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Abstract We develop means of learning and representing object grasp af-
fordances probabilistically. By grasp affordance, we refer to an entity that is
able to assess whether a given relative object-gripper configuration will yield
a stable grasp. These affordances are represented with grasp densities, contin-
uous probability density functions defined on the space of 3D positions and
orientations. Grasp densities are registered with a visual model of the object
they characterize. They are exploited by aligning them to a target object
using visual pose estimation. Grasp densities are refined through experience:
A robot “plays” with an object by executing grasps drawn randomly for the
object’s grasp density. The robot then uses the outcomes of these grasps
to build a richer density through an importance sampling mechanism. Ini-
tial grasp densities, called hypothesis densities, are bootstrapped from grasps
collected using a motion capture system, or from grasps generated from the
visual model of the object. Refined densities, called empirical densities, repre-
sent affordances that have been confirmed through physical experience. The
applicability of our method is demonstrated by producing empirical densities
for two object with a real robot and its 3-finger hand. Hypothesis densities
are created from visual cues and human demonstration.
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1 Introduction

Grasping previously unknown objects is a fundamental skill of autonomous
agents. Human grasping skills improve with growing experience with certain
objects. In this chapter, we describe a mechanism that allows a robot to learn
grasp affordances [11] of objects described by learned visual models. Our first
aim is to organize and memorize, independently of grasp information sources,
the whole knowledge that an agent has about the grasping of an object, in
order to facilitate reasoning on grasping solutions and their likelihood of
success. A grasp affordance corresponds to the the different ways to place
a hand or a gripper near an object so that closing the gripper will produce
a stable grip. We represent the affordance of an object for a certain grasp
type through a continuous probability density function defined on the 6D
gripper pose space SE(3), within an object-relative reference frame. The
computational encoding is nonparametric: A density is represented by a large
number of weighted samples called particles. The probabilistic density in a
region of space is given by the local density of the particles in that region.
The underlying continuous density function is accessed through kernel density
estimation [28].

The second contribution of this chapter is a framework that allows an
agent to learn initial affordances from various grasp cues, and enrich its grasp-
ing knowledge through experience. Affordances are initially constructed from
human demonstration, or from a model-based method [1]. The grasp data
produced by these grasp sources is used to build continuous grasp hypothesis
densities (Section 5). These densities are registered with 3D visual object
model learned beforehand [8], which allows a robotic agent to execute sam-
ples from a grasp hypothesis density under arbitrary object poses, by using
the visual model to estimate the 3D pose of the object.

The success rate of grasp samples depends on the source that is used to
produce initial grasp data. However, no existing method can claim to be
perfect. For example, data collected from human demonstration will suffer
from the physical and mechanical difference between a human hand and a
robotic gripper. In the case of grasps computed from a 3D model, results
will be impeded by errors in the model, such as missing parts or imprecise
geometry. In all cases, only a fraction of the hypothesis density samples will
succeed; it thus seems necessary to also learn from experience. To this end, we
use samples from grasp hypothesis densities that lead to a successful grasp to
learn grasp empirical densities, i.e. grasps that have been confirmed through
experience.

A unified representation of grasp affordances can potentially lead to many
different applications. For instance, a grasp planner could combine a grasp
density with hardware physical capabilities (robot reachability) and external
constraints (obstacles) in order to select the grasp that has the largest chance
of success within the subset of achievable grasps. Another possibility is the
use of continuous grasp success likelihoods to infer robustness requirements
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on the execution particular grasp: if a grasp is centered on a narrow peak,
pose estimation and servoing should be performed with more caution than
when the grasp is placed in a wide region of high success likelihood.

2 Related Work

Object grasps can emerge in many different ways. One can for instance learn
2D image patches that predict stable grasps. For example, Saxena et al. [27]
have trained a classifier on a set of 2D images that were hand-labeled with
good grasping points. Good grasping points are then identified in several
views of an object and triangulated to infer their 3D position.

Grasping solutions can also emerge from the geometric properties of an ob-
ject, typically obtained from a 3D object model. The most popular 3D model
for grasping is probably the 3D mesh [15, 22], obtained e.g. from CAD or su-
perquadrics fitting [2]. However, grasping has also successfully been achieved
using models consisting of 3D surface patches [26], 3D edge segments [1], or
3D points [13]. When combined with an object pose estimation technique,
the previous methods allow a robot to execute a grasp on a specific object.
This involves object pose estimation, computation of a grasp on the aligned
model, then servoing to the object and performing the grasp [15].

