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Abstract—We present a task-oriented grasp model, that en-
codes grasps that are con gurationally compatible with a given
task. For instance, if the task is to pour liquid from a container,
the model encodes grasps that leave the opening of the container
unobstructed. The model consists of two independent agents:
First, a geometric grasp model that computes, from a depth
image, a distribution of 6D grasp poses for which the shape of
the gripper matches the shape of the underlying surface. The
model relies on a dictionary of geometric object parts annotated
with workable gripper poses and preshape parameters. It is
learned from experience via kinesthetic teaching. The second
agent is a CNN-based semantic model that identi es grasp-
suitable regions in a depth image, i.e., regions where a grasp
will not impede the execution of the task. The semantic model
allows us to encode relationships such asgrasp from the

handle.” A key element of this work is to use a deep network to - of each combination of task and object that the robot is
integrate contextual task cues, and defer the structured-output - ¢,scaptiple to encounter. While this approach works satisfac-
problem of gripper pose computation to an explicit (learned) torily in a controlled environment where the number of tasks
geometric model. Jointly, these two models generate grasps that y . R )
are mechanically t, and that grip on the object in a way that ~and objects is limited, it does not translate to open-ended
enables the intended task. environments containing millions of objects, and where each
L INTRODUCTION object can be involved in many tasks. To address this
: problem, we must provide robots with means of transferring
Humans are ingenious: If we cannot nd the tool wetask-specic grasp experience across objects, to allow them
ordinarily use to perform a task, we easily nd anothero initiate a task with objects that are not necessarily those
tool that qualies. This skill is crucial to our ability to they trained with.
handle the large variety of objects that populate our world. The problem of task-oriented grasping intuitively fac-
Unfortunately, this skill is not yet accessible to today's robotggrizes into two subproblems: (A) decide which areas of
— most factory robotic workers only ever perform a singleyn object can be grasped to perform the task, and (B)
task, with a single tool. Pr_owdmg rqbots W|th_the Canab'“typosition the wrist and the ngers around such areas to
to use new tools and objects is vital to their transition t9orm a mechanically stable grasp. Problem A relates to the
uncontrolled environments. In this domain, our communitygent's understanding of the world — for instance a semantic
has focused on two important issues: developing grasp moghderstanding of objects, tools and context, or a working
els and developing task models. Grasp models [16], [2fowledge of physics. In turn this understanding allows the
determine grasping points that are suitable for picking URgent to formulate task constraints that incite the proper
an object, while task models [15] assume the pre-existenggecution of the task. Problem B relates to sensorimotor
of a satisfactory grip on the object and focus on modelingrograms that map from visually-perceived object shapes,
the motion that realizes the task. The objective of thigy \wrist and nger con gurations that yield a workable
work is to bridge the gap between these two domains, i-nechanical bond between the gripper and the object. The
grasping objects to the end of completing a task that imposggoplem of task-oriented grasping then amounts to jointly
constraints on the grip con guration. We are investigating gptimizing A and B.
model that allows a robot to grasp a previously-unseen ObjeCtEvidence collected in different behavioral and neuro-

in a way f{hat is compatible with the exec_ution of a given tas‘bhysiological studies [9], [20], [24] indicates that the A—
A straightforward approach to allowing robots to WorkB composition above is possibly consistent with primate

with new objects is to hardcode the manipulation parameteé?asping. The need for contextual information expressed in
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Fig. 1. Grasping for @&ransporttask. Left: the green overlay indicates task-
compatible regions encoded by the CNN. Right: Planning and executing a
7DOF grasp (pose and preshape) within a compatible region.
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Reciprocally, this A-B composition translates into a hatuautonomous acquisition of output affordances via exploratory
ral grasp planning solution for arti cial agents [1], [6], [14], learning.Affordance recognitioris of particular relevance to
[31], [33]. Capturing task constraints (Problem A) has beeaur work, and it has been shown that object affordances can
tackled with physics-based simulations [6], visual featurese modeled using hard-coded features [21] or CNNs [25],
and learned statistical models [14], [19], [31], or explicit[32].
semantic rules or ontologies [36]. Capturing sensorimotor The work presented in this paper contributes to the ef-
correlations (Problem B) is addressable with tools readilfort supported by the authors listed above, but it focuses
available in the machine-learning literature, and previouspeci cally on grasp synthesis. By contrast to the work listed
work demonstrating the feasibility of this process is abundarmtbove, we assume that the agent has already identi ed that
in the robotics community. Authors have for instance demorit can use an object or a set of objects to execute a given
strated how feature classi cation [28], prototypical parts [7]task, and we focus on deciding where and how to grasp.
or CNNs [12], [18] are applicable to solving at least in parClose in spirit to our work, Antanas et al. [1] presented a
the problem of geometric grasp planning. model that joined task-level and action-level reasoning. The

