Hierarchical Integration of Local 3D Features
for Probabilistic Pose Recovery

Renaud Detry
Montefiore Institute, University of Liege, Belgium
Email: Renaud.Detry @ULg.ac.be

Abstract— This paper presents a 3D object representation
framework. We develop a hierarchical model based on probabilis-
tic correspondences and probabilistic relations between 3D visual
features. Features at the bottom of the hierarchy are bound to
local observations. Pairs of features that present strong geometric
correlation are iteratively grouped into higher-level meta-features
that encode probabilistic relative spatial relationships between
their children. The model is instantiated by propagating evidence
up and down the hierarchy using a Belief Propagation algorithm,
which infers the pose of high-level features from local evidence
and reinforces local evidence from globally consistent knowledge.
We demonstrate how to use our framework to estimate the pose of
a known object in an unknown scene, and provide a quantitative
performance evaluation on synthetic data.

I. INTRODUCTION

Objects can be characterized by configurations of parts. This
insight is reflected in computer vision by the increasing pop-
ularity of representations that combine local appearance with
spatial relationships [1, 2, 12]. Such methods are richer and
more easily constructed than purely geometric models, more
expressive than methods purely based on local appearance
such as bag-of-features methods [10, 3] and more robust and
more easily handled in the presence of clutter and occlusions
than methods based on global appearance. Moreover, they not
only allow bottom-up inference of object parameters based on
features detected in images, but also top-down inference of
image-space appearance based on object parameters.

We have recently presented a framework for unsupervised
learning of hierarchical representations that combine local
appearance and probabilistic spatial relationships [13, 14]. By
analyzing a set of training images, our method creates a code-
book of features and observes recurring spatial relationships
between them. Pairs of features that are often observed in
particular mutual configurations are combined into a meta-
feature. This procedure is iterated, leading to a hierarchical
representation in the form of a graphical model with primitive,
local features at the bottom, and increasingly expressive meta-
features at higher levels. Depending on the training data, this
leads to rich representations useful for tasks such as object
detection and recognition from 2D images.

We are currently developing an extension of this method
to 3D, multi-modal features. We intend to integrate multiple
perceptual aspects of an object in one coherent model, by
combining visual descriptors with haptic and proprioceptive
information. This will be directly applicable to robotic tasks
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such as grasping and object manipulation. Correlated percepts
of different natures will induce cross-modal associations; a
grasp strategy may be linked directly to visual features that
predict its applicability.

In this paper, we focus on hierarchical models for visual
object representation. Here, an observation is an oriented
patch in 3-space, annotated by various visual appearance
characteristics. To infer the presence of an object in a scene,
evidence from local features is integrated through bottom-
up inference within the hierarchical model. Intuitively, each
feature probabilistically votes for all possible object configu-
rations consistent with its pose. During inference, a consensus
emerges among the available evidence, leading to one or more
consistent scene interpretations. The system never commits to
specific feature correspondences, and is robust to substantial
clutter and occlusions.

We illustrate our method on the application of object pose
estimation. Object models are learned within a given world
reference frame, within which the object is placed in a
reference pose. Comparing an instance of the model in an
unknown scene with an instance in the learned scene allows
us to deduce the object pose parameters in the unknown scene.

II. HIERARCHICAL MODEL

Our object model consists of a set of generic features orga-
nized in a hierarchy. Features that form the bottom level of the
hierarchy, referred to as primitive features, are bound to visual
observations. The rest of the features are meta-features which
embody spatial configurations of more elementary features,
either meta or primitive. Thus, a meta-feature incarnates the
relative configuration of two features from a lower level of the
hierarchy.

A feature can intuitively be associated to a “part” of an
object, i.e. a generic component instantiated once or several
times during a “mental reconstruction” of the object. At
the bottom of the hierarchy, primitive features correspond
to local parts that each may have many instances in the
object. Climbing up the hierarchy, meta-features correspond to
increasingly complex parts defined in terms of constellations
of lower parts. Eventually, parts become complex enough to
satisfactorily represent the whole object. Figure 1 shows a
didactic example of a hierarchy for a bike. The bike is the
composition of frame and wheel features. A wheel is composed
of pieces of tire and spokes. The generic piece of tire at the
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Fig. 1. A didactic example of a hierarchical model of a bike.

Fig. 2.
scene.

Instances of the generic piece-of-tire primitive feature in the bike

bottom of the hierarchy is a primitive feature; the pieces of
tire squared in green in the scene (Figure 2) are instances of
that primitive feature.