In learning a continuous grasp affordance, one has a choice between learn-
ing success probabilities or learning success-conditional grasp densities. De-
noting by O a random variable encoding grasp outcomes (success or failure),
and by G a random variable encoding grasp poses, this translates to learning
P(O|G) or learning P(G|O). The former allows one to directly compute a
probability of success. The latter allows for grasp sampling, while still pro-
viding direct means of computing relative success probabilities — e.g. grasp
a is twice as likely to succeed as grasp b. We note that one can theoretically
be computed from the other using Bayes’ rule. However, depending on the
means of function representation, this process may prove either too costly or
too noisy to be computationally feasible.

This chapter develops a method for learning success-conditional grasp den-
sities, closely related in spirit to the work of de Granville et al. [5]. In their
work, affordances correspond to object-relative hand approach orientations,
although an extension where object-relative positions are also modeled is un-
der way [4]. The aim of the authors is to build compact sets of canonical
grasp approaches from human demonstration; they mean to compress a large
number of examples provided by a human teacher into a small number of
clusters. An affordance is expressed through a density represented as a mix-
ture of position-orientation kernels; machine learning techniques are used to
compute mixture and kernel parameters that best fit the data. This is quite
different from our approach, where a density is represented with a much
larger number of simpler kernels. Conceptually, using a larger number of ker-
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nels allows us to use significantly simpler learning methods (down to mere
resampling of input data, see Section 5.1). Also, the representation of a grasp
cluster through a single position-orientation kernel requires the assumption
that hand position and orientation are independent within the cluster, which
is generally not true. Representing a cluster with many particles can intrinsi-
cally capture more of the position-orientation correlation (see Section 6, and
in particular Fig. 6). The affordance densities presented by de Granville et
al. correspond to the hypothesis densities developed in this chapter.

Instead of considering success-conditional grasp probabilities, Montesano
et al. [23] formalize grasp affordances as success probabilities P(O|I), where
I is a local image patch. A robot thus learns a mapping from 2D image
patches to grasp success probabilities, where a grasp is parametrized by its
2D gripper position. From a procedural viewpoint, the method of Montesano
et al. differs from ours in its explicit exploitation of failed grasps, whereas
in our work, empirical densities are learned from successful grasps only. We
note that, in a probabilistic sense, our learning method does take failed grasps
into account, through the absence of learning data in regions where grasps
were sampled and failed. However, we agree that making active use of failed
trials may increase robustness, and we intend to evaluate this option in future
work. Another promising avenue lies in active learning of grasp options, as
demonstrated by Kroemer et al. [16].

Learning grasp affordances from experience was also demonstrated by
Stoytchev [29, 30]. In his work, a robot discovers successful grasps through
random exploratory actions on a given object. When subsequently confronted
with the same object, the robot is able to generate a grasp that should present
a high likelihood of success.

In this chapter, learning may be bootstrapped with grasp data provided
by a motion capture system, a process that constitutes a simple form of
imitation learning. For a broader discussion of imitation learning, we refer
the reader to two dedicated chapters within this collection [20, 19].

The system developed in this chapter is build on a set of existing methods
which are described in Section 3. The visual object model to which affordances
are attached is the part-based model of Detry et al. [8] (Section 3.3). An object
is modeled with a hierarchy of increasingly expressive object parts called
features. The single top feature of a hierarchy represents the whole object.
Features at the bottom of the hierarchy represent short 3D edge segments
for which evidence is collected from stereo imagery via the Early-Cognitive-
Vision (ECV) system of Kriiger et al. [17, 25] (Section 3.1). In the following,
we refer to these edge segments as ECV descriptors. The hierarchical model
grounds its visual evidence in ECV reconstructions: a model is learned from
segmented ECV descriptors, and the model can be used to recover the pose
of the object within an ECV representation of a cluttered scene.