In this paper, we present a model of task-oriented graspiramithors rst segmented objects intop, middle bottom and
that combines geometric reasoning to semantic scene umndle and used a task-dependent grasp model to select
derstanding. We represented task constraints (Problem A)part to grasp. Then, a shape-based grasp model selected
with a CNN that identi es task-compatible areas withinthe nal grasp con guration. We go further by avoiding a
images provided by the robot's camera. We trained the CNNardcoded segmentation into a set of prede ned parts, and
on a synthetic, hand-annotated dataset. We constructed timstead learn a mapping from image data to both semantic
dataset by annotating 3D object meshes with task constraint®nstraints and gripper parameters. Song et al. [30] presented
and generating random views of random con gurations o& generative model of task-oriented grasping, Dang and Allen
those objects. This process allowed us to produce a larffl] presented a model for task-oriented grasping that ex-
training dataset while keeping the annotation effort reasomloited both visual and tactile information, and Vahrenkamp
able. et al. [35] decomposed objects into parts and assigned task

We addressed wrist/ nger pose planning (Problem B)abels to individual parts. While those models have the ability
with a geometric part-based model that nds object partto transfer parameters across objects of similar shape, their
whose shape is compatible with the gripper's. To verify taskbility to transfer to an object whose shape matches none
constraints, we restricted the geometric planner to objeof the training objects is unclear. Transfer to new objects
surfaces that are noted task-compatible by the semanticone of the key features of our model: both components
model. Fig[ 1 illustrates our approach. of our model (CNN and geometric planner) rely on local

Our contributions are as follows: We contribute an originainformation and would allow us to transfer parameters from
solution to task-oriented grasping, that addresses geometsigug to a suitcase if both objects exhibited a similar handle.
and semantic planning jointly. We demonstrate the applicdhe work of Hjelm et al. [14] and Nguyen et al. [22] are
bility of a MultiNet-based CNN architecture for modeling closest in spirit to our own. Hjelm et al. [14] hardcoded
task constraints in image space, and we provide a model thatbank of visual features such atse to an openingr
combines geometric and semantic information probabilistiraction of object surface coveragthen learned qualitative
cally. Our model allows the agent to grasp new objects faand geometric relations between those features and grasping
which there is no mesh model. It is applicable to 2.5D objeqtoints that are compatible with a task. This paper goes be-
images such as those captured by stock RGBD sensorsytind the work of Hjelm et al. by learning task features from
is capable of generalizing across objects that are globalgnnotated data. Nguyen et al. [22] trained a neural network
different in shape: the geometric planner only exploits locabn the affordance dataset of Myers et al. [21]. Our work goes
3D structure, and the CNN learns class traits that are nbeyond Nguyen et al. by using a geometric grasp planner
necessarily anchored in global object structure. that outputs grasps that are not necessarily centered on a

part's centroid, and by demonstrating applicability on dataset
Il. RELATED WORK designed for task-oriented manipulation, where objects may

This work falls under the broad umbrella afbot affor- overlap. Our work complements thask space regionsf
dances[26], [33], whereby roboticists took inspiration in Berenson et al. [2], by providing means of parametrizing
J. Gibson's ecological perception [10] to formalize robottask and grasp constraints from vision data.
world interactions. Sahin et al. [26] provided an extended
discussion of Gibson's affordance concept, its adoption by . METHOD
the robotics community, and its application to traversabil- Our aim is to de ne a task-oriented grasp model, that
ity management (pushing/running through/driving aroundkencodes grasps whose placement on an object enable a given
Stoytchev [33] studied the use of tools in arti cial agentstask. For instance, if the task is to hand over an object
Similar to this work, Stoytchev made a distinction betweemo an operator, the model encodes grasps that leave part
binding affordanceghat relate to hand-object bonds, andof the object's surface available for the operator to secure
output affordanceshat encode the additional capability thathis own grip. As alluded above, the model consists of two
an agent earns by seizing a tool. His work [33] focused ooomponents, a geometric model and a semantic model. The



within the task regions de ned above. The resulting grasps
are geometrically consistent, and compatible with the task.
Formally, our model involves the three variabies andh
de ned above, and a fourth variabtethat is a ternary image
mask that represents the task-compatibility of image regions,
assuitable unsuitable or unknown A hand con gurationh
S belongs toH = SE(3) M , whereSE(3) is the special

