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Abstract— We present a task-oriented grasp model, that en-
codes grasps that are con�gurationally compatible with a given
task. For instance, if the task is to pour liquid from a container,
the model encodes grasps that leave the opening of the container
unobstructed. The model consists of two independent agents:
First, a geometric grasp model that computes, from a depth
image, a distribution of 6D grasp poses for which the shape of
the gripper matches the shape of the underlying surface. The
model relies on a dictionary of geometric object parts annotated
with workable gripper poses and preshape parameters. It is
learned from experience via kinesthetic teaching. The second
agent is a CNN-based semantic model that identi�es grasp-
suitable regions in a depth image, i.e., regions where a grasp
will not impede the execution of the task. The semantic model
allows us to encode relationships such as“grasp from the
handle.” A key element of this work is to use a deep network to
integrate contextual task cues, and defer the structured-output
problem of gripper pose computation to an explicit (learned)
geometric model. Jointly, these two models generate grasps that
are mechanically �t, and that grip on the object in a way that
enables the intended task.

I. INTRODUCTION

Humans are ingenious: If we cannot �nd the tool we
ordinarily use to perform a task, we easily �nd another
tool that quali�es. This skill is crucial to our ability to
handle the large variety of objects that populate our world.
Unfortunately, this skill is not yet accessible to today's robots
– most factory robotic workers only ever perform a single
task, with a single tool. Providing robots with the capability
to use new tools and objects is vital to their transition to
uncontrolled environments. In this domain, our community
has focused on two important issues: developing grasp mod-
els and developing task models. Grasp models [16], [27]
determine grasping points that are suitable for picking up
an object, while task models [15] assume the pre-existence
of a satisfactory grip on the object and focus on modeling
the motion that realizes the task. The objective of this
work is to bridge the gap between these two domains, i.e.,
grasping objects to the end of completing a task that imposes
constraints on the grip con�guration. We are investigating a
model that allows a robot to grasp a previously-unseen object
in a way that is compatible with the execution of a given task.

A straightforward approach to allowing robots to work
with new objects is to hardcode the manipulation parameters
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Fig. 1. Grasping for atransporttask. Left: the green overlay indicates task-
compatible regions encoded by the CNN. Right: Planning and executing a
7DOF grasp (pose and preshape) within a compatible region.

of each combination of task and object that the robot is
susceptible to encounter. While this approach works satisfac-
torily in a controlled environment where the number of tasks
and objects is limited, it does not translate to open-ended
environments containing millions of objects, and where each
object can be involved in many tasks. To address this
problem, we must provide robots with means of transferring
task-speci�c grasp experience across objects, to allow them
to initiate a task with objects that are not necessarily those
they trained with.

The problem of task-oriented grasping intuitively fac-
torizes into two subproblems: (A) decide which areas of
an object can be grasped to perform the task, and (B)
position the wrist and the �ngers around such areas to
form a mechanically stable grasp. Problem A relates to the
agent's understanding of the world – for instance a semantic
understanding of objects, tools and context, or a working
knowledge of physics. In turn this understanding allows the
agent to formulate task constraints that incite the proper
execution of the task. Problem B relates to sensorimotor
programs that map from visually-perceived object shapes,
to wrist and �nger con�gurations that yield a workable
mechanical bond between the gripper and the object. The
problem of task-oriented grasping then amounts to jointly
optimizing A and B.

Evidence collected in different behavioral and neuro-
physiological studies [9], [20], [24] indicates that the A–
B composition above is possibly consistent with primate
grasping. The need for contextual information expressed in
Problem A is critically supported by the work of Creem
et al. [5], who observed that grasping relied on semantic
understanding and noted that“without semantic processing,
the visuomotor system can direct the effective grasp of an
object, but not in a manner that is appropriate for its use.”.
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Reciprocally, this A–B composition translates into a natu-
ral grasp planning solution for arti�cial agents [1], [6], [14],
[31], [33]. Capturing task constraints (Problem A) has been
tackled with physics-based simulations [6], visual features
and learned statistical models [14], [19], [31], or explicit
semantic rules or ontologies [36]. Capturing sensorimotor
correlations (Problem B) is addressable with tools readily
available in the machine-learning literature, and previous
work demonstrating the feasibility of this process is abundant
in the robotics community. Authors have for instance demon-
strated how feature classi�cation [28], prototypical parts [7],
or CNNs [12], [18] are applicable to solving at least in part
the problem of geometric grasp planning.

