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A Probabilistic Framework
for 3D Visual Object Representation

Renaud Detry Nicolas Pugeault Justus Piater

Abstract—We present an object representation framework that encodes probabilistic spatial relations between 3D features and
organizes these features in a hierarchy. Features at the bottom of the hierarchy are bound to local 3D descriptors. Higher-level features
recursively encode probabilistic spatial configurations of more elementary features. The hierarchy is implemented in a Markov network.
Detection is carried out by a belief propagation algorithm, which infers the pose of high-level features from local evidence and reinforces
local evidence from globally consistent knowledge, effectively producing a likelihood for the pose of the object in the detection scene.
We also present a simple learning algorithm that autonomously builds hierarchies from local object descriptors. We explain how to use
our framework to estimate the pose of a known object in an unknown scene. Experiments demonstrate the robustness of hierarchies
to input noise, viewpoint changes and occlusions.

Index Terms—Computer vision, 3D object representation, pose estimation, Nonparametric Belief Propagation.
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1 INTRODUCTION

THE merits of part-based and hierarchical approaches
to object modeling have often been put forward in

the vision community [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10]. Part-based models typically separate structure
from appearance, which allows them to deal with vari-
ability separately in each modality. A hierarchy of parts
takes this idea further, by introducing scale-dependent
variability: small part configurations can be tightly con-
strained, while wider associations can allow for more
variability. Furthermore, part-based models do not only
allow for the detection and localization of an object,
but also parsing of its constituent parts. They lend
themselves to part sharing and reuse, which should help
in overcoming the problem of storage size and detection
cost in large object databases. Finally, these models not
only allow for bottom-up inference of object parameters
based on features detected in images, but also for top-
down inference of image-space appearance based on
object parameters.

A large body of the object modeling literature focuses
on modeling the 2D projections of a 3D object. A major
issue with this approach is that all variations intro-
duced by projective geometry (geometrical transforma-
tions, self-occlusions) have to be robustly captured and
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handled by the model. In the past few years, modeling
objects directly in 3D has become increasingly popular
[11], [12], [13], [14], [15], [16]. The main advantage of
these methods lies in their natural ability to handle
projective transformations and self-occlusions.

The main contribution of this paper is a framework
that encodes the 3D geometry and visual appearance of
an object into a part-based model, and mechanisms for
autonomous learning and probabilistic inference of the
model. Our representation combines local appearance
and 3D spatial relationships through a hierarchy of
increasingly expressive features. Features at the bottom
of the hierarchy are bound to local 3D visual perceptions
called observations. Features at other levels represent
combinations of more elementary features, encoding
probabilistic relative spatial relationships between their
children. The top level of the hierarchy contains a single
feature which represents the whole object.

The hierarchy is implemented in a Markov random
field, where features correspond to hidden variables, and
spatial relationships define pairwise potentials. To detect
instances of a model in a scene, observational evidence
is propagated throughout the hierarchy by probabilistic
inference mechanisms, leading to one or more consistent
scene interpretations. Thus, the model is able to suggest
a number of likely poses for the object, a pose being
composed of a 3D world location and a 3D world ori-
entation. The inference process follows a nonparametric
belief propagation scheme [17] which uses importance
sampling for message products. The model is bound to
no particular learning scheme. In this paper, we present
an autonomous learning method that builds hierarchies
in a bottom-up fashion.

Learning and detection algorithms reason directly on
sets of local 3D visual perceptions which we will re-
fer to as (input) observations. These observations should
represent visual input in terms of 3D descriptors, i.e.
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Fig. 1. ECV observations from Krüger et al. [18]
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Fig. 2. Pose estimation system

points characterized by a 3D location, a local appearance,
and possibly an orientation. Prior research on model
detection directly in 3D data can be found e.g. in the
work of Rogers et al. [13].

In this paper, we evaluate our object representation
on input observations produced with the 3D Early-
Cognitive-Vision (ECV) system of Krüger et al. [18], [19].
From stereo imagery, this system extracts pixel patches
along image contours, and computes 3D patch positions
and orientations by stereopsis across image pairs. The
resulting reconstruction consists of a set of short edge
segments in 3D space (Fig. 1), which we will refer to as
ECV observations. Each ECV observation corresponds to
a patch of about 25 square millimeters of object surface.
Since image patches are extracted on edges, each ECV
observation can be characterized with an appearance
descriptor composed of the two colors found on the sides
of the edge. An ECV reconstruction of a scene typically
contains 1000–5000 observations.

The task on which we evaluate our model is object
pose estimation. Fig. 2 illustrates the pose estimation
process. Observations are provided by the ECV system.
The learning algorithm builds a hierarchy from a set of
observations from a segmented object; the hierarchy is
then used to recover the pose of the object in a cluttered
scene. Preliminary results appeared in conference and
workshop proceedings [20], [21], [22]. We note that even
though we concentrate our evaluation on 3D data from
Krüger et al., our system can in principle be applied to
other 3D sources, such as dense stereo, or range data.

We emphasize that we intend to develop generative

representations that allow for detection and localization
of known objects within highly cluttered scenes, as
opposed to object classification which is best achieved
using discriminative models.

2 RELATED WORK

Recent work has shown many successful implementa-
tions of the hierarchical approach to object modeling
in 2D, with both bottom-up [7], [9], [20] and top-down
[8] unsupervised learning of object parts and structure.
These generally aim at classifying objects into generic
categories, and put a strong accent on learning in order
to capture intra-class variability. Intra-class variability is
very important for these methods also because it allows
them to capture the affine transformations that the object
undergoes when projected to 2D images. Our learn-
ing procedure is similar in spirit, although it requires
much less sophistication. Since we work directly in 3D,
projection-related issues are handled by the method that
produces the observations, with e.g. stereopsis when
using ECV observations. Our system is thus intrinsically
robust to problems like the decreasing apparent 2D
size of an object when moved away from the camera,
and projective deformations do not need to be learned.
Compared to these 2D methods, the most distinguishing
aspects of our approach are its explicit 3D support and
a unified probabilistic formalization through a Markov
network.

