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Abstract. We present a 3D, probabilistic object-surface model, along
with mechanisms for probabilistically integrating unregistered 2.5D views
into the model, and for segmenting model instances in cluttered scenes.
The object representation is a probabilistic expression of object parts
through smooth surface-point distributions obtained by kernel density
estimation on 3D point clouds. A multi-part, viewpoint-invariant model
is learned incrementally from a set of roughly segmented, unregistered
views, by sequentially registering and fusing the views with the incre-
mental model. Registration is conducted by nonparametric inference
of maximum-likelihood model parameters, using Metropolis–Hastings
MCMC with simulated annealing. The learning of viewpoint-invariant
models and the applicability of our method to pose estimation, object
detection, and object recognition is demonstrated on 3D-scan data, pro-
viding qualitative, quantitative and comparative evaluations.

1 Introduction

Autonomous systems need to acquire object models for detection, recognition
and manipulation. Models should be acquired autonomously, which implies a
method that does not require precisely controlled environmental conditions, ex-
act ground-truth pose, or full 360◦ viewpoint covering. Furthermore, partial
models should be directly usable, and allow for incremental completion.

We present a 3D, probabilistic object-surface model, along with mechanisms
for probabilistically integrating unregistered 2.5D views (range images) into the
model, and for segmenting model instances in cluttered scenes.

Our model encodes object structure through continuous probability density
functions representing the distribution of object-surface points. This allows us to
achieve detection by probabilistic inference, effectively avoiding explicit model-
to-scene correspondences. Our method learns an initial model from a single view
of an object; the model can then be used to detect and estimate the pose of
the object in novel scenes, provided that the view is sufficiently similar. If a
new view provides more information, the model can be extended, in principle
until the entire surface is completely modeled. Model learning and model ex-
ploitation are thus seamlessly integrated. We demonstrate that our approach is
competitive with state-of-the-art methods. While performing at least as well as
state-of-the-art algorithms on public datasets, our approach shows advantages
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in the paradigmatic and technical rigor of the techniques it builds on. Instead
of defining e.g. probabilistic metrics on top of ad-hoc likelihood functions, our
sensor model is intrinsically probabilistic. This approach allows for theoretical
abstraction and flexibility. In particular, familiar building blocks from statistical
learning are applied in appropriate places, such as kernel density estimation,
Monte Carlo integration and inference, and expectation-maximization (see fol-
lowing sections).

Model learning is demonstrated on 3D-scan data from Biegelbauer and Vincze
[1], and on the popular CAD dataset of Hetzel et al. [2]. The applicability of our
method to pose estimation in cluttered point clouds is demonstrated on the
data of Biegelbauer and Vincze, and object recognition rates are presented for
the dataset of Hetzel et al.

2 Related Work

The modeling of objects from point-cloud data has been achieved through a
variety of approaches [3]. The idea is generally to break down the object surface
into a number of primitives; an object is then described by describing each
primitive, and possibly by also describing their relative spatial configuration.
Primitives correspond e.g. to complex parametric shapes such as superquadrics
[1, 4], local surface descriptor [2, 5–9], or local edge descriptors [10]. In this work,
primitives correspond directly to 3D points, with each point further parametrized
by a local surface orientation computed from the distribution of the k nearest
neighbors. In the following, we simply refer to these position-orientation pairs
as (5D) points.

Depending on the application, recording the geometric structure of surface
primitives, i.e. their relative spatial configuration, may or may not be necessary.
Object recognition motivates discriminative models. Methods aiming at object
recognition (without segmentation/pose estimation) [2, 5, 8] may completely ig-
nore the spatial configuration of primitives, or encode it implicitly. They may
also match a model by matching each view contained in the model separately,
therefore also avoiding view registration. Conversely, pose estimation and seg-
mentation require the modeling of the global shape of the object through the
encoding of relative primitive configurations [6, 7, 9, 10]. This generally leads to
a generative model. Although it may not necessarily be their primary aim, gen-
erative models often provide recognition, too [7].