/ Euclidean group modeling wrist poses, akd is a set of

discrete hand preshapes suchpasver graspor pinch A
@ grasp is executed by bringing the hand to a pose and preshape
h 2 H, then closing the ngers until contact. Bothandt
are given. We assume the conditional independence relations
‘ _ _ _ represented by the network of F[d. 2 — speci cally, that the
Fig. 2. Graphical representation of our grasp model. Variablasdt — hanq con guration is independent of the task if image regions
model a depth image and the task. Variablenodels contact regions (in - . . S
image space) that are compatible with the task. Varidblmodels hand C are provided. Those assumptions yield a decomposition of
poses that comply with the geometry of the scene and with task constrainthe posterior probability oh as
Z

p(hji;t) = p(hjc;i)p(cjt; i)dc; @
geometric model computes, from a depth image, a distribu-
tion of 6D grasp poses for which the shape of the grippexrhere fcjt;i) models contact regions that enable the task,
matches the shape of the underlying surface. The modahd ghjc;i) models the probability that hand con guratibn
relies on a dictionary of geometric object parts annotategrovides a mechanically stable grasps while only contacting
with workable gripper poses and preshape parameters. Thisible object areas that belong ¢o
model builds on the work of Detry et al. [7], whereby an Computing task-compatible grasps in a Bayesian fashion
arti cial agent learns such a dictionary from experience vias shown in Ed.]1 is scrupulous, but prohibitively expensive.
kinesthetic teaching. The second component is a semanticthe following, we instead approximatégi;t) with
model that encodes task-compatible grasping regions. It

N Lo
relies on a CNN that parses a scene into a set of task- p(hji;t) " phjc’i); @)
compatible regions, building on the work of Papon et al. [23}yhere

The semantic model allows us to encode relationships such ¢ = argmax p(qjt;i ): ©)
as “grasp from the handle”. The product of the geometric c

and semantic agents allows us to initiate manipulative taslgec_m presents the semantic model of Efy. 3. §ec.JIlI-C
on previously-unseen objects by identifying grasping regiongresents the geometric model of Eq. 2. Finally, $ec. |Il-D
where the shape of the gripper ts the shape of the todliscusses a Markov-chain-Monte-Carlo approach to nding

or object, and where the positioning of the gripper allowshe grasp pose that maximizes Ed. 2.
the robot to perform the intended task. This work advances

the state-of-the art by leveraging data-driven semantic sceRBe Semantic Model

understanding and combining a qualitative semantic map to The estimation of task-compatible contact regions requires
explicit geometric constraints, thereby providing solutiongigh-level knowledge that takes into account both the local
that are both contextually relevant and mechanically reageometry as well as the overall structure of a particular
izable. object. Deep Convolutional Neural Networks (CNNs) are
well-suited to this, as they merge information across a range
A. Grasp Model of receptive eld sizes. This property allows them to jointly
Our objective is to model the probability that a graspmodel both part appearance and location within a larger
h 2 H is suitable to accomplish a task using an object object. We implemented our task-compatibility model with
shown in an image, whereH models the space of hand the MultiNet architecture proposed by Teichmann et al. [34],
con gurations (wrist pose and hand preshapgejnodels a due to its run-time performance and need for relatively small
depth image, and models the task. This objective trans-training sets. MultiNet is a derivative of two of the most
lates into the construction of an empirical representation gfopular CNNs: the Visual Geometry Group (VGG) network
p(hji;t), the posterior probability of the hand con guration [29], and the Fully Convolutional Network (FCN) [17].
given an image and a task. We proceed by decomposingVGG is useful as it provides a set of weights that were
this problem in two. First, we compute regions of the imaggre-trained on the ImageNet dataset. While the VGG weights
that enable the task, i.e., regions where the hand can contaare trained on an object classi cation task, their use has
the object and yield a grasp con guration that is compatiblbeen shown to provide a signi cant boost over random
with the task. In turn, we compute hand con gurationsnitialization across a wide variety of tasks. For this work, we
(wrist pose/ nger preshape) for which the shape of theise VGG weights as our initial condition for all layers, with
hand locally matches the shape of the object, and that atee exception of the fully connected layers at the top of the