Part-based models have proved very efficient for
representing articulated objects in 2D [10], [23], [24],
[25], [26] or 3D [13], [27], [28], and matching them in
2D images [10], [23], [24], [25], [26], [27], [28] or 3D
range data [13]. Articulated objects are often formalized
through a graphical model, and probabilistic inference
algorithms such as belief propagation [29] or its variants
are widely used for detection [23], [24], [27], [28]. The
model topology, i.e. the parts, are typically defined by
hand. Model parameters (compatibility and observation
potentials) are also often defined by hand [10], [13], [24],
although it has been shown that compatibility potentials
can be learned from motion [26], [27], and observation
potentials (image likelihoods) may emerge from anno-
tated images [23], [26].

Despite the similar formalism, the issue addressed
by these methods is rather different from ours. The
work cited in the previous paragraph seeks unique
matches of relatively high-level entities (body parts, ...),
and represents loose, one-to-one relations between them.
In our work, a part is an abstract concept that may
have any number of instances; a parent-child potential
thus encodes a one-to-many relationship, as a set of
relationships between the parent part and many child
part instances. Furthermore, our parts reach a much finer
level of granularity; a part can for instance correspond
to a “red-ish world-surface patch” as small as 5×5mm.

Coughlan et al. [30] have demonstrated a 2D part-
based object model where parts are relatively low-level
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(e.g. short 2D edge segment). However, in the same way
as the articulated models mentioned above, potentials
encode one-to-one relationships between neighboring
parts.

When targeting 3D objects, a crucial model property
is viewpoint invariance, i.e. the ability to encode object
information independently of the viewpoint. Although
viewpoint invariance has been achieved in 2D [31],
an increasingly popular means of achieving viewpoint
invariance is to represent object geometry directly in 3D.

Very interesting work [11], [12], [32] takes the ap-
proach of representing an object with a large set of local
affine-invariant descriptors and the relative 3D spatial re-
lationships between the corresponding surface patches.
Other methods organize local appearance descriptors on
a 3D shape model, obtained by CAD [16] or 3D homog-
raphy [14]. To detect an object in an image, these meth-
ods start with an appearance-based matching of image
descriptors with model descriptors. In a second phase,
global optimization is used to evaluate the geometrical
consistency of the appearance-based matches using the
geometrical information contained in the model, and
compute a 2D bounding box [14] or a 3D pose [16].
Rothganger et al. [11] do not speak of 3D pose in their
results, although it seems obvious that a 3D pose is
implicitly computed during detection.

Instead of using a precise 3D shape model, objects
have also successfully been represented by a set of
near-planar parts connected through their mutual homo-
graphic transformations [15]. In this context, a part is a
large region of the object represented with many local
invariant descriptors.

Compared to our approach, the preceding 3D methods
represent an object as a whole, and do not intrinsically al-
low for parsing an object into parts. Another distinguish-
ing aspect of our work is its probabilistic formalization
through a graphical model. Finally, the 3D methods cited
above work with image data, and encompass the entire
reasoning process from image pixels to object pose. In
our case, a large part of the work is done by the upstream
system that produces 3D observations – e.g. the ECV
system, or range scanning. This allows us to concentrate
on the encoding of 3D geometry and appearance, and
yields a framework that can cope with different sources
of 3D observations.

The performance of our system is strongly influ-
enced by the characteristics of the 3D observations we
use. While the 3D methods cited above rely on affine-
invariant descriptors, for which textured objects are
ideal, the ECV system used in this paper extracts surface
edges, and thus strongly prefers objects with clear edges
and little texture.

For prior work on top-down parsing of scenes and
objects, we refer the reader to the work of Lee and
Mumford [5], and of Tu et al. [6]. We note that our
representation and methods are compatible [33] with the
ideas developed by Lee and Mumford.
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Fig. 3. On the right: an example of a hierarchy for the
traffic sign shown in the bottom-left corner. X1 through
X3 are primitive features; each of these is linked to an
observed variable Yi. X4 through X6 are meta-features.
Top-left: ECV observations of the traffic sign.

3 HIERARCHICAL MODEL

Our object model consists of a set of generic features
organized in a hierarchy. Features that form the bottom
level of the hierarchy, referred to as primitive features, are
bound to visual observations. The rest of the features
are meta-features which embody relative spatial config-
urations of more elementary features, either meta or
primitive.

A feature can intuitively be associated to a “part”
of an object, i.e. a generic component instantiated once
or several times during a “mental reconstruction” of
the object. At the bottom of the hierarchy, primitive
features correspond to local parts that each may have
many instances in the object. Climbing up the hierarchy,
meta-features correspond to increasingly complex parts
defined in terms of constellations of lower parts. Even-
tually, parts become complex enough to satisfactorily
represent the whole object. In this paper, a primitive
feature represents a class of ECV observations of similar
appearance, e.g. an ECV observation with colors close to
red and white. Given the large number of observations
produced by the ECV system, a primitive feature will
usually have hundreds of instances in a scene.

Fig. 3 shows an example of a hierarchy for a traffic
sign. Ignoring the nodes labeled Yi for now, the figure
shows the traffic sign as the combination of two features:
a triangular frame (feature 5) and a bridge pattern
(feature 4). The fact that the bridge pattern has to be
in the center of the triangle to form the traffic sign is
encoded in the links between features 4-6-5. The trian-
gular frame is further encoded using a single (generic)
feature: a short red-white edge segment (feature 3). The
link between feature 3 and feature 5 encodes the fact that
many short red-white edge segments (several hundreds
of instances of feature 3, i.e. several hundreds of red-ish
ECV observations) are necessary to form the triangular
frame, and the fact that these edges have to be arranged
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along a triangle-shaped structure. During instantiation,
the activation of a (single) feature (e.g. feature 3) will rep-
resent all its instances (the pose of hundreds of instances
of feature 3).

We emphasize that for us, a “feature” is an abstract
concept that may have any number of instances. The
lower-level the feature, the larger generally the number
of instances. Conversely, the higher-level the feature,
the richer its spatio-appearance description (because it
represents a combination of lower-level features), and
thus the lower generally the number of its instances.
The next section explains how instances are represented
as one spatial probability density per feature, therefore
avoiding specific model-to-scene correspondences.

3.1 Parametrization
Formally, the hierarchy is implemented in a Markov
tree (Fig. 3). Features correspond to hidden nodes of
the network. When a model is associated to a scene
(during learning or instantiation), the pose of feature i in
that scene will be represented by the probability density
function of a random variable Xi, effectively linking
feature i to its instances. Random variables are thus
defined over the pose space, which exactly corresponds
to the Special Euclidean group SE(3) = R3 × SO(3).