The mathematical representation of grasp densities and their association
to hierarchical object models is discussed in Section 4. In Section 5, we demon-
strate the learning and refining of grasp densities from two grasp sources. The
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(a) ECV descriptors (b) Accumulated reconstructions

Fig. 1: ECV reconstruction. Each ECV descriptor is rendered with a small
plane patch. Patch normals are not part of ECV descriptors; they are arbi-
trarily defined for the purpose of 3D rendering.

first source is imitation of human grasps. The second source uses a model-
based algorithm which extracts grasping cues from an ECV reconstruction
(Section 3.2).

3 Methods

This section briefly describes the methods that are brought together for mod-
eling the visual percepts of an object, and for bootstrapping hypothesis den-
sities from visual cues. These sophisticated methods have proved essential for
a robust execution of grasps on arbitrary objects in arbitrary poses.

3.1 Early Cognitive Vision

ECV descriptors [17, 25] represent short edge segments in 3D space, each ECV
descriptor corresponding to a circular image patch with a 7-pixel diameter.
To create an ECV reconstruction, pixel patches are extracted along image
contours, within images captured with a calibrated stereo camera. The ECV
descriptors are then computed with stereopsis across image pairs; each de-
scriptor is thus defined by a 3D position and 3D edge orientation. Descriptors
may be tagged with color information, extracted from their corresponding 2D
patches (Fig. la).

ECV reconstructions can further be improved by manipulating objects
with a robot arm, and accumulating visual information across several views
through structure-from-motion techniques [12]. Assuming that the motion
adequately spans the object pose space, a complete 3D-edge reconstruction
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Fig. 2: Grasp reflex based on visual data. Each ECV descriptor is rendered
with a small plane patch. Patch normals are not part of ECV descriptors;
they are arbitrarily defined for the purpose of 3D rendering.

of the object can be generated, eliminating self-occlusion issues [14] (see
Fig. 1b).

3.2 Grasp Reflex From Co-planar ECV Descriptors

Pairs of ECV descriptors that are on the same plane and which have color
information such that two similar colors are pointing towards each other can
be used to define grasps. Grasp position is defined by the location of one of
the descriptors. Grasp orientation is calculated from the normal of the plane
linking the two descriptors, and the orientation of the descriptor at which the
grasp is located [14] (see Fig. 2). The grasps generated by this method will
be referred to as reflexes. Since each pair of co-planar descriptors generates
multiple reflexes, a large number of these are available.

3.3 Feature Hierarchies For 3D Visual Object
Representation

As explained in Section 3.1, an ECV reconstruction models a scene or an ob-
ject with low-level descriptors. This section outlines a higher-level 3D object
model [8] that grounds its visual evidence in ECV representations.

An object is modeled with a hierarchy of increasingly expressive object
parts called features. Features at the bottom of the hierarchy (primitive fea-
tures) represent ECV descriptors. Higher-level features (meta-features) rep-
resent geometric configurations of more elementary features. The single top
feature of a hierarchy represents the object.
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Unlike many part-based models, a hierarchy consists of features that may
have several instances in a scene. To illustrate this, let us consider a part-
based model of a bike, in which we assume a representation of wheels. Tra-
ditional part-based models [10, 3] would work by creating two wheel parts —
one for each wheel. Our hierarchy however uses a single generic wheel fea-
ture; it stores the information on the existence of two wheels within the wheel
feature. Likewise, a primitive feature represents a generic ECV descriptor,
e.g. any descriptor that has a red-like color. While an object like the basket
of Fig. 1b produces hundreds of red ECV descriptors, a hierarchy represent-
ing the basket will, in its simplest form, contain a single red-like primitive
feature; it will encode internally that this feature has many instances within
a basket object.

A hierarchy is implemented in a Markov tree. Features correspond to hid-
den nodes of the network; when a model is associated to a scene (during
learning or detection), the pose distribution of feature ¢ in the scene is rep-
resented through a random variable X;. Random variables are thus defined
over the pose space, which exactly corresponds to the Special Euclidean group
SE(3) = R? x SO(3). The random variable X; associated to feature i effec-
tively links that feature to its instances: X; represents as one probability
density function the pose distribution of all the instances of feature 4, there-
fore avoiding specific model-to-scene correspondences.

The geometric relationship between two neighboring features ¢ and j is
encoded in a compatibility potential 1;;(X;, X;). A compatibility potential
represents the pose distribution of all the instances of the child feature in a
reference frame defined by the parent feature; potentials are thus also defined
on SE(3).