part-based approach: we assume the existence of a dictionary
of grasping prototypescomposed of a prototypical shape,
and corresponding grasp parameters. [Hig. 3 shows two of the
eight prototypes that we are using in our experiments. The
grasp parameters considered in this work are composed of the
pose of the gripper (with respect to the corresponding shape
Fig. 3. Left: thex-derivative of a synthetic depth image. Center and rightModel), and a hand preshape that is eithieich graspor
Two grasp prototypes. The dark gray shapes are point-cloud representatigg@wer grasp To grasp a new object, the robot aligns all pro-
of the prototypes’ shapes and their pose relative to the gripper. The lafhtypes to a point cloud of the scene, and executes the grasp
image shows a pinch grasp on a cyl_lndrlcal object, the rightmost |mag[?] o .
shows a power grasp on a cubical object. at corresponds to the best- tting prototype by preshaping
the gripper, moving it to the computed pose, and closing
the ngers until contact. In effect, tting 3D prototypes to
network and the rst convolutional layer at the bottom. Thea partial view implicitly postulates the shape of the object
top layers are randomly initialized since our output classds occluded areas, providing us with a rationale for placing
bear no similarity to those of ImageNet, while the bottomngers on unseen surfaces. We have shown in previous work
layer is randomly initialized since, as explained below, ouhow to learn such a dictionary from experience [7]. The next
input images are not in the RGB colorspace. The FCIparagraph summarizes the algorithm that allows us to grasp
architecture is important as it introduced the concept of Bew objects. For further details on this algorithm, we refer
fully convolutional network; a network which maps directlythe reader to our previous work [7].
from input pixels to class-labeled output pixels. We model a prototype's shape withsarface density8].
While we use MultiNet as our architecture, we divergeA surface density is a function(gy) : R®>  S?1 [0; 1] that
from it on the input side: rather than using RGB images agodels a 3D shape probabilistically. Intuitively, if the shape
our input, we use preprocessed depth images. The decisi@ha prototype is such that the point2 R® belongs to its
to use geometry, rather than color, as our input space is basstiface, and the local normal is then d[";n]) is greater
on three factors. First, we want to generalize across objeiétan zero. For a pointv that is far from any surface, then
instances of the same class, and doing so with color requirggv) = 0. We encode surface densities nonparametrically
a prohibitively large training set. Secondly, while renderingvith at set of samples, and evaluate them via KDE [8].
photo-realistic color images is dif cult, we are able to render This model offers an elegant solution to the prototype
synthetic depth images that are comparatively closer to re@ignment problem discussed above. Let us denote the sur-
depth images. Finally, we wish to generalize similar taskface density model of the input imadeby o(w), and by
relevant geometries across object classes. For exampleSifw) the surface density of prototypges shape. We de ne
handles are relevant to a task, we want to recognize thdlte surface matching score for prototygeat posex by
importance independent of an object's color, since only th&arginalizing the joint distribution of prototype poses and

local shape of the handle is important. object surface points, a%
The use of depth as an input feature for CNNs is not . . dw:
as well understood as color. While there have been some Pe(xji) = sc(xjw)g(w)dw; (4)

previous attempts to use it both directly [23], and encodeg, this expression. the conditional(iw) is de ned as
as in HHA [13] (which encodes horizontal disparity, height P ' al(®jw)

above ground, and angle with gravity), how to take advantage (Xjw) = sc(w - x); ()

of the rich information depth contains remains an opejhere w x is the SE(3) transformation ofw by x.
qugstion. In_ this worl_<, we select a local gradignt ?ncc’di”mtuitively, for a given grasp pose, s(xjw) is equal to
which contains three input channels: an approximation of thgie syrface distribution model of prototypetranslated and
x-derivative,y-derivative, and gradient magnitude, calculategqiated byx. Eq.[4 measures the overlap betweg(xjw)
using Sobel lters. This encoding avoids the normalizationy,q qw), effectively yielding a surface matching score.