The structure of the hierarchy is reflected by the
edge pattern of the network; each meta-feature is thus
linked to its child features. As noted above, a meta-
feature encodes the relationship between its children,
which is done by recording the relative relationships
between the meta-feature and each of its children. The
relationship between a meta-feature i and one of its
children j is parametrized by a compatibility potential
function ψij(Xi, Xj) which reflects, for any given relative
configuration of feature i and feature j, the likelihood of
finding these two features in that relative configuration.
The potential between i and j will be denoted equiv-
alently by ψij(Xi, Xj) or ψji(Xj , Xi). We only consider
rigid-body, relative spatial configurations. A compatibil-
ity potential is thus equivalent to the spatial distribution
of the child feature in a reference frame that matches the
pose of the parent feature; a potential can be represented
by a probability density defined on SE(3).

Finally, each primitive feature is linked to an observed
variable Yi. Observed variables are tagged with an ap-
pearance descriptor, called a codebook vector, that defines
a class of observation appearance. In the case of ECV
observations, a codebook vector will be composed of two
colors. The set of all codebook vectors forms a codebook
that binds the object model to feature observations. The
statistical dependency between a hidden variable Xi and
its observed variable Yi is parametrized by a potential
ψii(Xi, Yi). We generally cannot observe meta-features;
their observation potentials are thus uniform.

In the applications we are considering, observations
are assumed constant throughout inference. Further-
more, the observations we are dealing with reflect di-
rectly the state of their corresponding hidden variable;

ψii(Xi, Yi) thus encodes an identity transformation. Con-
sequently, the notation for the statistical dependency
between a hidden variable Xi and its observed variable
Yi will be simplified in an observation potential φi(Xi),
which corresponds to the spatial distribution of the
input observations that hold an appearance descriptor
resembling the codebook of Yi. An observation potential
φi(Xi) will also be referred to as evidence for Xi.

3.2 Instantiation

Model instantiation is the process of detecting instances
of an object model in a scene. It provides pose densi-
ties for all features of the model, indicating where the
learned object and its sub-parts are likely to be present.

Because a hierarchy is implemented with a Markov
network, there is a clear separation between the model,
and the algorithms that make use of the model. Funda-
mentally, instantiation involves two operations:

1) Define priors (observation potentials) from input
observations;

2) Propagate this information through the graph us-
ing an applicable inference algorithm.

During the definition of priors, each observation poten-
tial φi(Xi) is built by means described in Section 4.2 from
a subset of the input observations. The subset that serves
to build the potential φi(Xi) linking Xi to Yi is the subset
of observations that hold an appearance descriptor that
is close enough, in the appearance space, to the codebook
vector associated to Yi.

The inference algorithm we use to propagate informa-
tion is currently the belief propagation (BP) algorithm
[29], [34], [35], discussed in Section 5. BP works by
exchanging messages between neighboring nodes. Each
message carries the belief that the sending node has
about the pose of the receiving node. Let us consider,
for example, nodes X3 and X5 in the network of Fig. 3.
Through the message that X3 sends to X5, X3 probabilis-
tically votes for all the poses of X5 that are compatible
with its own pose; this compatibility is defined through
the compatibility potential ψ5,3. Through this exchange
of messages, each feature probabilistically votes for all
possible object configurations consistent with its pose
density. During inference, a consensus emerges among
the available evidence, leading to one or more consis-
tent scene interpretations. The system never commits to
specific feature correspondences, and is thus robust to
substantial clutter and occlusions. After inference, the
pose likelihood of the whole object can be read out of
the top feature; if the object is present twice in a scene,
the top feature density should present two major modes.

4 DENSITY REPRESENTATION

We opted for a nonparametric computational encoding
of density functions, for both random variables and
potentials. The idea behind nonparametric methods is to
represent a density simply by the samples we see from
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it. Formally, a density is represented by a set of weighted
samples called particles. The probabilistic density in a
region of space is given by the local density of the par-
ticles in that region. The continuous density function is
accessed by assigning a kernel function to each particle,
a technique generally known as kernel density estimation
[36]. Evaluation is performed by summing the evaluation
of all kernels. Sampling is performed by sampling from
the kernel of a particle ` selected from p(` = i) ∝ wi,
where wi is the weight of particle i.

The expressiveness of a single “nonparametric” kernel
is generally limited; the kernel we use models location
and orientation independently, and location/orientation
components are both isotropic (see below). Nonpara-
metric methods account for the simplicity of individual
kernels by employing a large number of them: in this
framework, a density will typically be supported by 500
particles.

Compared to traditional parametric methods, the non-
parametric approach eliminates problems such as fitting
of mixtures or the choice of a number of components.
Also, no assumption concerning density shapes (normal-
ity, ...) has to be made.

4.1 Kernel Definition
Random variables and potentials are defined over the
Special Euclidean group SE(3) = R3 × SO(3), where
SO(3) is the Special Orthogonal group (the group of
3D rotations). We use a kernel that factorizes into two
functions defined on R3 and SO(3), which is consistent
with the policy of kernel simplicity in the nonparametric
approach. Denoting the separation of SE(3) elements
into translations and rotations by

x = (λ, θ), µ = (µt, µr), σ = (σt, σr),

we define our kernel with

K(x;µ, σ) = N(λ;µt, σt) ·Θ(θ;µr, σr) (1)

where µ is the kernel mean point, σ is the kernel band-
width, N(·) is a trivariate isotropic Gaussian kernel, and
Θ(·) is an orientation kernel defined on SO(3). Denoting
by θ′ and µ′r the quaternion representations of θ and µr
[37], we define the orientation kernel with the Dimroth-
Watson distribution [38], [39]

Θ(θ;µr, σr) = W(θ′;µ′r, σr) = Cw(σr) · eσr(µ′>r θ′)2 (2)

where Cw(σr) is a normalizing factor. This kernel cor-
responds to a Gaussian-like distribution on SO(3).
The Dimroth-Watson distribution inherently handles the
double cover of SO(3) by quaternions [40]. Similar ap-
proaches have been explored in prior work [28].

The bandwidth σ associated to a density should ide-
ally be selected jointly in R3 and SO(3). However, this is
difficult to do. Instead, we set the orientation bandwidth
σr to a constant allowing about 10◦ of deviation; the
location bandwidth σt is then selected using a k-nearest
neighbor technique [36].
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Fig. 4. Example of a hierarchical model of a traffic sign,
with explicit potentials and feature pose densities.