At the bottom of the hierarchy, primitive features are tagged
with an appearance descriptor called a codebook vector. The
set of all codebook vectors forms a codebook that binds
the object model to the feature observations, by associating
observations to primitive features.

In summary, information about an object is stored within
the model in the three following forms:

i. the topology of the hierarchy,

ii. the relationships between related features,

iii. the codebook vectors annotating bottom-level features.

A. Parametrization

Formally, the hierarchy is implemented using a Pairwise
Markov Random Field (see Figure 3). Features are associated
to hidden nodes (white in Figure 3), and the structure of the
hierarchy is reflected by the edge pattern between them. Each
meta-feature is thus linked to its two child features. Observed
variables y; of the random field stand for observations.

When a model is associated to a particular scene (during
construction or instantiation), features are associated to corre-
sponding instances in that scene. The correspondence between
a feature ¢ and its instances is represented by a probability
density over the pose space SE(3) = R3 x SO(3) represented
by a random variable x;.

As noted above, a meta-feature encodes the relationship
between its two children. However, the graph records this
information in a slightly different but equivalent way: instead
of recording the relationship between the two child features,

Fig. 3. A Pairwise Markov Random Field representing a feature hierarchy.
Features correspond to hidden variables (white). Observed variables (black)
correspond to observations, bound to bottom-level primitive features.

the graph records the two relationships between the meta-
feature and each of its children. The relationship between
a meta-feature ¢ and one of its children j is parametrized
by a compatibility potential function ;j(x;,x;) associated
to the edge e;;. A compatibility potential specifies, for any
given pair of poses of the features it links, the probability of
finding that particular configuration for these two features. We
only consider rigid-body relationships. Moreover, relationships
are relative spatial configurations. Compatibility potentials can
thus be represented by a probability density over the feature—
to—feature transformation space SE(3).

Compatibility potentials allow relationship distributions to
have multiple modes. In the bike model, let us consider the
meta-feature that represents a generic wheel. There are two
wheels in the picture; two instances of the wheel feature will
be used in a mental reconstruction of the bike. Hence, the
compatibility potential between the wheel feature and the bike
feature will be dense around two modes, one corresponding
to the transformation between the bike and the front wheel
(“the front wheel is on the right side of the bike”), the other
between the bike and the rear wheel (“the rear wheel is on the
left side of the bike”).

Finally, the statistical dependency between a hidden variable
x; and its observed variable y; is parametrized by an observa-
tion potential ¢;(x;), also referred to as evidence for x;, which
corresponds to the spatial distribution of x;’s observations.

The term primitive feature instance formally refers to a
random draw from a primitive feature distribution. While a
primitive feature instance often corresponds to an observation,
observations enter into the graphical model merely as prior
knowledge. Primitive feature instances result from inference;
they depend on observations and on all features of the hier-
archy. Owing to inference mechanisms presented in the next
paragraph, if an observation is discarded (e.g. occluded), a
primitive feature instance may nevertheless appear at its place.

B. Model Instantiation

Model instantiation is the process of detecting instances
of an object model in a scene. It provides pose densities
for all features of the model, indicating where the learned
object is likely to be present. Instantiating a model in a



scene amounts to inferring posterior marginal densities for
all features of the hierarchy. Thus, once priors (observation
potentials, evidence) have been defined, instantiation can be
achieved by any applicable inference algorithms. We currently
use a Belief Propagation algorithm described in Section III-A.

For primitive features, evidence is estimated from feature
observations. Observations are classified according to the
primitive feature codebook; for each primitive feature i, its
observation potential ¢;(z;) is estimated from observations
that are associated to the i*” codebook vector. For meta-
features, evidence is uniform.

C. Model Construction

The construction procedure starts by clustering feature ob-
servations in the appearance space to build a codebook of
observations. The number of classes is a parameter of the
system. These classes are then used to initialize the first level
of the graph:

1) A primitive feature is created for each class;
2) Each primitive feature is tagged with the codebook
vector (cluster center) of its corresponding class.

The spatial probabilistic density of each primitive feature
is then computed from the spatial distribution of correspond-
ing observations. We use nonparametric representations (see
section III-B); the set of observations bound to each primitive
feature can thus be directly used as a density representation.

After primitive features have been computed, the graph is
built incrementally, in an iterative manner. The construction
algorithm works by extracting feature co-occurrence statistics.
Features that tend to occur at non-accidental relative positions
are repeatedly grouped into a higher-level meta-feature. At
each step, the top level of the graph is searched for strongly
correlated pairs of features. The k£ most strongly correlated
pairs are selected to form the k meta-features of the next
level. The number of meta-features created at each step is a
parameter, which we usually keep equal to the initial number
of classes. The search for strong feature combinations is the
operation responsible for the topology of the graph.