In this paper, we present a model of task-oriented grasping
that combines geometric reasoning to semantic scene un-
derstanding. We represented task constraints (Problem A)
with a CNN that identi�es task-compatible areas within
images provided by the robot's camera. We trained the CNN
on a synthetic, hand-annotated dataset. We constructed this
dataset by annotating 3D object meshes with task constraints,
and generating random views of random con�gurations of
those objects. This process allowed us to produce a large
training dataset while keeping the annotation effort reason-
able.

We addressed wrist/�nger pose planning (Problem B)
with a geometric part-based model that �nds object parts
whose shape is compatible with the gripper's. To verify task
constraints, we restricted the geometric planner to object
surfaces that are noted task-compatible by the semantic
model. Fig. 1 illustrates our approach.

Our contributions are as follows: We contribute an original
solution to task-oriented grasping, that addresses geometric
and semantic planning jointly. We demonstrate the applica-
bility of a MultiNet-based CNN architecture for modeling
task constraints in image space, and we provide a model that
combines geometric and semantic information probabilisti-
cally. Our model allows the agent to grasp new objects for
which there is no mesh model. It is applicable to 2.5D object
images such as those captured by stock RGBD sensors. It
is capable of generalizing across objects that are globally
different in shape: the geometric planner only exploits local
3D structure, and the CNN learns class traits that are not
necessarily anchored in global object structure.

II. RELATED WORK

This work falls under the broad umbrella ofrobot affor-
dances[26], [33], whereby roboticists took inspiration in
J. Gibson's ecological perception [10] to formalize robot-
world interactions. Sahin et al. [26] provided an extended
discussion of Gibson's affordance concept, its adoption by
the robotics community, and its application to traversabil-
ity management (pushing/running through/driving around).
Stoytchev [33] studied the use of tools in arti�cial agents.
Similar to this work, Stoytchev made a distinction between
binding affordancesthat relate to hand-object bonds, and
output affordancesthat encode the additional capability that
an agent earns by seizing a tool. His work [33] focused on

autonomous acquisition of output affordances via exploratory
learning.Affordance recognitionis of particular relevance to
our work, and it has been shown that object affordances can
be modeled using hard-coded features [21] or CNNs [25],
[32].

The work presented in this paper contributes to the ef-
fort supported by the authors listed above, but it focuses
speci�cally on grasp synthesis. By contrast to the work listed
above, we assume that the agent has already identi�ed that
it can use an object or a set of objects to execute a given
task, and we focus on deciding where and how to grasp.
Close in spirit to our work, Antanas et al. [1] presented a
model that joined task-level and action-level reasoning. The
authors �rst segmented objects intotop, middle, bottom, and
handle, and used a task-dependent grasp model to select
a part to grasp. Then, a shape-based grasp model selected
the �nal grasp con�guration. We go further by avoiding a
hardcoded segmentation into a set of prede�ned parts, and
instead learn a mapping from image data to both semantic
constraints and gripper parameters. Song et al. [30] presented
a generative model of task-oriented grasping, Dang and Allen
[6] presented a model for task-oriented grasping that ex-
ploited both visual and tactile information, and Vahrenkamp
et al. [35] decomposed objects into parts and assigned task
labels to individual parts. While those models have the ability
to transfer parameters across objects of similar shape, their
ability to transfer to an object whose shape matches none
of the training objects is unclear. Transfer to new objects
is one of the key features of our model: both components
of our model (CNN and geometric planner) rely on local
information and would allow us to transfer parameters from
a jug to a suitcase if both objects exhibited a similar handle.
The work of Hjelm et al. [14] and Nguyen et al. [22] are
closest in spirit to our own. Hjelm et al. [14] hardcoded
a bank of visual features such asclose to an openingor
fraction of object surface coverage, then learned qualitative
and geometric relations between those features and grasping
points that are compatible with a task. This paper goes be-
yond the work of Hjelm et al. by learning task features from
annotated data. Nguyen et al. [22] trained a neural network
on the affordance dataset of Myers et al. [21]. Our work goes
beyond Nguyen et al. by using a geometric grasp planner
that outputs grasps that are not necessarily centered on a
part's centroid, and by demonstrating applicability on dataset
designed for task-oriented manipulation, where objects may
overlap. Our work complements thetask space regionsof
Berenson et al. [2], by providing means of parametrizing
task and grasp constraints from vision data.