The only observable features are primitive features, which receive evidence
from the ECV system. Each primitive feature ¢ is linked to an observed
variable Y;; the statistical dependency between a hidden variable X; and its
observed variable Y; is encoded in an observation potential ¢;(X;), which
represents the pose distribution of ECV descriptors that have a color similar
to the color of primitive feature 7.

Density functions (random variables, compatibility potentials, observation
potentials) are represented nonparametrically: a density is represented by a
set of particles [8].

3.4 Pose Estimation

The hierarchical model presented above can be used to estimate the pose of a
known object in a cluttered scene. Estimating the pose of an object amounts
to deriving a posterior pose density for the top feature of its hierarchy, which
involves two operations [8]:

1. Extract ECV descriptors, and transform them into observation potentials.
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2. Propagate evidence through the graph using an applicable inference algo-
rithm.

Each observation potential ¢;(X;) is built from a subset of the early-vision
observations. The subset that serves to build the potential ¢;(X;) is the
subset of ECV descriptors that have a color that is close enough to the color
associated to primitive feature 1.

Evidence is propagated through the hierarchy using a belief propagation
(BP) algorithm [24, 31]. BP works by exchanging messages between neigh-
boring nodes. Each message carries the belief that the sending node has about
the pose of the receiving node. In other words, a message allows the sending
feature to probabilistically vote for all the poses of the receiving feature that
are consistent with its own pose — consistency being defined by the compati-
bility potential through which the message flows. Through message passing,
BP propagates collected evidence from primitive features to the top of the
hierarchy; each feature probabilistically votes for all possible object config-
urations consistent with its pose density. A consensus emerges among the
available evidence, leading to one or more consistent scene interpretations.
The pose likelihood for the whole object is eventually read out of the top fea-
ture; if the object is present twice in a scene, the top feature density should
present two major modes. The global belief about the object pose may also
be propagated from the top node down the hierarchy, reinforcing globally
consistent evidence and permitting the inference of occluded features.

Algorithms that build hierarchies from accumulated ECV reconstructions
are discussed in prior work [7].

4 Representing Grasp Densities

This section is focused on the probabilistic representation of grasp affor-
dances. By grasp affordance, we refer to the different ways to place a hand or
a gripper near an object so that closing the gripper will produce a stable grip.
The grasps we consider are parametrized by a 6D gripper pose composed of
a 3D position and a 3D orientation.

From a mathematical point of view, grasp densities are identical to the
visual potentials of Section 3.3. They can thus be encoded with the same
nonparametric representation. Density evaluation is performed by assigning
a kernel function to each particle supporting the density, and summing the
evaluation of all kernels. Sampling from a distribution is performed by sam-
pling from the kernel of a particle ¢ selected from P(¢ = i) oc w?, where w' is
the weight of particle 1.

Grasp densities are defined on the Special Euclidean group SE(3) =
R3 x SO(3), where SO(3) is the Special Orthogonal group (the group of
3D rotations). We use a kernel that factorizes into two functions defined on
R3 and SO(3). Denoting the separation of an SE(3) point z into a translation
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A and a rotation 6 by

T = <>\’9)7 B = (Nt7ﬂr)> o = (Ut>ar);

we define our kernel with
K(x; 1, 0) = N(A; pe; 01) ©(0; pir, 0 (1)

where p is the kernel mean point, o is the kernel bandwidth, N(+) is a trivari-
ate isotropic Gaussian kernel, and @(+) is an orientation kernel defined on
SO(3). Denoting by 6’ and .. the quaternion representations of 6 and p,
[18], we define the orientation kernel with the Dimroth-Watson distribution
[21]

O(: pir. 07) = W(B's iy 07) = (o) O (2)

where C,(0,) is a normalizing factor. This kernel corresponds to a Gaussian-
like distribution on SO(3). The Dimroth-Watson distribution inherently han-
dles the double cover of SO(3) by quaternions [5].

The bandwidth ¢ associated to a density should ideally be selected jointly
in R? and SO(3). However, this is difficult to do. Instead, we set the orienta-
tion bandwidth o, to a constant allowing about 10° of deviation; the location
bandwidth o; is then selected using a k-nearest neighbor technique [28].