4.2 Evidence
In Section 3.2, we explain that an observation potential
is built from a set of input observations. Given the
nonparametric representation, building an observation
potential is straightforward: input observations are de-
fined in 3D, they can thus directly be used as particles
representing the observation potential. However, input
observations may not provide a full SO(3) orientation.
For example, an ECV observation has an orientation
parametrized by the local tangent to the 3D edge it
is extracted from (θ ∈ S2

+); the orientation about this
3D edge is unspecified. Observation potentials will thus
generally be defined on a subspace of SE(3).

Section 5.1 and Section 5.2 describe inference in the
general case of SE(3) densities. Section 5.3 refine the
mechanisms of Section 5.2 to handle a network in which
potentials are defined on different domains.

4.3 A Complete Example
Fig. 4 shows in greater detail the hierarchy of Fig. 3.
Feature 2 is a primitive feature that corresponds to a
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local black-white edge segment (the white looks greenish
in the picture). The blue patch pattern in the φ2(X2)
box is the non-parametric representation of the evidence
distribution for feature 2, which corresponds to black-
white edge segments produced by the ECV system. The
blue patch pattern in the X2 box is the non-parametric
representation of the posterior density of X2, i.e. the
poses in which the part “feature 2” is likely to be found.
Feature 4 corresponds to the opening-bridge drawing.
Its inferred pose in the scene is shown by the red patch
in the X4 box. For clarity, only one patch is shown;
the density would normally be represented by a large
number of patches around that point. The ψ4,2(X4, X2)
box shows the encoding of the relationship between
features 4 and 2: for a fixed pose for feature 4 (in red),
it shows the likely poses for feature 2 (in blue).

5 INFERENCE

Inference provides marginal pose densities for all fea-
tures of the model, given the observations extracted from
a scene. After inference, the top feature indicates where
the learned object is likely to be present.

Inference is preceded by the definition of evidence for
all features (hidden nodes) of the model (Section 3 and
Section 4.2). Once these priors have been defined, infer-
ence can be carried out with any applicable algorithm.
We currently use a belief propagation algorithm of which
we give a complete, top-down view below.

5.1 Belief Propagation
In the case of a Markov tree, belief propagation (BP) [29],
[34], [35] is based on an exchange of messages between
neighboring hidden nodes. A message that feature i
sends to feature j is denoted by mij(Xj), and carries
feature i’s belief about the state of feature j. To prepare
a message for feature j, feature i starts by computing a
“local pose belief estimate”, as the product of the local
evidence and all incoming messages but the one that
comes from j. This product is then multiplied with the
compatibility potential of i and j, and marginalized over
Xi. The complete message expression is

mij(Xj) =
∫
ψij(Xi, Xj)φi(Xi)

∏
k∈N(i)\j

mki(Xi)dXi (3)

where N(i) denotes the set of features adjacent to feature
i. When all messages have been exchanged once, a belief
is computed for each feature as

bj(Xj) =
1
Z
φj(Xj)

∏
i∈N(j)

mij(Xj), (4)

where Z is a normalizing constant. The belief bj(Xj)
corresponds to the posterior marginal pose density of
feature j.

BP propagates the collected evidence from primitive
features to the top of the hierarchy, permitting the in-
ference of the object pose likelihood. Furthermore, the

global belief about the object pose is also propagated
from the top node down the hierarchy, reinforcing glob-
ally consistent evidence and permitting the inference of
occluded features.

5.2 Nonparametric Belief Propagation
Several instantiations of the BP algorithm for continuous,
non-Gaussian potentials are available in the literature,
e.g. NBP [17], PAMPAS [41], or more recently MSBP [24].
These methods support nonparametric density represen-
tations, and are applicable to our graphical model.

We are currently using the NBP algorithm. Since NBP
tends to outperform PAMPAS for graphical models with
multimodal potentials containing large numbers of ker-
nels [17], [41], it is a good choice for our models where
potentials linking primitive features to their parents
are inherently multimodal and are usually represented
with more than a hundred particles. Park et al. recently
presented the MSBP algorithm [24], which uses mean-
shift to perform nonparametric mode-seeking on belief
surfaces generated within the belief propagation frame-
work. While MSBP has been shown to outperform NBP
in terms of speed and accuracy, the ability to compute
complete posteriors with NBP is a strong advantage for
some applications.

NBP is easier to explain if we decompose the analytical
message expression (3) into two steps:

1) Computation of the local belief estimate:

βts(Xt) = φt(Xt)
∏

i∈N(t)\s

mit(Xt), (5)

2) Combination of βts with the compatibility function
ψts, and marginalization over Xt:

mts(Xs) =
∫
ψts(Xt, Xs)βts(Xt)dXt. (6)

NBP forms a message by first sampling from the product
(5) to collect a non-parametric representation of βts(Xt),
then sampling from the integral (6) to collect a non-
parametric representation of mts(Xs).

Sampling from the message product (5) is a complex
task for which Ihler et al. explored multiple efficient so-
lutions [42], one of which is to sample from the product
using importance sampling (IS). Importance sampling
can be used to produce a nonparametric representation
of an unknown distribution p(x) by correctly weighting
samples from a known distribution q(x): IS accounts for
the difference between the target distribution p(x) and
the proposal distribution q(x) by assigning to each sample
x` a weight defined as w` = p

(
x`
)
/q
(
x`
)
. Since p(x)

is often rather different from q(x), many samples may
end up with a very small weight. To compute a set of
n representative samples of p(x), one usually takes rn
samples from q(x) (r ≥ 1), computes their weights as
defined above, and eventually resamples to a size of
n. The closer q(x) is to p(x), the better

{
(x`, w`)

}
will

approximate p(x).
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To sample from a message product (5) with IS, we use
a proposal function that corresponds to the sum of the
factors of the product; importance weights are computed
as

w` =
φt(x`t)

∏
i∈N(t)\smit(x`t)

φt(x`t) +
∑
i∈N(t)\smit(x`t)

.

The second phase of the NBP message construc-
tion computes an approximation of the integral (6) by
stochastic integration. Stochastic integration takes a set
of samples {xit} from βts(Xt), and propagates them to
feature s by sampling from ψts(xit, Xs) for each xit. It
would normally also be necessary to take into account
the marginal influence of ψts(Xt, Xs) on Xt. In our
case however, potentials only depend on the difference
between their arguments; the marginal influence is a
constant and can be ignored. In NBP inference, the
efficiency trade-off is largely governed by the number
of particles n supporting density functions: while the
success of NBP inference highly depends on a sufficient
density resolution, increasing n has a hard impact on
computational cost and memory footprint.