When building a generative 3D model from multiple views, it becomes neces-
sary to derive an exhaustive registration of individual 2.5D views. Our method
learns an initial model from a single view of an object; the model can then be
used to detect and estimate the pose of the object in novel scenes, provided that
the view is sufficiently similar. If a new view provides more information, the
model can be extended, in principle until the entire surface is completely mod-
eled. Thus, model learning and model exploitation are seamlessly integrated.

Detection and alignment of generative models is typically achieved through
the matching of model descriptors to scene descriptors, possibly followed by
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geometrically-constrained optimization [7, 9]. We follow a different approach: We
encode object structure through a continuous probability density function rep-
resenting the distribution of object-surface 5D points. This allows us to achieve
detection through probabilistic inference, which in turn avoids explicit model-
to-scene correspondences. Our model is inferred by a Markov-chain Monte-Carlo
(MCMC) algorithm which yields the maximum-likelihood pose of a model in an
arbitrary scene.

Within a point-cloud reconstruction, the quantity of information conveyed
by a point from a large and uniform surface is arguably smaller than the infor-
mation conveyed by a point on a smaller, distinctive surface. In other words, the
contribution of a surface segment to the identity of an object is generally not
proportional to the number of points supporting the segment in a point-cloud
reconstruction. Many 3D modeling techniques acknowledge this observation, e.g.
through the detection of salient points [11], or the use of surface primitives of
varying size [7]. We proceed by splitting object points into groups that represent
object parts of different spatial size, and give each part the same weight in the
detection process.

We note that the problem of 3D pose estimation (and recognition) has also
been addressed for 2D images [12, 13]. Image-based methods often rely on the
matching of 2D patch descriptors; they work best on highly textured objects.
Although these methods can be fast and convenient to deploy, their 3D estimates
are generally less accurate than those obtained on range data.

This work is inspired by the work of Detry et al. [10], from which we borrow
the idea of representing low-level sensor data with probability density functions.
This paper goes beyond the work of Detry et al. in multiple ways. Inference
is approached differently: we present a maximum likelihood MCMC algorithm,
while Detry et al. compute a posterior density through belief propagation and
importance sampling. Our learning method autonomously registers independent
views, and autonomously identifies parts from spatial structure. Finally, our
paper demonstrates the application of our system to range data, which is struc-
turally different from the sparse-stereo edge data used by Detry et al., with two
important results: (1) Our method is applicable to a much wider range of input
data and does not depend on the heavy-weight ECV (Early Cognitive Vision)
system. (2) Contrary to Detry et al., we can – and do – compare our results to
competing approaches.

3 Object Model

As mentioned above, we consider point-cloud reconstructions in which each point
is composed of a position and a local surface normal. The surface normal is
computed at each point of the cloud from the covariance matrix C of its k
nearest neighbors [14]. Let us denote by e1, e2, e3 the eigenvalues of C, with
e1 ≥ e2 ≥ e3; depending on whether e1 − e2 is smaller or greater than e2 − e3,
the local orientation is set to the eigenvector associated to e3 or e1 respectively,
allowing for stable orientations on both surface and line configurations. Denoting
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by S2 the 2-sphere (the space of unit 3D vectors), computing local orientations
yields a point-cloud O =

{(
λ`, θ`

)}
`∈[1,n]

where λ` ∈ R3 and θ` ∈ S2. We
note that surface normals correspond to axial information; in other words, θ is
equivalent to −θ.

Our pose estimation method relies on the modeling of 3D surfaces with
surface-point distributions. A surface-point distribution is a probability density
function which models the spatial configuration of 5D points sampled from an
object’s surface. The function has a high value in regions surrounding object
surfaces, and a low value elsewhere.