The k& new meta-features are then provided with a spatial
probability distribution, generated from a combination of the
children’s densities. The meta-feature is placed in the middle
of its children, location- and orientation-wise (thus, the meta-
feature distribution will be dense between dense regions of
the children’s distributions). Finally, spatial relations between
each meta-feature and its children are extracted, which defines
the compatibility potentials. This is achieved by repeatedly
taking a pair of samples, one from the parent distribution
and one from a child’s distribution. The spatial relationships
between a large number of these pairs form the relationship
distribution between the parent and that child. While the search
for strong combinations was responsible for the topology of
the graph, the extraction of spatial relations is responsible
for the parametrization of the graph through the definition
of compatibility potentials associated with edges between ad-
jacent features. This parametrization constitutes the principal

outcome of the learning algorithm. Relationship extraction is
the last operation of a level-construction iteration.

Incremental construction of the graph can, in principle,
continue indefinitely, growing an ever-richer representation of
the observed scene. The number of levels is a parameter that
is chosen to reach a desired level of abstraction; its effect will
be discussed in Section V.

III. IMPLEMENTATION
A. Inference

Graphical models are a convenient substrate of sophisticated
inference algorithms, i.e. algorithms for efficient computation
of statistical quantities. An efficient inference algorithm is es-
sential to the hierarchical model, for it provides the mechanism
that will let features communicate and propagate information.

Our inference algorithm of choice is currently the Belief
Propagation algorithm (BP) [11, 16, 6]. Belief Propagation
is based on incremental updates of marginal probability esti-
mates, referred to as beliefs. The belief at feature ¢ is denoted

b(z;) = P(zi|y) = /.../P(ml,...,xmy)
dIl...dl'i_leCi_;,_l...dfﬂN

where y stands for the set of observations. During the ex-
ecution of the algorithm, messages are exchanged between
neighboring features (hidden nodes). A message that feature 7
sends to feature j is denoted m;;(z;), and contains feature ¢’s
belief about the state of feature j. In other words, m;;(x;) is
a real positive function proportional to feature ¢’s belief about
the plausibility of finding feature j in pose x;. Messages are
exchanged until all beliefs converge, i.e. until all messages
that a node receives predict a similar state.

At any time during the execution of the algorithm, the
current pose belief (or marginal probability estimate) for
feature ¢ is the normalized product of the local evidence and
all incoming messages, as

bz(sz) = %%(Jﬁz) H

Jj Eneighbors(z)

mji(xi)~ (D

where Z is a normalizing constant. To prepare a message
for feature j, feature ¢ starts by computing a local “pose
belief estimation”, as the product of the local evidence and
all incoming messages but the one that comes from j. This
product is then multiplied with the compatibility potential of
7 and j, and marginalized over x;. The complete message
expression is

mij(2;) :/Ufij(xivmj)@(ffi)
11

keneighbors(2)\ j

As we see, the computation of a message doesn’t directly
involve the complete local belief (1). In general, the explicit
belief for each node is computed only once, after all desirable
messages have been exchanged.



When BP is finished, collected evidence has been prop-
agated from primitive features to the top of the hierarchy,
permitting inference of marginal pose densities at top-level
features. Furthermore, regardless of the propagation scheme
(message update order), the iterative aspect of the message
passing algorithm ensures that global belief about the object
pose — concentrated at the top nodes — has at some point
been propagated back down the hierarchy, reinforcing globally
consistent evidence and permitting the inference of occluded
features. While there is no theoretical proof of BP convergence
for loopy graphs, empirical success has been demonstrated in
many situations.

B. Nonparametric Representation

We opted for a nonparametric approach to probability
density representation. A density is simply represented by
a set of particles; the local density of these particles in
space is proportional to the actual probabilistic density in that
region. Compared to usual parametric approaches that involve
a limited number of parametrized kernels, problems like fitting
of mixtures or the choice of a number of components can
be avoided. Also, no assumption concerning the shape of the
density has to be made.

Particles live in the Special Euclidean Space SE(3). The
location/translation component is parametrized by a 3—vector.
For the orientation/rotation component it was decided to prefer
quaternions over rotation matrices, for they provide a well-
suited formalism for the manipulation of rotations such as
composition or metric definition [9, 7].

For inference, we use a variant of BP, Nonparametric Belief
Propagation, which essentially develops an algorithm for BP
message update (2) in the particular case of continuous,
non-Gaussian potentials [15]. The underlying method is an
extension of particle filtering; the representational approach is
thus nonparametric and fits our model very well.