The expressiveness of a single SE(3) kernel (1) is rather limited: location
and orientation components are both isotropic, and within a kernel, location
and orientation are modeled independently. Nonparametric methods account
for the simplicity of individual kernels by employing a large number of them:
a grasp density will typically be supported by a thousand particles. Fig. 3a
shows an intuitive rendering of an SE(3) kernel from a grasp density. Fig. 3b
and Fig. 3c illustrate continuous densities.

Grasp densities are defined in the same reference frame as visual features.
Once visual features have been aligned to an object pose (Section 3.4), the
object grasp density can be similarly aligned, and one can readily draw grasps
from the density and execute them onto the object. A deeper integration of
the visual model with grasp densities has been covered in prior work [6].

5 Learning Grasp Densities

This section explains how hypothesis densities are learned from source data
(Section 5.1), and how empirical densities are learned from experience (Sec-
tion 5.2).
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Fig. 3: Grasp density representation. The top image of Fig. (a) illustrates a
particle from a nonparametric grasp density, and its associated kernel widths:
the translucent sphere shows one position standard deviation, the cone shows
the variance in orientation. The bottom image illustrates how the schematic
rendering used in the top image relates to a physical gripper. Fig. (b) shows
a 3D rendering of the kernels supporting a grasp density for a table-tennis
paddle (for clarity, only 12 kernels are rendered). Fig. (c) indicates with a
green mask of varying opacity the values of the location component of the
same grasp density along the plane of the paddle (orientations were ignored
to produce this last illustration).

5.1 Hypothesis Densities From Examples

Initial grasp knowledge, acquired for instance from imitation or reflex, is
structured as a set of grasps parametrized by a 6D pose. Given the non-
parametric representation, building a density from a set of grasps is straight-
forward — grasps can directly be used as particles representing the density.
We typically limit the number of particles in a density to a thousand; if the
number of grasps in a set is larger than 1000, the density is resampled: ker-
nels are associated the particles, and 1000 samples are drawn and used as a
representation replacement.

5.2 Empirical Densities Through Familiarization

As the name suggests, hypothesis densities do not pretend to reflect the true
properties of an object. Their main defect is that they may strongly suggest
grasps that might not be applicable at all, for instance because of gripper dis-
crepancies in imitation-based hypotheses. A second, more subtle issue is that
the grasp data used to learn hypothesis densities will generally be afflicted
with a source-dependent spatial bias. A very good example can be made
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from the reflex computation of Section 3.2. Reflexes are computed from ECV
visual descriptors. Therefore, parts of an object that have a denser visual res-
olution will yield more reflexes, incidentally biasing the corresponding region
of the hypothesis density to a higher value. The next paragraph explains
how grasping experience can be used to compute new densities (empirical
densities) that better reflect gripper-object properties.

Empirical densities are leaned from the execution of samples from a hy-
pothesis density, intuitively allowing the agent to familiarize itself with the
object by discarding wrong hypotheses and refining good ones. Familiariza-
tion thus essentially consists in autonomously learning an empirical density
from the outcomes of sample executions. A simple way to proceed is to build
an empirical density directly from successful grasp samples. However, this
approach would inevitably propagate the spatial bias mentioned above to em-
pirical densities. Instead, we use importance sampling [9] to properly weight
grasp outcomes, allowing us to draw samples from the physical grasp affor-
dance of an object. The weight associated to a grasp sample x is computed
as a(x) /d(x), where a(x) is 1 if the execution of x has succeeded, 0 else, and
d(x) corresponds to the value of the continuous hypothesis density at x. A
set of these weighted samples directly forms a grasp empirical density that
faithfully and uniformly reflects intrinsic gripper-object properties.