Surface-point distributions are represented with kernel density estimation.
Kernel density estimation (KDE) allows one to model a continuous density func-
tion from a set of observations drawn from it, by assigning a local kernel function
to each observation [15]; the density is estimated by summing all kernels. KDE
allows us to define a continuous distribution from the point-cloud reconstruc-
tion of an object. The surface observations we are dealing with are points which
belong to R3 × S2; denoting the separation of point components and kernel pa-
rameters into positions and orientations by x = (λ, θ), µ = (µt, µr), we define
our kernel as

Kµ,σ(x) = Nµt,σt
(λ) Θµr,σr

(θ) , (1)

where µ is the kernel mean point, σ = (σt, σr) denotes the isotropic bandwidths
in position and orientation, N is a trivariate isotropic Gaussian kernel, and Θ
corresponds to a pair of antipodal S2 von-Mises Fisher distributions. The S2

von-Mises Fisher distribution corresponds to a Gaussian-like distribution on 3D
unit vectors [16]. Formally, the value of Θ is given by

Θµr,σr
(θ) = C3(σr)

eσr µ
T
r θ + e−σr µ

T
r θ

2
, (2)

where C3(σr) is a normalizing constant. The pair of antipodal von-Mises Fisher
kernels in Θ models the lack of direction in surface-normal orientations (see
above); hence K(λ,θ),σ(x) = K(λ,−θ),σ(x). The bandwidths σt and σr are com-
puted using a k-nearest neighbor technique [15] on point positions. A surface ob-
served through a point-cloud {x`}`∈[1,n] is modeled with ψ(x) =

∑n
`=1 Kx`,σ(x).

An illustration is provided in Fig. 1.
We model an object composed of q parts with a set of surface-point distribu-

tions {ψi(x)}i∈[1,q]; each surface distribution ψi(x) models the distributions of
points belonging to part i. All parts are defined in a common reference frame,
so that

∑q
i=1 ψi(x) yields a reconstruction of the whole object.

4 Inference

Model detection relies on the observation that a surface-point distribution can
readily be used as a “3D template” that provides an object pose likelihood when
convolved with the surface-point distribution of a scene. Let us consider an object
model {ψi(x)}i∈[1,q]. Also, let us denote by SE(3) = R3×SO(3) the group of 3D
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Fig. 1: Surface-point distribution computed from the 3D scan of a mallet.
Surface-point observations are rendered with cylinders. The axis of a cylinder
represents the orientation of the associated observation. Kernels are illustrated
with translucent shapes: spheres and cones show one standard deviation in po-
sition and orientation respectively.

poses, and by φ(x) the surface-point distribution of an arbitrary scene in which
the object appears. We model the pose of the object with a random variable
W ∈ SE(3); the distribution of the object’s pose in the scene modeled by φ(x)
is given by

p(w) ∝
q∏
i=1

mi(w), (3)

with
mi(w) =

∫
ψi(x)φ(tw(x)) dx, (4)

where tw(·) denotes a rigid transformation by w. Each integral mi(w) corre-
sponds to the evaluation at w of the cross-correlation of part i with the scene.

Pose estimation is achieved by searching for the maximum of p(w). Further-
more, the value of p(w) at its peak may be used as a matching score, hence
yielding object detection and recognition (see Section 6.2).

As computing the maximum-likelihood (ML) object pose arg maxw p(w) is
analytically intractable, we approximate it with Monte Carlo methods. The in-
tegrals mi(w) are approximated as:

mi(w) ' 1
n

n∑
`=1

φ(tw(x`)) where x` ∼ ψi(x). (5)

Simulating p(w) directly is not possible, although simulating a random variate
w∗ from one integral mi(w) can be achieved as follows:

1. Generate xφ ∼ φ(x),
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2. Generate xψ ∼ ψi(x),
3. Generate w∗ ∼ f(w), where f(w) = φ(tw(xψ)), by selecting w∗ from a

uniform distribution on the transformations which map xψ onto xφ.