and magnitude issues presented by using raw depth, whileThe matching score of Ef 4 ignores the task requirements
remaining fast and general (unlike HHA, which requires &e ned by the semantic model discussed in the previous
oor-plane to be visible). Figi |3 (left) shows an example ofsection. To take those into account, we constraint [Eq. 4
depthx-derivative. to image surfaces that are labeled task-compatible by the
semantic model, by replacing(wy) by a surface density
gdw) constructed exclusively from points that are labeled

The previous section documented our approach to COMysitively by the semantic model of S€c.T-B.
puting task-compatible contact surfaces. In this section, we

discuss the problem of computing hand parameters th Joint Maximization of Semantics and Geometry
enable mechanically-workable grasps. Grasping an unknownTo plan a grasp, we compute the prototype inééxand
object from a single depth image is a dif cult problem,gripper posex? that maximize Eq[J4, as

largely because we need to place at least one nger on a
surface we cannot observe. We address this problem with a

C. Geometric Model

k?;x? = argmax p, (Xji): (6)
Kk;x



transport affected objectsAll.
constraints If object has handle: by the handle.
Otherwise, anywhere.
handover affected objectsObjects that have handles.
constraints Leave handle available for operator's grip.
pour affected objectsContainers (objects that have an opening).
constraints Grasp away from opening.
open affected objectsContainers (objects that have a lid).
constraints Grasp away from lid.

TABLE |
FOUR TASKS CONSIDERED IN THIS EXPERIMEN;TAND ASSOCIATED
CONSTRAINTS

Fig. 4. Top-left: manipulation testbed. Top-right: objects used for trainingrig. 5. Two examples of task-constraint labels from the training set. Green
the CNN. Bottom: Test objects. and red surfaces are respectively suitable and unsuitable for the task. The
left image shows th@andoverconstraints for a brush: the robot must leave
the handle available for the operator to apply his grip. The rightmost image
. . . shows apour annotation: the robot must avoid touching the object near its
The integral of Eq[4 is not tractable analytically. Insteadspening. Similar constraints are de ned for all applicable combinations of

we approximate it with Monte Carlo integration [3], [8], asthe four tasks and ten training objects.

1 X
P(xii) " = s(xjw) where w (w); (7)
“ M - by labeling the vertices of mesh models of the training
. . objects assuitable or unsuitable as illustrated in Fig[]5.
where M is a large numerical constant, and() only We then generated arbitrary con gurations of the training

contamg surface points that are labeled positively by thgbjects by virtually dropping randomly placed objects onto
semantic model.

To compute the prototype indd€ and gripper pose’ a plane, using a _S|mulator a_nd a physics engine. We_rende_red
o . . simulated depth images using the BlenSor sensor simulation
that maximize Eq[]6, we apply simulated annealing to

Markov chain whose invariant distribution is an increasinﬁaImework [11], which provided a realistic depth-camera

power ofp (xji). For a discussion of this method, we refe%ensor model. This was necessary, as it allowed our synthetic
the rea derk o Odr revious work [8] ' data to emulate traits of the structured-light sensors mounted
P ’ on the robot, facilitating the direct transfer of trained models

IV. EXPERIMENT to real data. Fid.]6 shows an example of a synthetic training

In this section, we explain how we train the CNN ofSCe€ne and ground-truth labels. S
Sec.[T-B, we evaluate the performance of the CNN on We trained our model on a set of 5000 synthetic training
synthetic data, and we evaluate the applicability of our modénages. For simplicity, we trained a separate network for

to task-oriented grasping on an industrial robot. each of the four tasks listed above (we do not see any
) obstacle to capturing all tasks in a single network in future
A. Task Constraints work). To avoid over tting, we interrupted training once

To train the CNN of Se¢.TIT-B, one would ideally annotatethe training set loss began to diverge from the validation
a set of object images by hand. Unfortunately, CNNs requirget loss. The network uses dropout as a regularizer. In
a large amount of training data, and annotating those ddiae future, we plan to avoid over tting by continuously
manually is in our case prohibitively costly. Instead, we
manually labeled a small set of 3D object meshes, and
generated training scenes synthetically.