5.3 Analytic Messages
In Section 4.2, we mention that observation potentials
may be defined on a subspace of SE(3). This can effec-
tively be represented in SE(3) by setting the free dimen-
sions to a uniform distribution. Each observation would
be represented with multiple SE(3) particles which,
in the case of a completely non-oriented observation,
would each be assigned a random orientation. However,
the number of particles needed to account for as little as
one degree of freedom in orientation without imposing
too much noise on other dimensions may already be
quite high, and will surely impede inference. Another
way to approach the problem is to define observation-
related densities on the specific SE(3) subspace D on
which observations are defined. For example, with com-
pletely non-oriented observations, the domain would
simply be D = R3. This way, each observation can be
represented by a single particle. Primitive features are
the hidden counterpart of observations; if a different
domain D is used for observation potentials, primitive
features will also be defined on D. Finally, the domain
of potentials linking primitive features to second-level
features should be changed. Since a potential holds the
spatial distribution of the child feature in a reference
frame that corresponds to the pose of the parent feature,
these potentials will also be defined on D. The next para-
graphs show how analytic messages [28], [43] can be used
to allow NBP to efficiently manage messages exchanged
between pairs of variables defined on different domains.

Let us turn to the propagation equation (3), which
we analytically decomposed into a multiplication (5) and
an integration (6). We explained that NBP implements
BP by numerically performing the same decomposition,
i.e. computing explicit nonparametric representations for
messages and local estimates alternately. Forming an

mut(Xt)

βvt(Xv)βut(Xu)

u

t

s

v

ψut ψvt

mvt(Xt)

βts(Xt)

mts(Xs)ψst(Xt, Xs)

(a) Part of a hierarchy

a

mut(Xt)

y

d

z x

βut(Xu)

(b) 2D cut of a nonparametric rep-
resentation of βut and mut.

y

x

d

z

ψut(Xu,0)

(c) 2D cut of a representation of ψut(Xu,0).

Fig. 5. Illustration of the issue of sending a message
from a feature u defined on D ⊂ SE(3) to a feature t
defined on SE(3). We note that in Fig. (b), mut should be
distributed on the surface of a sphere centered at a. For
the purpose of this illustration, we only show the particles
that are near the intersection of the sphere with the xy
plane. Since Xt is defined on SE(3), its particles have a
full 3D orientation. Given the information contained in βut
and ψut, we know that the particles in mut should have
their x axis oriented towards a. As for their y and z axis,
there is no evidence. This degree of freedom is illustrated
in Fig. (b) by the random direction of the smaller line of
the frame picturing each particle.

explicit representation of a message sent from a feature
u defined on D ⊂ SE(3) to a feature t defined on
SE(3) unfortunately leads to representing in SE(3) a
distribution that is likely to span a large space. Let us
consider the example of Fig. 5a where u is defined on
D = R3 and is located at a distance d from t in the
x direction. The potential ψut(Xu, Xt), which represents
the distribution of u in a reference frame defined by
t, will be a unimodal distribution centered at (d, 0, 0)
(Fig. 5c). Let us assume we know that u is located around
a center point a, i.e. βut(Xu) is a unimodal distribution
centered at a. In forming mut(Xt), all we can say is
that t will be located about the surface of a sphere of
radius d centered at a (Fig. 5b). In general, mut(Xt) will
be a lot more expensive to represent than ψut(Xu, Xt)
and βut(Xu) together. Yet, the representational cost will
typically be much smaller for βts(Xt) than for mut(Xt),
thanks to the disambiguation brought by mvt(Xt). The
following paragraphs show how to avoid mut(Xt) by
using directly ψut(Xu, Xt) and βut(Xu) in computing
βts(Xt).

Let us assume we are in the process of constructing a
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nonparametric representation of βts(Xt), i.e. the local es-
timate of feature t that includes all incoming information
but that from s. In general IS-based NBP, we first form
a proposal function q(Xt) from the sum of incoming
messages and local evidence; then, we repetitively take
a sample x`t from q(Xt), and compute its importance
weight by multiplying the evaluations of the incoming-
message nonparametric representations at x`t :

w` =
1

q(x`t)
· φt(x`t)

∏
i∈N(t)\{s}

mit(x`t). (7)

However, this expression can be rewritten

w` =
φt(x`t)
q(x`t)

∏
i∈N(t)\{s}

∫
ψit(Xi, x

`
t)βit(Xi)dXi, (8)

and w` can be computed directly from βit(Xt) and
ψit(Xi, Xt) (i ∈ N(t)\ {s}), i.e. by using analytic messages
[28], [43]. Evaluating each integral is achieved by sam-
pling p times an example xki from ψit(Xi, x

`
t), evaluating

βit(xki ), and taking the average over k.
When βit(Xi) is defined on a proper subspace of

SE(3), forming an explicit message representation to
compute importance weights (7) would suffer from the
issue illustrated in Fig. 5. In (8), we evaluate βit(xki ),
which means that its degrees of freedom are taken into
account analytically. We can thus afford to use a rather
sparse proposal q, computed from explicit messages,
because we then precisely weight these samples directly
through potentials and local estimates.

5.4 Two-Level Importance Sampling
One known weakness of IS-based NBP is that it cannot
intrinsically concentrate its attention on the modes of
a product, which is an issue since individual messages
often present many irrelevant modes [42]. We overcome
this problem with a two-level IS: we first compute
an intermediate representation of the product with the
procedure explained above, we then use this very rep-
resentation as the proposal function for a second IS
that will be geared towards relevant modes. Let us
denote by n the number of particles supporting a density.
The intermediate representation is obtained with sparse
analytic messages (p� n) but many importance samples
(r � 1), while the second IS uses rich analytic messages
(p ≈ n) but a low value for r. We typically choose
r and p such that r × p = n. There are rn particles
to weight in the proposal density. Denoting by d the
number of messages in the product (5), weighting one
particle (8) involves the evaluation of d densities at p
points, the evaluation of the evidence, and the evaluation
of the proposal. Density evaluation is logarithmic in the
number of density particles if implemented with kd-trees
[42]. The product of d analytic messages is thus

O(dn2 log n). (9)

We note that comparing this with the algorithmic com-
plexity of other NBP implementations would need to be

done with care, because the magnitude of n required to
achieve a given resolution depends on the method.