III. METHOD

Our aim is to de�ne a task-oriented grasp model, that
encodes grasps whose placement on an object enable a given
task. For instance, if the task is to hand over an object
to an operator, the model encodes grasps that leave part
of the object's surface available for the operator to secure
his own grip. As alluded above, the model consists of two
components, a geometric model and a semantic model. The
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Fig. 2. Graphical representation of our grasp model. Variablesi and t
model a depth image and the task. Variablec models contact regions (in
image space) that are compatible with the task. Variableh models hand
poses that comply with the geometry of the scene and with task constraints.

geometric model computes, from a depth image, a distribu-
tion of 6D grasp poses for which the shape of the gripper
matches the shape of the underlying surface. The model
relies on a dictionary of geometric object parts annotated
with workable gripper poses and preshape parameters. This
model builds on the work of Detry et al. [7], whereby an
arti�cial agent learns such a dictionary from experience via
kinesthetic teaching. The second component is a semantic
model that encodes task-compatible grasping regions. It
relies on a CNN that parses a scene into a set of task-
compatible regions, building on the work of Papon et al. [23].
The semantic model allows us to encode relationships such
as “grasp from the handle”. The product of the geometric
and semantic agents allows us to initiate manipulative tasks
on previously-unseen objects by identifying grasping regions
where the shape of the gripper �ts the shape of the tool
or object, and where the positioning of the gripper allows
the robot to perform the intended task. This work advances
the state-of-the art by leveraging data-driven semantic scene
understanding and combining a qualitative semantic map to
explicit geometric constraints, thereby providing solutions
that are both contextually relevant and mechanically real-
izable.

A. Grasp Model

Our objective is to model the probability that a grasp
h 2 H is suitable to accomplish a taskt, using an object
shown in an imagei , whereH models the space of hand
con�gurations (wrist pose and hand preshape),i models a
depth image, andt models the task. This objective trans-
lates into the construction of an empirical representation of
p(hji; t ), the posterior probability of the hand con�guration
given an image and a task. We proceed by decomposing
this problem in two. First, we compute regions of the image
that enable the task, i.e., regions where the hand can contact
the object and yield a grasp con�guration that is compatible
with the task. In turn, we compute hand con�gurations
(wrist pose/�nger preshape) for which the shape of the
hand locally matches the shape of the object, and that are

within the task regions de�ned above. The resulting grasps
are geometrically consistent, and compatible with the task.
Formally, our model involves the three variablesi , t and h
de�ned above, and a fourth variablec that is a ternary image
mask that represents the task-compatibility of image regions,
assuitable, unsuitable, or unknown. A hand con�gurationh
belongs toH = SE(3) � M , whereSE(3) is the special
Euclidean group modeling wrist poses, andM is a set of
discrete hand preshapes such aspower graspor pinch. A
grasp is executed by bringing the hand to a pose and preshape
h 2 H , then closing the �ngers until contact. Bothi and t
are given. We assume the conditional independence relations
represented by the network of Fig. 2 – speci�cally, that the
hand con�guration is independent of the task if image regions
c are provided. Those assumptions yield a decomposition of
the posterior probability ofh as

p(hji; t ) =
Z

p(hjc; i)p(cjt; i )dc; (1)

where p(cjt; i ) models contact regions that enable the task,
and p(hjc; i) models the probability that hand con�gurationh
provides a mechanically stable grasps while only contacting
visible object areas that belong toc.

Computing task-compatible grasps in a Bayesian fashion
as shown in Eq. 1 is scrupulous, but prohibitively expensive.
In the following, we instead approximate p(hji; t ) with

p(hji; t ) ' p(hjc?; i ); (2)

where
c? = argmax

c
p(cjt; i ): (3)

Sec. III-B presents the semantic model of Eq. 3. Sec. III-C
presents the geometric model of Eq. 2. Finally, Sec. III-D
discusses a Markov-chain–Monte-Carlo approach to �nding
the grasp pose that maximizes Eq. 2.