The ML pose arg maxw p(w) is computed via simulated annealing on a Markov
chain whose invariant distribution at iteration j is proportional to p1/Tj (w) [17,
18], where Tj is a decreasing cooling schedule such that limj→∞ Tj = 0. The
chain is defined with a mixture of two local- and global-proposal Metropolis–
Hastings transition kernels, which are detailed below. Our choosing of the stan-
dard Metropolis–Hastings algorithm is motivated by the complexity of R3×S2,
which renders the calculation of local derivatives difficult. Also, p(w) is likely to
present a large number of narrow modes. A mixture of global and local propos-
als will compromise between distributed exploration of the pose space and fine
tuning of promising regions. The independence-chain component of our transi-
tion kernel requires a global proposal function which we can simulate, and which
should ideally resemble p(w). In this paper, the global proposal corresponds to
s(w) =

∑
imi(w), which can be simulated by selecting i ∼ U[1,...,q], and sam-

pling from mi(w). The local proposal for the random-walk component of the
transition kernel is given by the SE(3) kernel

K?
µ,σ(x) = Nµt,σt

(λ) Θ?
µr,σr

(θ) , (6)

where Θ? is a pair of antipodal S3 von-Mises Fisher distributions, and rotations
θ and µr are expressed as quaternions [19]. The location bandwidth σt of this
kernel is set to a fraction of the size of the object, which in turn is computed
as the standard deviation of input object points to their center of gravity. Its
orientation bandwidth is set to a constant allowing for 5◦ of deviation. The
complete algorithm is listed in Fig. 2. For our purposes, the mixture weight ν is
typically set to 0.75; T0 and TN are set to 0.5 and 0.05 respectively; N is of the
order of 5000. Simulated annealing does not guarantee convergence to the global
maximum of p(w). Hence, we run several chains in parallel and eventually select
the best estimate.

The model presented above is intrinsically sensible to relative spatial res-
olution within the input point cloud: the cross-correlation of parts with scene
evidence (3) will be proportional to the global value scale of φ(x) in the region
covered by the model. Unfortunately, the spatial resolution of 3D scans is gen-
erally not uniform. For example, objects closer to the sensor will generate more
return than further ones. Hence, the maximum of the pose likelihood (3) may
not correspond to the pose that best explains surface shape. In the experiments
presented below, we largely mitigate this effect by evaluating scene densities
φ(x) as the maximum of underlying kernel evaluations at x. We note that model
distributions ψi(x) are not concerned by this issue since they are integrated over
multiple views.

Finally, we note that the expression of p(w) can be identified to an application
of the Belief Propagation algorithm to a Markov random tree. The tree root W
models the object pose. All the other nodes of the tree are leaves, which we
denote by Xi. The network compatibility potential linking W to Xi is defined



Surface-point Distributions for 3D Recognition 7

Initialize w0 arbitrarily
Initialize σt and σr as explained in the text
For j = 0 to N :

Tj = max

(
T0

„
TN
T0

«j/N
, TN

)
Sample u ∼ U[0,1]

If u < ν :
Sample w∗ ∼ s(w) (global proposal)
Sample v ∼ U[0,1]

If v < min

(
1,

„
p(w∗)

p(wj)

«1/Tj s(wj)

s(w∗)

)
: wj+1 = w∗

Else : wj+1 = wj
Else :

Sample w∗ ∼ K?
wj ,(σt,σr)(w) (local proposal)

Sample v ∼ U[0,1]

If v < min


1,
“
p(w∗)
p(wj)

”1/Tj
ff

: wj+1 = w∗

Else : wj+1 = wj

Fig. 2: Simulated annealing algorithm

by ψi(t−1
w (x)), where t−1

w (·) denotes the inverse of a transformation by w, such
that (tw ◦ t−1

w )(x) = x for all x in R3 × S2. Observation potentials are given by
φ(x). Each integral mi(w) corresponds to the message sent from Xi to W in a
belief-propagation inference of the marginal distribution p(w).

5 Learning

The generation of a model from a single point-cloud reconstruction of an object
is described in Section 5.1. Section 5.2 explains how a model is learned from
multiple views.