The two-level IS described above and the product of
analytic messages have proved crucial for the successful
application to real-world objects such as those presented
in Section 7.

6 LEARNING

Model learning is the process of building a hierarchy
from a set of input observations. The information con-
tained in a hierarchy is held in the topology of the
network, in the compatibility potentials, and in the code-
book. A learning procedure is responsible for defining
these three elements; there is no additional constraint.
We are primarily interested in unsupervised algorithms,
which can be divided into top-down and bottom-up
approaches. A top-down approach would recursively
divide the set of available observations following struc-
tural or semantic criteria, each division giving rise to
a new meta-feature. When reaching observation groups
that are simple enough, primitive features would be
formed and codebook vectors would possibly be ex-
tracted. A bottom-up approach works the other way
around. Observations are first separated into k sets, each
of which gives rise to a primitive feature. If appearance
descriptors are used in the separation process, the code-
book is trivially defined from the appearance of each set.
To form the hierarchy, features are iteratively combined
with one another based again on structural or semantic
criteria. Previous work on top-down [8] and bottom-up
[7], [9], [20] approaches is available in the literature.

In the next sections, we develop a bottom-up learning
method which autonomously builds a tree-structured
hierarchy from a set of observations extracted from a
segmented object. The method was designed with sim-
plicity in mind. Despite this simplicity, it allows us to
produce hierarchies that can readily be used for object
pose estimation, as shown in Section 7.

6.1 Primitive Features

Learning starts with a set of n observations

O =
{(
xi, wi, ai

)}
i∈[1,n]

where xi contains geometric information, wi is a weight,
and ai is an appearance descriptor. The geometric infor-
mation includes a 3D location and an orientation. As
discussed in previous sections, the orientation does not
need to be a full 3D orientation; partially defined orien-
tations also work. The appearance descriptor is defined
in Rd (d ≥ 0), and it is assumed that the Euclidean
metric in Rd is a meaningful measure of the closeness
of two descriptors. There is no particular requirement
on the quality of the observations used for learning, but
accurate observations naturally produce better models.

To define primitive features, we essentially divide O
into k subsets. The division criterion we are currently
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using is exclusively appearance-based. K-Means clus-
tering is applied in the appearance space on the set of
appearance descriptors

{
ai
}

, producing k cluster centers
A1, ..., Ak. These k cluster centers will directly form the
codebook; each primitive feature i will correspond to a
generic element characterized by an appearance Ai [7],
[20].

The next section explains how meta-features are cre-
ated. Meta-features encode relative spatial relationships.
For the purpose of their creation, pose densities have
to be available for all existing features. The pose dis-
tribution of each primitive feature i is computed from
the spatial distribution of the observations that were
associated to the ith cluster during the k-means cluster-
ing. Since distributions are encoded in a nonparametric
way, feature pose densities are computed simply by
resampling the set of corresponding observations. These
pose densities will only serve to build the hierarchy, they
are discarded at the end of the learning process.

To illustrate the previous paragraphs, we can come
back to Fig. 4, in which feature 3 is a generic, red-white
edge segment. During the construction of the model,
the density associated to feature 3 would show that this
feature is mainly distributed along the outer edges of the
traffic sign.

6.2 Meta-Features

After primitive features have been defined, the graph
is built incrementally, one level at a time. The learning
algorithm works by repeatedly grouping sets of features
into a higher-level meta-feature. We are currently re-
stricting the number of features that can be combined
into a meta-feature to 2. Limiting the number of children
of a meta-feature is a rather soft restriction though, since
wider combination can intuitively be traded for deeper
hierarchies.

A new level is built on top of the previous level,
which we will refer to as the supporting level. Meta-
features encode geometric configurations; when starting
a new level, the pose of each feature of the supporting
level is assumed to be already defined. The definition
of primitive feature poses has been explained in the
previous section; the definition of meta-feature poses
is explained below. We note again that the purpose of
defining feature pose densities is to extract relative con-
figurations and define the potentials linking to the new
level. Feature densities will be specific to the learning
scene, they cannot help in the inference of the model in
a different scene.

To create an additional level, the features of the sup-
porting level are randomly grouped into pairs. (If there
is an odd number of features, one will stand alone.)
Each pair forms a meta-feature. The pose of a meta-
feature in the scene can be defined in an arbitrary way.
Since a meta-feature encodes the composition of its child
features, its pose is defined as the mean of the densities
of its children, which helps in interpreting the final

hierarchy. Each meta-feature i thus has a single pose xpi
in the learning scene.

Compatibility potentials are then defined through the
extraction of relative spatial relations between each new
meta-feature and its children. The potential ψij(Xi, Xj)
between meta-feature i and its child j is formed by
repeatedly sampling from the relative transformation
between i and j. Drawing a sample xψ from the relative
transformation is achieved by drawing a sample xj from
feature j and combining it with the pose xpi of its
parent i. Denoting the separation of pose variables into
translations and rotations by

xψ = (λψ, θψ), xj = (λj , θj), xpi = (λi, θi),

the sample xψ from the transformation is formed from
xpi and xj as

λψ = θ>i (λj − λi), θψ = θ>i θj ,

where SO(3) orientations are represented as rotation
matrices for simplicity. In this last expression, xψ cor-
responds to the projection of xj into the reference frame
defined by xpi . The set {xψ} represents the pose distri-
bution of feature j in the reference frame defined by
the pose of its parent i which actually corresponds to
ψij(Xi = 0, Xj). During inference, to evaluate ψij(Xi =
xi, Xj = xj), we first need to transform ψij(Xi = 0, Xj)
into ψij(Xi = xi, Xj) by applying the transformation
defined by xi on all the supporting particles

λ′ψ = θiλψ + λi, θ′ψ = θiθψ

then evaluate ψij(Xi = xi, Xj = xj) with kernel density
estimation on the set {x′ψ = (λ′ψ, θ

′
ψ)}. (For efficiency, we

actually evaluate ψij(Xi = 0, Xj = x′j) where x′j is the
result of the transformation of xj by the inverse of the
transformation defined by xi.)

Finally, the pose of each new meta-feature is encoded
in the feature pose density, to provide the next level-
building iteration with spatial information. The pose of
meta-feature i is encoded as a Dirac peak with a set of
particles concentrated at xpi .