IV. OBJECT POSE ESTIMATION

Since features at the top of an object model represent
the whole object, they will present relatively concentrated
densities that are unimodal if exactly one instance of this
object is present in the scene. These densities can be used
to estimate the object pose. Let us consider a model for a
given object, and a pair of scenes where the object appears. In
the first scene, the object is in a reference pose. In the second
scene, the pose of the object is unknown. The application our
method to estimate the pose of the object in the second scene
goes as follows:

1) Instantiate the object model in the reference scene.

For every top-level feature ¢ of the instantiated graph,
compute a reference aggregate feature pose i from its
unimodal density.
Instantiating the model in a reference scene is necessary
because even though the top-level features all represent
the whole object, they come from different recursive
combinations of features of various poses.

2) Instantiate the object model in the unknown scene. For
every top feature of that graph, compute an aggregate
feature pose .

3) For all top level features ¢, the transformations from 7r§
to 75 should be very similar; let us denote the mean
transformation ¢. This transformation corresponds to the
rigid body motion between the pose of the object in the
first scene and its pose in the second scene. Since the
first scene is a reference pose, t is the pose of the object
in the second scene.

A prominent aspect of this procedure is its ability to recover
an object pose without explicit point-to-point correspondences.
The estimated pose emerges from a negotiation involving all
available data.

V. EXPERIMENTS

We ran pose estimation experiments on a series of artificial
“objects” presented in Figure 4. In these experiments, we
bypass the clustering step and directly generate evidence
for primitive features. Since we use nonparametric density
representations, we generate observations that directly become
evidence for primitive features. Primitive features may have
distributions in the shape of blobs, lines, and curves (see
Figure 4). For a blob, location components of observations
are drawn from a Gaussian distribution around a random 3D
point; orientation components are drawn from a Von Mises-
Fisher distribution [5, 4] centered at a random 3D orientation.
For a line, locations are drawn from a Gaussian distribution
around a line segment; orientations are drawn from a Von
Mises-Fisher distribution centered at a 3D orientation such that
its main direction is along the line and its second direction is
in a fixed plane. Figure 5 illustrates orientations.

In the next paragraphs, we go through the procedure of a
pose estimation experiment. First, a model is learned from
one set of observations of an object of interest (the reference
scene). A hierarchy is built up to n levels, we instantiate
the model in the reference scene, and compute a reference
aggregate feature pose 7 for every top feature i of the model.

We are then ready to estimate the pose of our object in
a novel, noisy scene. We initialize primitive-feature evidence
of the model on a fresh draw of observations of the object
of interest in a random pose plus observations of a foreign
object (see Figures 4(b), 4(d), 4(f)). Evidence is propagated
through the hierarchy, and we can eventually estimate the top-
feature poses. Since the object of interest is present only once
in the noisy scene, top level features should, after instantiation,
present unimodal densities; we can safely compute a mean
pose 75 for each of them.

Finally, we compute the transformation ¢; between 7} and
74 for every top feature i. As noted in Section IV, all ¢; are
very similar. Let us denote the mean transformation ¢, which
corresponds to the estimated rigid body motion between the
pose of the object in the reference scene, and its pose in the
noisy scene. Let us also denote dt¢ the standard deviation of
individual ¢;’s around t.
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Fig. 4. Synthetic object observations in Figures (a), (c), (¢); noisy scene for each object in Figures (b), (d), (f). Each figure shows
primitive-feature densities; color indicates the different primitive feature classes. For instance, Figure (a) shows a simple object
consisting of three blobs. The bottom level of the hierarchy corresponding to this object will be composed of three primitive
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Error of the translation (relative to object size) and rotation estimates (in degrees) as a function of the number of levels. The cyan line indicates

the error when the pose is estimated on a background-noise—free scene, i.e. for an experiment similar to that described in the text, except that we do not

add observations from a foreign object before pose estimation. This error is al

ready low at level 0, since the mean of each primitive feature observations for

model instantiation is very similar to that used for model learning. The black line indicates the mean error for noisy scenes — i.e. scenes including foreign

objects. The green and blue lines indicate the variance across runs and across

To evaluate the quality of our estimation, we compare ¢ to
the ground truth rigid body motion T of the object of interest
between the reference scene and the noisy scene. Comparison
relies on the distances between translations and distances
between rotations. The distance between two rotations 6 and
0’ is defined as the angle (in degrees) of the 3D rotation that
moves from 6 to #. It can be computed using the quaternion
representations of 6 and 6" as [9]:

d(q,q') = 2arccos(lg - ¢'))-

For each object, this experiment is repeated with different
hierarchy heights, from 0 to 20, and for different random
seeds. Results are presented in Figure 6. Let us denote
(A7,07) and (A5, 65.) the translational and rotational parts of
transformations ¢ and 7' for a random seed s. Figures 6(a),
6(b) and 6(c) show the mean error of translation estimates
as a function of the number of levels. They present on a
logarithmic scale the mean distance between A{ and A%, for all
s divided by the global size of the object. The global size of the
object is defined as the standard deviation of its observations
from its center of gravity. Figures 6(d), 6(e) and 6(f) show,
on a logarithmic scale, the mean error in degrees of rotation
estimates as a function of the number of levels.

The mean error is always large for shallow hierarchies,
but decreases rapidly for taller hierarchies until it eventually
reaches a stable value. For objects of increasing complexity,
this happens at increasingly higher levels. In particular, the
noisy scene for the square contains the square itself, plus a
second shape that corresponds to a square with one displaced
edge. It is only after level 4 that the wrong shape is discarded,

top-level nodes. See the text for details.

and a correct pose of the square is successfully estimated. The
triangle has to be detected in a very noisy scene. This leads to
a larger translational error that does not get smaller than 0.1
— about 5% of the edge length of the triangle.

In Figure 6, green lines give an idea of the variance between
runs under different random seeds. They show the mean error
plus three standard deviations. This variance is relatively large
since the random variations affect both the synthetic scenes
and the models constructed. Lines in blue show the mean
error plus three times the mean (over individual runs) of
inter-feature standard deviations d¢; they give an idea of the
variance between top-level features of the same graph during
a given run. This variance is large for shallow hierarchies, but
converges to 0 for higher levels, which means that top-level
features of a model tend to agree more and more as we use
taller hierarchies.

The accuracy of pose estimation is further illustrated in
Figure 7 that shows the noisy triangle scene (green) and the
estimated triangle pose (red).

In the above experiments, feature observations are generated
synthetically. Thereby, we avoid the problem of extracting
3D features from sets of images. By manually associating
observations to primitive features, we have control over the
clustering step. Since the features are synthesized in 3D,
there are no viewpoint issues. Despite their simplicity, these
experiments demonstrate the feasibility of our sophisticated
method.

One way to obtain 3D feature observations from real objects
is the early-cognitive-vision system MolInS [8], which extracts
3D primitives from stereo views of a scene (see Figure 8).
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Fig. 7. Accuracy of pose estimation. The noisy
triangle scene is green, and the red triangle in-
dicates where the system estimates its position.

Fig. 8.

a different viewpoint.

Figures 8(d) and 8(e) show preliminary results with MolInS
features. A model for the basket is learned from one stereo pair
(see Figure 8(c)). The model is then instantiated in a scene shot
lcm closer to the basket (Figure 8(d)) and in another scene
shot 5cm closer to the basket (Figure 8(e)). The 5cm result
happens to look better because it is rendered from a viewpoint
similar to the stereo camera, and — as is typical for stereo
reconstruction — MolnS 3D primitives are localized much more
accurately in a direction perpendicular to the optical axis of
the camera than in depth.

As noted above, this experiment is preliminary. For techni-
cal reasons, we were limited to translational motions along
the optical axis. We plan to work on sequences involving
rotations and multiple objects in the near future. The system
already proved some robustness against clutter in the artificial
experiments, and viewpoint-related issues will be eased by the
MolnS system.

VI. CONCLUSION

We presented a probabilistic framework for hierarchical
object representation. Hierarchies are implemented with Pair-
wise Markov Random Fields in which hidden nodes rep-
resent generic features, and edges model the abstraction of
highly correlated features into a higher-level meta-feature.
Once PMRF evidence is extracted from observations, posterior
marginal pose densities for all features of the graph are
inferred by the Belief Propagation algorithm.

Posterior pose densities can be used to compute a pose for
a known object in an unknown scene, which we demonstrated
through a series of experiments to estimate rigid body motion.
We are thus able to achieve pose recovery without prior object
models, and without explicit point correspondences.

Our framework is not specific to visual features and allows
the natural integration of non-visual features such as haptic
and proprioceptive parameters. This will potentially lead to
cross-modal representations useful for robotic grasping and
exploratory learning of object manipulation, which we will
explore in future work.
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in Figure (e), visualization is rendered from the camera viewpoint whereas in Figure (d) it is rendered from
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