5.1 Modeling A Point-cloud Reconstruction

Learning a model from a point-cloud reconstruction amounts to identifying the
number and shape of object parts. Object parts are computed by clustering ob-
ject points in R3; they are identified through the mixture of k trivariate Gaussians
that best explains object point positions. K mixtures of q = 1, ...,K Gaussians
are fit using the Expectation-Maximization (EM) algorithm, and the most ap-
propriate mixture is selected in a way inspired by the Bayesian information
criterion [20]: the selected mixture is the one that minimizes

−2 logL+ Cq log n, (7)

where L is the maximized value of the data likelihood, n is the number of points,
and C is a numerical constant; the difference between the Bayesian information
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Fig. 3: Objects and their parts. Color indicates
to which part a point belongs. Ellipsoids il-
lustrate the mixture components that identify
object parts.

Fig. 4: Example pose estimates.
Grey dots correspond to scene
points; color dots show ob-
ject points aligned to the scene
through pose estimation. The
single-part model fails to pro-
duce a correct estimate (top),
whereas a two-part model suc-
ceeds (bottom).

criterion and Eq. 7 is in the additional factor C which allows us to strongly
penalize large mixtures, hence keeping the number of parts reasonably low. The
object model M is eventually composed of q surface-point distributions ψi(x)
built through KDE on the points that belong to cluster i.

Clustering is responsible for the identification of characteristic object parts
(Fig. 3), drawing attention to smaller areas that would otherwise be overwhelmed
by larger surfaces. In Fig. 4, the top image shows a pose estimate computed from
a single-part model of a hammer. Inference finds a best match of the handle of
the hammer on a screwdriver, and ignores the unmatched head of the hammer.
In the bottom image, the two-part model of Fig. 3 draws inference towards a
correct estimate. The part identification method described above is similar to
the procedure of Bouchard and Triggs [21], except that their work eventually
expresses parts as cluster centers. Here, clustering is exclusively used to identify
parts. Parts are represented by fine-grained surface-point densities (Section 3),
which hold significantly more information than a single Gaussian.

5.2 Learning From Multiple Views

The construction of a model that expresses the full 3D geometry of an object re-
quires pairwise registration of multiple views. Naturally, only pairs of sufficiently
overlapping views can be registered. Finding overlapping views through an ex-
haustive registration of all pairs is unfortunately rather inefficient. Therefore,
a meta-process should ideally detect strongly correlated views, which are good
candidates for registration [7]. In this section, we present a somewhat simpler
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method, which iteratively integrates views into a model, expecting each addi-
tional view to overlap with at least one of the previous views. Let us assume
that each view contains n points, and let us denote by M` a model made up of `
views, and denote by O` the set of points used to construct M`. The first model
M1 is built, following the procedure of the previous section, from the points pro-
duced by the first available view v1. Let us then assume that we have a model
M` constructed from ` views, and the set O` from which it was built. Adding
v`+1 to the model works as follows. The pose of M` is estimated in v`+1 (Section
4), which allows us to transform the points of v`+1 into the object reference
frame, yielding an object-registered point set T . A set of points O`+1 that spans
`+ 1 views is then formed by selecting n/(`+ 1) points at random from T and
n`/(` + 1) points from O`. M`+1 is constructed by applying the procedure of
Section 5.1 to O`+1.

6 Evaluation

In the following experiments, models typically contain 1 to 4 parts. Scene surface-
point distributions are computed from 5000 scan points. In order to limit the
computational cost of inference, the total number of surface-point observations
within object parts is limited to 500. The number of parallel chains in MCMC
inference is typically set to 16. Our implementation estimates the pose of a
model in a scene in about 5–10s on an 8-core desktop computer, and its memory
footprint is always below 50MB. The cost of detecting multiple objects is linear
in the number of objects.

6.1 Cluttered-Scene Pose Estimation

The suitability of our model for pose estimation in cluttered scenes is demon-
strated on 3D-scan data from Biegelbauer and Vincze [1]. We learned a model
of a mallet, a hammer, a screwdriver, and two bowls, using between 1 and 4 seg-
mented range views of each object. The objects and their parts are illustrated
in Fig. 3. The pose of these objects was estimated in 4 range scenes. Because
points from the ground plane represent approximately 85% of each scene, we
removed these prior to detecting the objects, by isolating them through ransac
plane fitting. Although this step is not necessary, it significantly lowers inference
time; also, through this process, we put our system in the same experimental
conditions as Biegelbauer and Vincze. As illustrated in Fig. 5, all 11 pose es-
timates were correct. We followed the scenario of Biegelbauer and Vincze and
reproduced the experiment several times using different software random seeds,
and every run lead to the same correct estimates. When using models made of
a single part, instead of the multi-part models of Fig. 3, only 7 out of 11 poses
were correct, for reasons identical to these explained in Section 5.1. Despite its
simplicity, the part-learning process is instrumental in discriminating between
objects of similar shapes.



