspond to the heatmap
encoding, color coded, and color masked encoding approach, respectively

stage. All the representations were resized from 128 ×
128 to 153 × 153 and then randomly cropped back to
their original size. We noticed that a stable performance
was achieved after 50 epochs of training.

The different configurations of our models were imple-
mented in Python using Keras, TensorFlow, and Pytorch
framework. The training and test stages were performed
using the Google Colab tool. The virtual machine used
in the experiments had a 2.3 GHz dual-core processor, 25
GB of RAM, an NVIDIA Tesla K80 graphic card with 12
GB of memory, and 2496 CUDA cores.

4.4. Results and analysis

Regarding the performance of our object detector, we no-
ticed that after 82 epochs there was no more improvement
of the model. Therefore, early stopping during training
was needed to avoid overfitting in the training data. We
then calculated the Precision-Recall curve for the object
detector, with an average precision (AP) of 0.807. This
value indicates that the model has high precision and a
high recall, which means that there is a low false-positive
rate meaning that there will be a low rate of detecting
tubes where they are not as well as a low false-negative
rate meaning that there will be a low rate of missing a
tube. Although the average precision is good and our ap-
proach performs pretty well in general, there are some
cases where the detection is performed poorly or com-
pletely missed when for example the tube is mainly oc-
cluded and only a small part of it is visible. As the aim
of this object detector is to be able to crop the ROI of the
bounding box of the tube, we consider that these results
are still good for this purpose as in the next step of the
process the keypoint predictor will refine this work.

To demonstrate the performance of our keypoint detector,
first, we present the qualitative results for the three pro-
posed representations in Fig. 7. In the first column, the
input image is plotted, in the next columns, the ground
truth and predictions are shown next to each other for the

Figure 8. Training and validation loss

segmentation mask and the eight keypoints. In total, three
models were trained, and the predictions for two test sam-
ples for one model are shown in the figure.

The first two rows of Fig. 7 represent the prediction of
the U-Net for the heatmap encoding. As it can be seen,
the model do not learn effectively the task since multi-
ple areas are highlighted. Nevertheless, it is important
to note that the output has some relation w.r.t. expected
prediction since they are located in a similar region.

On the other hand, the model effectively maps the dense
representations encoded in color when using the color en-
coding. This is less evident when using the masked color
representation. This can be corroborated by comparing
the label with the prediction color tone. Moreover, notice
that models can cope with challenging conditions. The
regressor is capable of identifying the pose of the encod-
ing of the tubes, even under occlusions and shadows.

From these results, we noticed that the best performance
was achieved when using color-coding. Therefore, we
continued the experiments using this color-coding repre-
sentation. Fig. 8 shows the loss during the training for
the training and test set. Notice that after 25 epochs, the
learning stops improving. Nevertheless, due to the re-
duced model, and data augmentation the model does not
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Figure 9. Predictions for the 8 keypoints.

overfit.

Having the predictions for the keypoints, we obtained the
position of the keypoints using the color information. In
Fig 9, we present some obtained results, where the key-
points are marked in a cyan and enumerated. Notice that,
the model effectively encodes the information about key-
points 4, 5, 6, 7, and places them close to the correct lo-
cation; however, it fails to distinguish between keypoints
1, 2, 3, 8, and places them in a similar position.

From the predicted locations, we noticed that the sparsity
of the keypoints helps the model to generalize and cor-
rectly predict the location. Indeed, points corresponding
to the head of the tube were correctly localized in most
of the samples with some small displacement, which can
easily be corrected by modifying their locations using the
predicted binary mask i.e. by moving keypoints to the
close boundary point. Nevertheless, the 6D pose esti-
mation was not correctly obtained due to the misplaced
predicted points in the tail of the tube. Therefore, a new
annotation scheme is needed considering the findings in
this work.

5. CONCLUSIONS

In this paper, we propose to use a two-stage approach for
estimating the pose of sample tube using monocular color
images. The solution is aimed to overcome variations
due to environmental challenges and fit the requirements.
Since the sample tube pose estimation is a complex task
where the amount of information and resources are lim-
ited, we propose to use a two-stage approach combining
data-driven and traditional models. First, an object detec-
tor obtains the ROI of the tubes. Then, a set of keypoints
are regressed using a color-coding scheme. Three encod-
ing schemes are proposed, from which, through experi-
ments, we have seen that color encoding obtained better
results. Because of the wrong prediction of some key-
points the pose of the tubes was not correctly obtained.

However, this could be solved by defining a new set of
locations for the keypoints based on the outcomes of this
work.

6. FUTURE WORK

In the future, we will complete the proposed framework
by implementing the pose estimator. Moreover, we will
collect a dataset with a setting similar to the navigation
and wrist camera that will be mounted on the SFR. More-
over, the new dataset is aimed to be as close as possible
to the expected scenario. Furthermore, we are going to
improve the performance of the object detector and the
keypoint estimator.
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