5.3 Updating Empirical Densities In Long-Term
Interaction

In long-term interaction, a robot is constantly producing new evidence which
should ideally be used to continuously enhance empirical densities. The
methodology presented above can easily be adapted for basic long-term learn-
ing. Essentially, the solution stems from observing that the IS learning of em-
pirical densities may in fact use any arbitrary function as hypothesis density.
In an initial learning cycle, the hypothesis density is computed from grasp
cues. Let us call this initial hypothesis density the bootstrap density. In the
next learning cycle, the empirical density from the first cycle may be linearly
combined with the bootstrap density to form a new hypothesis density that
represents a trade-off between exploration of new possibilities and safe repro-
duction of known experience. Once enough samples from the new hypothe-
sis density have been experienced, the empirical density can be replaced by
an updated representation. In long-term interaction, hypothesis densities are
thus successively computed as weighted sums of the current empirical density
and the bootstrap density. Giving a high weight to the empirical density trig-
gers top-down learning, i.e. refining globally known affordance. Conversely,
focusing on the bootstrap density corresponds to bottom-up learning, i.e.
integrating new low-level evidence into the model.
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Fig. 5: Barrett hand grasping the toy jug.

6 Results

This section illustrates hypothesis densities learned from imitation and re-
flexes, and empirical densities are learned by grasping objects with a 3-finger
Barrett hand. Densities are built for two objects: the table-tennis paddle of
Fig. 3, and a toy plastic jug (Fig. 5). The experimental scenario is described
below.

For each object, the experiment starts with a visual hierarchical model,
and a set of grasps. For the paddle, grasps are generated with the method
described in Section 3.2. Initial data for the jug was collected through human
demonstration, using a motion capture system. From these data, a hypoth-
esis density is built for each object. The particles supporting the hypothesis
densities are rendered in Fig. 4.
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Fig. 6: Samples drawn from grasp empirical densities.

In order to refine affordance knowledge, feedback on the execution of hy-
pothesis density samples is needed. Grasps are executed with a Barrett hand
mounted on an industrial arm. As illustrated in Fig. 5, the hand preshape
is a parallel-fingers, opposing-thumb configuration. The reference pose of the
hand is set for a pinch grasp, with the tool center point located in-between
the tips of the fingers — similar to the reference pose illustrated in Fig. 3a. A
grasp is considered successful if the robot is able to firmly lift up the object,
success being asserted by raising the robotic hand while applying a constant,
inward force to the fingers, and checking whether at least one finger is not
fully closed. Sets of 100 and 25 successful grasps were collected for the pad-
dle and the jug respectively. This information was then used to build a grasp
empirical density, following the procedure described in Section 5.2. Samples
from the resulting empirical densities are shown in Fig. 6. For the paddle, the
main evolution from hypothesis to empirical density is the removal of a large
number of grasps for which the gripper wrist collides with the paddle body.
Grasps presenting a steep approach relative to the plane of the paddle were
also discarded, thereby preventing fingers from colliding with the object dur-
ing hand servoing. None of the pinch-grasps at the paddle handle succeeded,
hence their absence from the empirical density.

While grasping the top of the jug is easy for a human hand, it proved
to be very difficult for the Barrett hand with parallel fingers and opposing
thumb. Consequently, a large portion of the topside grasps suggested by the
hypothesis density are not represented in the empirical density. The most
reliable grasps approach the handle of the jug from above; these grasps are
strongly supported in the empirical density.

The left image of Fig. 6 clearly illustrates the correlation between grasp
positions and orientations: moving along the edge of the paddle, grasp ap-
proaches are most often roughly perpendicular to the local edge tangent. The
nonparametric density representation successfully captures this correlation.
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7 Conclusion And Future Work

We presented a framework for representing and learning object grasp affor-
dances probabilistically. The affordance representation is nonparametric: an
affordance is recorded in a continuous probability density function supported
by a set of particles.

Grasp densities are initially learned from visual cues or imitation, leading
to grasp hypothesis densities. Using the visual model for pose estimation, an
agent is able to execute samples from a hypothesis density under arbitrary
object poses. Observing the outcomes of these grasps allows the agent to learn
from experience: an importance sampling algorithm is used to infer faithful
object grasp properties from successful grasp samples. The resulting grasp
empirical densities eventually allow for more robust grasping.

Importance Sampling is a batch learning method, that requires the exe-
cution of a large number of grasps before an empirical density can be built.
Learning empirical densities on-line would be very convenient, which is a
path we plan to explore next.

We currently learn visual and grasp models independently. Yet, a part-
based representation offers an elegant way to locally encode visuomotor de-
scriptions. One of our goals is to learn visual parts that share the same grasp
properties across different objects. This way, a grasp feature would be directly
and exclusively connected to the visual evidence that predicts its applicabil-
ity, allowing for its generalization across objects.
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