10 Renaud Detry and Justus Piater

1000

d

d + s

MCMC step

0

5

10

15

20

25

1 10 100

d− s

1 10

d− s

100 1000

d

MCMC step

0

0.2

0.4

0.6

0.8

d + s

Fig. 5: Left side: cluttered scenes with pose estimates. Grey dots correspond to
scene points. The rest of the dots illustrate pose estimates: they correspond to
object points (Fig. 3) aligned to the poses of the objects in the scenes. There are
11 pose estimates (4 in the top-left scene, etc.). Right side: convergence of the
MCMC process, as the mean position distance to optimum (top-right, distance
in mm) and mean orientation distance to optimum (bottom-right, distance in
radians) (see text for details).

The two graphs of Fig. 5 illustrate MCMC convergence. Pose estimation
consists in running multiple Markov chains in parallel. The convergence of a
pose estimation process e can be illustrated by tracking, at each MCMC step i,
the distance dei between the position component of the ground truth pose and the
position component of the chain which is, at step i, the closest to the ground truth
pose. The graph in the top-right corner of Fig. 5 (red curve) shows, as a function
of the MCMC step i, the average di = 1

11

∑
e d

e
i across the eleven pose estimates

of Fig. 5 (we note that the i axis is in log scale). The green and blue curves

indicate an interval of one standard deviation si, with si =
√

1
11

∑
e(d

e
i − di)2.

The bottom-right graph illustrates orientation convergence. We note that as we
do not have ground truth poses for the scenes of Fig. 5; the eleven ML estimates
shown in the figure were used as ground truth. For both position and orientation,
the error and error variance rapidly decrease between steps 1 and 1000, then
smoothly converge to zero.

We note that the scenes of Fig. 5 contain more objects than those shown in
Fig. 3. These objects are not part of the experiment simply because we do not
have segmented views of them. A segmented view of the deeper bowl (purple
in Fig. 5) was also missing. Its model was built from data extracted from the
top-left scene of Fig. 5. It seemed relevant to include that object because of its
similarity with the second (yellow) bowl.
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6.2 Object Detection And Recognition

As mentioned above, the value of the pose-likelihood expression (3) at its peak
may be used as a matching score, hence yielding object detection and recognition.

Object detection was evaluated on the online-available CAD dataset of Het-
zel et al. [2]. This dataset contains 258 simulated range images for each of its
30 objects (Fig. 6). It is divided into a training and a testing set, containing re-
spectively 66 and 192 views of each object. We learned a view-invariant model of
each object using its 66 training views, providing them to the multi-view learn-
ing algorithm of Section 5.2 in the order in which they appear on the dataset
website. Even though this order is not always ideal, it allowed for the construc-
tion of a good model of most objects. Fig. 7 shows eight examples. The bunny
and the dinosaur are correctly reconstructed. The deodorant bottle is missing a
side; this is explained by the symmetry of the object, which causes all views to
be registered to the same side of the model.

Object detection determines whether a given model is present in a view.
Detecting an object in a view amounts to estimating the object’s ML pose w
in that view (Section 4), reading the value of the pose distribution at w, and
comparing the “score” p(w) to a threshold (the whole process taking 5–10s).
Thresholds were learned as follows:

1. We instantiated all 30 object models in 300 views of the training set – 10
views from each object – providing 9000 training scores. Fig. 8 (dashed
curves) shows the distribution of the resulting scores for two objects.

2. For each object o, we trained a binary naive Bayes classifier on the 300
training scores produced by o, providing means of distinguishing o from all
other objects.