B. Semantic Model

The estimation of task-compatible contact regions requires
high-level knowledge that takes into account both the local
geometry as well as the overall structure of a particular
object. Deep Convolutional Neural Networks (CNNs) are
well-suited to this, as they merge information across a range
of receptive �eld sizes. This property allows them to jointly
model both part appearance and location within a larger
object. We implemented our task-compatibility model with
the MultiNet architecture proposed by Teichmann et al. [34],
due to its run-time performance and need for relatively small
training sets. MultiNet is a derivative of two of the most
popular CNNs: the Visual Geometry Group (VGG) network
[29], and the Fully Convolutional Network (FCN) [17].

VGG is useful as it provides a set of weights that were
pre-trained on the ImageNet dataset. While the VGG weights
were trained on an object classi�cation task, their use has
been shown to provide a signi�cant boost over random
initialization across a wide variety of tasks. For this work, we
use VGG weights as our initial condition for all layers, with
the exception of the fully connected layers at the top of the



Fig. 3. Left: thex-derivative of a synthetic depth image. Center and right:
Two grasp prototypes. The dark gray shapes are point-cloud representations
of the prototypes' shapes and their pose relative to the gripper. The left
image shows a pinch grasp on a cylindrical object, the rightmost image
shows a power grasp on a cubical object.

network and the �rst convolutional layer at the bottom. The
top layers are randomly initialized since our output classes
bear no similarity to those of ImageNet, while the bottom
layer is randomly initialized since, as explained below, our
input images are not in the RGB colorspace. The FCN
architecture is important as it introduced the concept of a
fully convolutional network; a network which maps directly
from input pixels to class-labeled output pixels.

While we use MultiNet as our architecture, we diverge
from it on the input side: rather than using RGB images as
our input, we use preprocessed depth images. The decision
to use geometry, rather than color, as our input space is based
on three factors. First, we want to generalize across object
instances of the same class, and doing so with color requires
a prohibitively large training set. Secondly, while rendering
photo-realistic color images is dif�cult, we are able to render
synthetic depth images that are comparatively closer to real
depth images. Finally, we wish to generalize similar task-
relevant geometries across object classes. For example, if
handles are relevant to a task, we want to recognize their
importance independent of an object's color, since only the
local shape of the handle is important.

The use of depth as an input feature for CNNs is not
as well understood as color. While there have been some
previous attempts to use it both directly [23], and encoded,
as in HHA [13] (which encodes horizontal disparity, height
above ground, and angle with gravity), how to take advantage
of the rich information depth contains remains an open
question. In this work, we select a local gradient encoding
which contains three input channels: an approximation of the
x-derivative,y-derivative, and gradient magnitude, calculated
using Sobel �lters. This encoding avoids the normalization
and magnitude issues presented by using raw depth, while
remaining fast and general (unlike HHA, which requires a
�oor-plane to be visible). Fig. 3 (left) shows an example of
depthx-derivative.

C. Geometric Model

The previous section documented our approach to com-
puting task-compatible contact surfaces. In this section, we
discuss the problem of computing hand parameters that
enable mechanically-workable grasps. Grasping an unknown
object from a single depth image is a dif�cult problem,
largely because we need to place at least one �nger on a
surface we cannot observe. We address this problem with a

part-based approach: we assume the existence of a dictionary
of grasping prototypes, composed of a prototypical shape,
and corresponding grasp parameters. Fig. 3 shows two of the
eight prototypes that we are using in our experiments. The
grasp parameters considered in this work are composed of the
pose of the gripper (with respect to the corresponding shape
model), and a hand preshape that is eitherpinch graspor
power grasp. To grasp a new object, the robot aligns all pro-
totypes to a point cloud of the scene, and executes the grasp
that corresponds to the best-�tting prototype by preshaping
the gripper, moving it to the computed pose, and closing
the �ngers until contact. In effect, �tting 3D prototypes to
a partial view implicitly postulates the shape of the object
in occluded areas, providing us with a rationale for placing
�ngers on unseen surfaces. We have shown in previous work
how to learn such a dictionary from experience [7]. The next
paragraph summarizes the algorithm that allows us to grasp
new objects. For further details on this algorithm, we refer
the reader to our previous work [7].

We model a prototype's shape with asurface density[8].
A surface density is a function q(w) : R3 � S2 ! [0; 1] that
models a 3D shape probabilistically. Intuitively, if the shape
of a prototype is such that the point` 2 R3 belongs to its
surface, and the local normal isn, then q([`; n ]) is greater
than zero. For a pointw that is far from any surface, then
q(w) = 0 . We encode surface densities nonparametrically
with at set of samples, and evaluate them via KDE [8].