The procedure described above divides the number of
nodes by two from one level to the next. It stops when
there is only one node at the top level. The extraction
of spatial relations constitutes its the principal outcome.
The complexity (number of features) of the models it
produces is mainly influenced by color variety within
objects. Objects with a larger color variety will give rise
to more primitive features, which in turn leads to wider
and taller hierarchies.

We note that speaking about the pose of an object im-
plies that a reference pose (Fig. 6) has been defined for that
object. Within a hierarchical model, the reference pose of
an object is defined through the pose xpt associated to the
top feature t during model learning.

7 EVALUATION
This section illustrates the applicability of our model to
pose estimation.
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Fig. 6. Reference pose of an object. The reference frame
marked A corresponds to the coordinate system of the
scene. The relative configuration of the frame B and the
gripper is the reference pose of the gripper. The pose of
the gripper corresponds to the pose of B in A, i.e. the
transformation between A and B.

7.1 Early Cognitive Vision
In this work, observations are provided by the ECV
system presented in Section 1, which extracts local 3D
edge segments from stereo imagery. Each edge segment
has an appearance descriptor composed of two colors.
The orientation θ associated to these observations is a 3D
line (θ ∈ S2

+). The space on which observation-related
densities are defined is D = R3 × S2

+. The Dimroth-
Watson kernel (2) is directly applicable in S2

+, and the
kernel we use on D is

KD((λ, θ);µ, σ)) = N(λ;µt, σt) ·W(θ;µr, σr) ,

with θ ∈ S2
+, µ = (µt, µr), and σ = (σt, σr).

Fig. 1 illustrates typical ECV reconstructions. The sys-
tem can work in two different modes. In the first mode
(Fig. 1, left), it produces an ECV reconstruction from a
single stereo view of a scene. In the second mode (Fig. 1,
right), it integrates information through a set of stereo
views to produce a reconstruction that is much less
affected by self-occlusions [19], [44]. We will be referring
to the latter as accumulated reconstruction. ECV accu-
mulated reconstructions are typically computed from a
dozen stereo views.

We usually provide the ECV system with stereo im-
ages of 1280 × 960 pixels. In the following illustrations,
we only show the left image of a stereo pair.

7.2 Pose Estimation
Model learning is ideally done from an accumulated
ECV reconstruction. Learning from single-view ECV re-
constructions is also possible, but the resulting models
are less robust to large viewpoint changes. Detection is
always performed on a single view (see Fig. 2). Pose
estimates are inferred by sending messages from prim-
itive features to the top feature. Each feature sends one
message to each of its parents. Inference produces an
object pose likelihood in the density associated to the top
feature of the object model. When instantiating a model
in a scene in which exactly one instance of the object is
present, the top feature density should generally present
a single mode showing the pose of the object. However,
if an object very similar to the one we are searching
for appears in the scene, the top density will present a

second, weaker mode. Consequently, densities have to be
clustered to extract prominent modes. We are currently
limiting experiments to scenes which include a known
number p of object instances. If p pose estimates have to
be produced, the p largest modes are selected.

Visualizing a pose estimate is done through top-down
propagation. To visualize a pose estimate x, we fix the
evidence of the top feature to x, and we propagate this
information to the bottom of the graph to produce a
nonparametric representation of primitive feature densi-
ties. Using camera calibration parameters, particles from
these densities are projected onto the 2D images, as in
Fig. 7b. We can then easily verify that the projection
matches the object we are looking for. We usually remove
primitive feature evidence before down-propagating an
estimate, which allows down-propagation to clearly re-
veal occluded object portions (Fig. 7,9–11). Alternatively,
if evidence is kept, primitive feature posteriors show
particles that are coherent with both the model and scene
evidence (Fig. 12, second and third images).

We typically use hierarchies of 2 or 3 levels, very
similar to the example of Fig. 3. We fix the number
of particles supporting feature densities and potentials
to 400. We keep the number of particles in observation
potentials ne equal to the number of observations pro-
duced by ECV – typically 1000–5000 observations. It is
necessary to use a larger number of particles in obser-
vation potentials because in a scene containing many
different objects, only a small fraction of the particles
comes from the object we are trying to detect. Having
a larger number of particles in observation potentials
is acceptable because this number only appear as its
logarithm in the algorithmic complexity of inference
(9). Inference within a hierarchy of M meta-features
is O(Mn2 log ne) where n < ne. We are developing a
computer implementation of our learning and inference
algorithms that, using a few reasonable approximations,
allows us to detect hierarchies similar to that of Fig. 3
(M = 3) in about 10 seconds on a standard desktop
computer. The memory footprint of the pose estimation
process is always below 50MB. The cost of detecting
multiple objects is linear in the number of objects.

7.3 Experimental Setups

This section presents experiments through which we
evaluate the performance impact of various parameter
setups. Our input data consist of a sequence showing
a plastic pot undergoing a rotation of 360◦ [45]. The
sequence contains 72 stereo frames; the object is rotated
of 5◦ between two successive views (Fig. 7). We learned
two models of the pot: one was learned from obser-
vations extracted from the first view of the sequence
(Fig. 7a), another was learned from observations ac-
cumulated over 10 stereo pairs of the sequence. Both
models were then instantiated in all views; the results are
summarized in Fig. 8 and Tab. 1. The single view model
only works for rotations of about 40◦ around the learning
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(a) 0◦ (b) 135◦

Fig. 7. Example frames from the rotating pot sequence.
Fig. (b) shows a correct estimate of the pose of the pot
obtained with a hierarchy learned from an accumulated
ECV reconstruction. See text for details.

# ECV IS n time suc. rate loc. err. ori. err.

1 acc. 2-lev 400 11s 66/72 10mm 4.9◦
2 single 2-lev 400 11s 40/72 9mm 5.4◦
3 acc. 1-lev 400 11s 41/72 18mm 13◦
4 acc. 2-lev 200 3.4s 52/72 12mm 5.2◦

TABLE 1
Running time per frame, success rate, and absolute error

(location and orientation) for different experimental
setups in the rotating pot sequence (Fig. 7), including

learning from accumulated or single-view ECV, 2-level or
1-level importance sampling NBP, and 400 or 200

particles per density. Location and orientation errors are
averaged over successful estimations.

view. When the opening of the pot faces away from
the camera, the system fails to make a correct estimate.
Fig. 8 shows that the model learned from accumulated
observations performs better for a much wider range
of viewpoints. Robustness drops around 90◦ and 270◦,
where the pot is viewed from the side; good stereopsis
is then difficult to achieve and the ECV system is unable
to produce a reliable 3D structure. As shown in Tab. 1,
the average accuracy of successful estimates is similar
for both models.