Object detection rates were obtained by instantiating (Section 4) the 30 models
in 300 images from the testing set, yielding 9000 testing scores. Fig. 8 (solid
curves) shows the distribution of the resulting scores for two objects. Confronting
the testing scores to the 30 detection classifiers yielded a 98% detection rate, i.e.
out of the 9000 binary classifications, there are 298 true positives, 8580 true
negatives, 2 false negatives and 120 false positives.

By contrast to object detection, object recognition determines, given one
view, which object this view is most likely to show. For this purpose, we trained
a single SVM classifier on the 9000 training scores obtained above. This classi-
fier allows us to determine which object an arbitrary image corresponds to, by
matching (Section 4) all 30 object models to that image, and submitting the 30
resulting scores to the classifier. On a set of 300 images from the testing set of
the database, we obtained a 99% recognition rate, i.e. 297 true positives and 3
false positives. This result is directly comparable and competitive with recent
discriminative approaches on the same dataset which yield 98% [8] and 93% [2].
It is also comparable to the 95% presented in Section 8.1 of the article from Mian
et al. [7], although the object library used by Mian et al. is a superset of the one
we are using. Recognizing which object a view belongs to requires the inference
of all known object models; recognition is linear in the number of object models.
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Fig. 6: Object library from Hetzel et al. [2]. Illustration kindly provided by Li
and Guskov [8].

Fig. 7: Object points obtained from the registration of sequences of 66 views.
Color indicates learned parts; objects on the first row are made up of a single
part, whereas those on the second row yield two- or three-part models. The
models of the deodorant bottle (top-right) and of the pedal (bottom-right) were
not correctly constructed, because of symmetries and similarities within the
objects.

0 500 1000 1500 2000

(a) Bunny

10000 20001500500

(b) Deodorant bottle

Fig. 8: Distribution of detection scores for the bunny and deodorant bottle (see
Fig. 7). The dashed green line shows the distribution of the scores resulting
from the instantiation of the object model in all training images of that object.
The dashed brown line (almost overlapping with the blue line) corresponds to the
instantiation of the model in the rest of the training set. The red line corresponds
to testing images of the object; the blue line corresponds to testing images of the
other objects. The scores provided by the bunny model are clearly separable. The
deodorant bottle is less robustly detected, largely because of a second, similar
bottle in the object set.



Surface-point Distributions for 3D Recognition 13

We emphasize that the classifiers above are only applied to find appropriate
score-separating thresholds or planes. The underlying inference mechanism is not
discriminative, and goes further than object recognition by providing an SE(3)
object pose.

7 Conclusion

We presented the definition, inference and construction of a 3D object model.
The model consists of a set of parts represented with smooth surface-point den-
sities. Object pose likelihood is defined through the cross-correlation of parts
with scene evidence. The ML pose is computed through simulated annealing
on a Markov chain whose invariant distribution is proportional to an increasing
power of the pose likelihood, yielding an effective balance between exploration
and convergence. The learning procedure probabilistically registers and fuses
partly overlapping object views and identifies object parts through expectation-
maximization. The suitability of our model for pose estimation was demonstrated
on cluttered range scenes, using a set of objects of similar shapes; object recogni-
tion results competitive with recent generative and discriminative methods were
obtained on a publicly available dataset.

While performing at least as well as state-of-the-art algorithms on public
datasets, our approach shows advantages in paradigmatic and technical rigor of
the techniques it builds on. Instead of defining e.g. probabilistic metrics on top of
ad-hoc likelihood functions, our sensor model is intrinsically probabilistic. This
approach allows for theoretical abstraction and flexibility. In particular, famil-
iar building blocks from statistical learning are applied in appropriate places,
such as kernel density estimation, Monte Carlo integration and inference, and
expectation-maximization. Using rigorous, formal building blocks also facilitates
the adaptation of the system to different situations. For instance, for problems
where local derivatives of the pose density are available, using hybrid Monte
Carlo instead of Metropolis-Hastings would improve inference performances.
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