Fig.[4 (top-right) shows the ten objects that we used to "";
train the network, ve of which are from the YCB dataset [4]. 2 ,

In this experiment, we are considering four tasks: transport“
handover, pour, and open. Our objective is to plan grasp® N

that enable these tasks. Table | de nes the constraints that
de ne our four tasks. Fig. 6. Leftimage: the RGB channel of a synthetic training scene, showing

; ; A ; jects of Fig[ . This image is for illustration only; we do not use color in
In order to avoid expensive and time-consuming mam{%ﬁy model discussed in this paper. Center: Depth image derivativaasdy)

human annotations, we chose to use simulated depth ighd depth gradient intensity, rendered as R, G, and B channels respectively.
ages for training. To do this, we encoded task constrainf§ght: ground-truth labels for theansport  task.




Task MaxF1 ~ MAP image, zeroed all pixels that corresponded to points located

Transport 0.738  0.789 2cm underneath the tabletop or below, and computed a task-
E(";‘SS'OVEF gé’gj g-ggg compatibility mask on the resulting depth image using the

model of Sec. llI-B. Next, we computed the grasp (hand pose

Open 0.859 0.924 e - :
and preshape) that maximized the geometric model while
TABLE Il complying with the task's constraints (Eg. 6), limiting the
MAXF1AND MEAN AVERAGE PRECISION (MAP) FOR PIXELWISE pose search space to kinematically-feasible con gurations

TASK-SUITABILITY CLASSIFICATION ON SYNTHETIC VALIDATION DATA . that dld not CO”ide Wlth the table or Object Surfaces recorded
by the 3D camera. When multiple objects were present on
the table, the maximization step of Eq. 6 effectively decided
which object the robot would grasp; the experiment did not

)

5 require explicit object segmentation. The maximization step
N took on averagd0s on an Intel E5—2687W CPU. Finally, we

3 computed and executed a trajectory that brought the gripper
_§ to the desired pose, and closed the gripper until contact.
§ We evaluated the model according to three criteria. The

rst criterion C1 captured whether the constraints computed
by the CNN correctly matched the task's constraints. We

Fig. 7. Task suitability results on synthetic images. From left to rightayaluated it by inspecting the mask Computed by the CNN
transport, handover, pour, and open. Examples of classication results ’

demonstrate that the networks are able to learn the different tasks, and &&A'N9 the rules I'Sted_ in Table I. The_ second criterion C2
generalize across novel views and con gurations of the objects. captured the mechanical and semantic success of the grasp.

We assessed semantic success by assessing whether the

grasp is compatible with the task, and mechanical success
generating new viewpoints during training. Training tookoy having the robot lift the object off the table. The third
approximately six hours for each network on a single Titagriterion C3 represented the robot's ability to transport the
X GPU, while test evaluation of new images takes 100msbject to a basket located 80cm from the center of the
on the same GPU. We then evaluated the ability of th@orkspace.
trained models to generalize to new object poses using aln a rst experiment, we executed 32 tests with a single
separate validation set of synthetic data. Qualitatively, thebject on the table. Table Il summarizes this experiment,
network learns to recognize the parts of the objects relevaand Fig. 8 shows a set of examples. In Table I, the number
to each task, and labels them appropriately, as can be seemfnC2 grasps is larger than the number of C1 grasps. This
Fig. 7. Table Il provides quantitative results. The networkgbservation is illustrated by Fig. 8d: while the mask predicted
successfully capture the constraints of all tasks, with bettésr this case correctly rejected the leftmost side of the
performances for handover, pour and open. This discrepanggntainer's opening, it missed the other side, hence failing
is explained by ambiguity in the de nition of thansport C1. The partial failure of the grasp model did however not
constraints:grasp on handle if exists, anywhere otherwiseprevent the grasp from being compliant with the task. In
which leads to contradicting labels for non-handle grasps dFig. 8f, the network rejected the handle, which is the only
objects that have a handle or not. Overall, Fig. 7 and Table part that the robot is allowed to grasp to execute ploar
clearly demonstrate the same result: the network is able task, whose constraint is to avoid touching the opening of
accurately label the parts of the objects from novel viewghe container. This failure can probably be explained by a

and in previously unseen con gurations. lack of suf ciently similar objects in the training set. Fig. 8e
. . shows an example of a C3 failure: the weight of the object
B. Task-oriented Grasping overcame the grip during transport.