This model offers an elegant solution to the prototype
alignment problem discussed above. Let us denote the sur-
face density model of the input imagei by q(w), and by
sk (w) the surface density of prototypek's shape. We de�ne
the surface matching score for prototypek at posex by
marginalizing the joint distribution of prototype poses and
object surface points, as

pk (xji ) =
Z

sk (xjw)q(w)dw; (4)

In this expression, the conditional sk (xjw) is de�ned as

sk (xjw) = sk (w � x); (5)

where w � x is the SE(3) transformation ofw by x.
Intuitively, for a given grasp posex, sk (xjw) is equal to
the surface distribution model of prototypei , translated and
rotated byx. Eq. 4 measures the overlap between sk (xjw)
and q(w), effectively yielding a surface matching score.

The matching score of Eq. 4 ignores the task requirements
de�ned by the semantic model discussed in the previous
section. To take those into account, we constraint Eq. 4
to image surfaces that are labeled task-compatible by the
semantic model, by replacing q(w) by a surface density
q0(w) constructed exclusively from points that are labeled
positively by the semantic model of Sec. III-B.

D. Joint Maximization of Semantics and Geometry

To plan a grasp, we compute the prototype indexk? and
gripper posex? that maximize Eq. 4, as

k?; x? = argmax
k;x

pk (xji ): (6)



Fig. 4. Top-left: manipulation testbed. Top-right: objects used for training
the CNN. Bottom: Test objects.

The integral of Eq. 4 is not tractable analytically. Instead,
we approximate it with Monte Carlo integration [3], [8], as

p̂k (xji ) '
1

M

MX

` =1

sk (xjw` ) where w` � q0(w); (7)

where M is a large numerical constant, and q0(w) only
contains surface points that are labeled positively by the
semantic model.

To compute the prototype indexk? and gripper posex?

that maximize Eq. 6, we apply simulated annealing to a
Markov chain whose invariant distribution is an increasing
power of p̂k (xji ). For a discussion of this method, we refer
the reader to our previous work [8].

IV. EXPERIMENT

In this section, we explain how we train the CNN of
Sec. III-B, we evaluate the performance of the CNN on
synthetic data, and we evaluate the applicability of our model
to task-oriented grasping on an industrial robot.

A. Task Constraints

To train the CNN of Sec. III-B, one would ideally annotate
a set of object images by hand. Unfortunately, CNNs require
a large amount of training data, and annotating those data
manually is in our case prohibitively costly. Instead, we
manually labeled a small set of 3D object meshes, and
generated training scenes synthetically.

Fig. 4 (top-right) shows the ten objects that we used to
train the network, �ve of which are from the YCB dataset [4].
In this experiment, we are considering four tasks: transport,
handover, pour, and open. Our objective is to plan grasps
that enable these tasks. Table I de�nes the constraints that
de�ne our four tasks.

In order to avoid expensive and time-consuming manual
human annotations, we chose to use simulated depth im-
ages for training. To do this, we encoded task constraints

transport affected objects: All.
constraints: If object has handle: by the handle.

Otherwise, anywhere.
handover affected objects: Objects that have handles.

constraints: Leave handle available for operator's grip.
pour affected objects: Containers (objects that have an opening).

constraints: Grasp away from opening.
open affected objects: Containers (objects that have a lid).

constraints: Grasp away from lid.

TABLE I

FOUR TASKS CONSIDERED IN THIS EXPERIMENT, AND ASSOCIATED

CONSTRAINTS.

Fig. 5. Two examples of task-constraint labels from the training set. Green
and red surfaces are respectively suitable and unsuitable for the task. The
left image shows thehandoverconstraints for a brush: the robot must leave
the handle available for the operator to apply his grip. The rightmost image
shows apour annotation: the robot must avoid touching the object near its
opening. Similar constraints are de�ned for all applicable combinations of
the four tasks and ten training objects.

by labeling the vertices of mesh models of the training
objects assuitable or unsuitable, as illustrated in Fig. 5.
We then generated arbitrary con�gurations of the training
objects by virtually dropping randomly placed objects onto
a plane, using a simulator and a physics engine. We rendered
simulated depth images using the BlenSor sensor simulation
framework [11], which provided a realistic depth-camera
sensor model. This was necessary, as it allowed our synthetic
data to emulate traits of the structured-light sensors mounted
on the robot, facilitating the direct transfer of trained models
to real data. Fig. 6 shows an example of a synthetic training
scene and ground-truth labels.