The third row of Tab. 1 summarizes the result of
the detection of the model learned from accumulated
ECV when a single-level importance sampling is used
instead of the two-level IS of Section 5.4. For the same
running time as the two-level IS, single-level IS presents
a substantially lower detection rate, and the error in
correct estimates is about twice as large.

The fourth row of Tab. 1 summarizes the result of
the detection of the model learned from accumulated
ECV with only half the number of particles of other
setups. Pose estimates are less accurate; Fig. 8 shows
that the system mainly loses robustness around difficult
viewpoints (90◦ and 270◦). Detection is however much
faster.

7.4 Detection In Cluttered Scenes
To evaluate the robustness of our model to clutter and
occlusions, we have computed the pose of various ob-
jects in several cluttered scenes [45], [46]. For technical
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Fig. 8. Proportion of correct estimates in the rotating pot
sequence (Fig. 7) as a function of the viewpoint. The 4
plots correspond to the 4 cases of Tab. 1.

reasons, most of the models were build from single-
view ECV observations, or ECV observations accumu-
lated from two views. Only the basket model was built
from ECV observations accumulated through 10 stereo
pairs. Fig. 9 shows a set of scenes for which all esti-
mates are correct. The first three images of the top row
demonstrate that our system can handle some object
deformations. Small deformations are integrated through
the soft probabilistic reasoning. Larger deformations (e.g.
towel folding) are handled as occlusions.

Fig. 10 shows scenes in which an estimation failed.
Failures are usually due to one of two reasons. One
cause of failure is a poor ECV reconstruction, which
may be due to stereopsis-related issues, low contrast, or
poor image resolution. For example, in the third image
of Fig. 10, the handle of the brush is almost horizontal
which makes it almost impossible for ECV to find correct
stereo matches. The other cause of failure is the presence
in a scene of a structure that has the same geometry and
appearance as the object. This is for example the case
in the first image of Fig. 10, where half the pink kitchen
cloth is occluded, and a better match is found in the pink
structure of the towel.

Fig. 11 shows a similar experiment with traffic signs
that share a common outer structure, but present varia-
tion in their central pattern. The fourth image illustrates
the utility of color and of a hierarchy of multiple parts.
It shows the same scene as the third image, but in
greyscale. When color is not used, learned hierarchies
degenerate into a two-feature network. All observations
are associated to a single primitive feature, the geometry
of the object is encoded in a single potential ψ. The
number of particles of ψ that encode the pattern is small
proportionally to the particles encoding the triangular
frame, and their weight in the message sent through ψ is
rather small. In that context, we observed that the pose
likelihood of a sign generally presented several major
modes, some corresponding to the correct sign, others
centered on wrong signs. The largest estimate doesn’t
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Fig. 9. Cluttered scenes with correct pose estimates for all objects. Colors are used to identify the object to which
2D-projected particles belong. See text for details.

Fig. 10. Cluttered scenes where an estimation fails. Estimations failed respectively for the pink kitchen cloth, the
breadboard, the brush, and the blue ice brick. Colors are used to identify the object to which 2D-projected particles
belong. See text for details.

Fig. 11. Detection of objects of similar shapes. The last image shows pose estimates computed without taking color
into account. See text for details.
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Fig. 12. Detection of an articulated object. See text for
details.

always correspond to the correct sign, as illustrated in
the fourth image. Computing estimates in the first three
images without using color led to only 4 correct poses out
of 9. The results shown in these three images correspond
to experiments where color is taken into account, all
estimates are correct. When color is used, a multi-part
hierarchy is built, and the central pattern is encoded
in its own potential; during inference, it can contribute
to the correct pose through a distinct message, which
effectively discards incorrect modes.

7.5 Articulated Objects
This section explains how this framework can be used
to represent loose objects by providing training data that
reflect articulations. We chose to use a toy weighing
scale (Fig. 12). Our training data are a set of ECV
observations extracted from several images exclusively
showing the scale. The pose of the camera and toy
scale are identical in all images, but each image shows
the scale in a different equilibrium position. A model
learned from such data will represent all equilibrium
configurations simultaneously and indistinctly. Fig. 12
shows pose estimates obtained from this model. The first
image corresponds to a top-down propagation with prior
deletion of primitive feature evidence (see Section 7.2); it
clearly shows the different configurations supported by
the model. The other two images correspond to a top-
down propagation including all evidence, which reveals
object evidence that effectively contributed to the final
pose estimate.

8 CONCLUSION AND FUTURE WORK

We presented an object representation framework that
encodes probabilistic relations between 3D features or-
ganized in a Markov-tree hierarchy. We started with a
discussion of nonparametric function representation in
the Special Euclidean group SE(3). We then showed
how an object can be detected in a novel scene, and
how to build a hierarchy for a given object. We finally
demonstrated the applicability of our method through a
set of pose estimation experiments.

Detection largely amounts to inferring the pose of
the top feature using nonparametric belief propagation.
We detailed an importance sampling implementation of
NBP message products, along with means of efficiently
supporting networks that mix different density domains.
Inference produces a likelihood of the object pose in the
entire scene.

Learning is currently handled by a simple procedure
which first clusters object observations according to their
appearance, then randomly combines these to form a
hierarchy. The learning procedure leaves room for im-
provement, and we plan to explore several approaches
in the near future. Yet, despite its simplicity, the current
method is able do produce models that allow for rather
robust pose estimation.

Our method is readily applicable to object pose estima-
tion. Experiments demonstrate a high level of robustness
to input noise, and show that a satisfactory accuracy can
be reached within reasonable computational constraints.
We are thus able to achieve pose recovery without prior
object models, and without explicit point correspon-
dences.

Our method can in principle incorporate features from
other perceptual modalities than vision. Our objective
is to observe haptic and kinematic features that corre-
late with successful grasps, and integrate them into the
feature hierarchy. Grasps will generally not relate to an
object as a whole. Our part-based representation offer
an elegant way to link grasps to the 3D visual features
that predict their applicability, and learn visual features
that permit the generalization of grasps across objects.
Grasps success likelihoods can then emerge from visual
evidence through top-down inference.

ACKNOWLEDGMENTS

The authors warmly thank Prof. Norbert Krüger for his
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