In this section, we evaluate the applicability of our method We repeated the experiment above, with multiple objects
to task-oriented grasping on an industrial robotic manipulasn the table instead of only one. Here, C1 captured whether
tor. The manipulator is composed of a 7-DOF articulatethe task constraints oéll relevant objectswere correctly
arm, and a three- nger gripper from Robotig. Depth datadentied by the CNN. We added a criterion Clb that
are provided by a Kinect 1 camera that is rigidly connectedaptured whether the task constrainf¢he object the robot
to the robot base. This setup is shown in Fig. 4. eventually graspedvas correct. Table IV summarizes this

This experiment consisted in executing a set of grasps @axperiment, and Fig. 9 shows a set of examples. The table
novel objects — objects that differed in size and shape froshows that in approximately half of the tests, at least one
those used for training. Each test proceeded as follows: Firsthject was misclassi ed. To put this number in perspective,
we randomly selected one of the four tasks listed above, amee note that there were on average three objects on the
we arbitrarily placed one or several objects on the tabléable for each run. The Clb success rate in this experiment
We selected objects such that the task is applicable to iat similar to the C1 rate of the single-object case, which
least one object on the table — e.g., if the taskasdover demonstrates the robustness of the model to clutter. Fig. 9a
at least one object has a handle. We then captured a deptiows a case where two objects were misclassi ed (the two



Cl  Valid task-constraint mask 25/32  (78%) to transfer task constraints to objects that differ in size and

C2 Valid grasp (mechanical & semantic) 28/32 (88%)

shape from the training set.

C3  Successful transport 25/32  (78%)
Sin o ca R (i) VI. ACKNOWLEDGEMENTS
TABLE IIl The authors thank Tristan Thrush for his key contributions
SUCCESS RATES FOR SINGLE OBJECTS to con guring software drivers for the arm, hand and camera.

Cc1 Valid task-const. mask (all relevant objects) 12/23  (52%)

Clb Valid task-const. mask (grasped object) 19/23  (82%) (1]

c2 Valid grasp (mechanical & semantic) 19/23  (82%)

C3 Successful transport 19/23 (82%)

Clb " C2 19/23  (82%) [2]

Clb™ C2” C3 15/23 (65%)
TABLE IV 3]

SUCCESS RATES FOR THE MULMOBJECT EXPERIMENT

(4]

rightmost objects). Fig. 9b is almost a success, but the frons]
half of the object's handle is marked suitable, which is
against the constraints of thendovertask.

While we can observe a distinct performance reductiorns]
between synthetic and real data (Fig. 7 and Fig. 8, 9), our
results support the networks' ability to gear grasps toward
task-compatible regions. The primary factor limiting the
accuracy of real-data results is the noise present in the sensor.
particularly along object boundaries. Further improvementéSI
to the simulation of training data, possibly through the addi-
tion of surface material modeling in the BlenSor framework, [9]
could help account for this. Finally, unwanted returns occur
around the table's edges, because of the absence of thosg
edges in the training set. Future simulations could bene t
from dropping objects onto a table, rather than onto a oot
so that the edges of the support surface are visible in training.

12
V. CONCLUSIONS 1w

We presented a model for task-oriented grasping thats)
jointly exploits a semantic and geometric understanding of
the scene. We implemented the semantic model with a set
task-speci c CNNs that we trained to identify image regions
that the robot is allowed to contact to comply with a given
task. We trained the CNN on synthetic scenes random[ﬁrS]
generated with hand-labeled mesh models.

The geometric model is a part-based planner that relies ¢¥]
a dictionary of prototypical grasps. Given a task directive,
the model searches through scene surfaces that are labglesl
positively by the task's CNN, to nd a prototype pose that
maximizes overlap with the scene. The result of this procezf8
is a gripper pose and preshape parameters that yield a gr 36
that is geometrically consistent, and that only contacts object
surfaces that will not preclude the task from performing
correctly. We trained the semantic model on 5000 scenggg;
generated with ten hand-labeled objects, and evaluated its
applicability both on synthetic data and on an industrial
robot. Our results make the generalization capability of OUbg;
model explicit: despite noisy depth images, we were able
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