We trained our model on a set of 5000 synthetic training
images. For simplicity, we trained a separate network for
each of the four tasks listed above (we do not see any
obstacle to capturing all tasks in a single network in future
work). To avoid over�tting, we interrupted training once
the training set loss began to diverge from the validation
set loss. The network uses dropout as a regularizer. In
the future, we plan to avoid over�tting by continuously

Fig. 6. Left image: the RGB channel of a synthetic training scene, showing
objects of Fig. 4. This image is for illustration only; we do not use color in
any model discussed in this paper. Center: Depth image derivatives (x andy)
and depth gradient intensity, rendered as R, G, and B channels respectively.
Right: ground-truth labels for thetransport task.



Task MaxF1 MAP

Transport 0.738 0.789
Handover 0.959 0.986
Pour 0.904 0.959
Open 0.859 0.924

TABLE II

MAX F1 AND MEAN AVERAGE PRECISION (MAP) FOR PIXELWISE

TASK-SUITABILITY CLASSIFICATION ON SYNTHETIC VALIDATION DATA .
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Fig. 7. Task suitability results on synthetic images. From left to right:
transport, handover, pour, and open. Examples of classi�cation results
demonstrate that the networks are able to learn the different tasks, and can
generalize across novel views and con�gurations of the objects.

generating new viewpoints during training. Training took
approximately six hours for each network on a single Titan
X GPU, while test evaluation of new images takes 100ms
on the same GPU. We then evaluated the ability of the
trained models to generalize to new object poses using a
separate validation set of synthetic data. Qualitatively, the
network learns to recognize the parts of the objects relevant
to each task, and labels them appropriately, as can be seen in
Fig. 7. Table II provides quantitative results. The networks
successfully capture the constraints of all tasks, with better
performances for handover, pour and open. This discrepancy
is explained by ambiguity in the de�nition of thetransport
constraints:grasp on handle if exists, anywhere otherwise,
which leads to contradicting labels for non-handle grasps on
objects that have a handle or not. Overall, Fig. 7 and Table II
clearly demonstrate the same result: the network is able to
accurately label the parts of the objects from novel views
and in previously unseen con�gurations.

B. Task-oriented Grasping

In this section, we evaluate the applicability of our method
to task-oriented grasping on an industrial robotic manipula-
tor. The manipulator is composed of a 7-DOF articulated
arm, and a three-�nger gripper from Robotiq. Depth data
are provided by a Kinect 1 camera that is rigidly connected
to the robot base. This setup is shown in Fig. 4.

This experiment consisted in executing a set of grasps on
novel objects – objects that differed in size and shape from
those used for training. Each test proceeded as follows: First,
we randomly selected one of the four tasks listed above, and
we arbitrarily placed one or several objects on the table.
We selected objects such that the task is applicable to at
least one object on the table — e.g., if the task ishandover,
at least one object has a handle. We then captured a depth

image, zeroed all pixels that corresponded to points located
2cm underneath the tabletop or below, and computed a task-
compatibility mask on the resulting depth image using the
model of Sec. III-B. Next, we computed the grasp (hand pose
and preshape) that maximized the geometric model while
complying with the task's constraints (Eq. 6), limiting the
pose search space to kinematically-feasible con�gurations
that did not collide with the table or object surfaces recorded
by the 3D camera. When multiple objects were present on
the table, the maximization step of Eq. 6 effectively decided
which object the robot would grasp; the experiment did not
require explicit object segmentation. The maximization step
took on average10s on an Intel E5–2687W CPU. Finally, we
computed and executed a trajectory that brought the gripper
to the desired pose, and closed the gripper until contact.
We evaluated the model according to three criteria. The
�rst criterion C1 captured whether the constraints computed
by the CNN correctly matched the task's constraints. We
evaluated it by inspecting the mask computed by the CNN,
using the rules listed in Table I. The second criterion C2
captured the mechanical and semantic success of the grasp.
We assessed semantic success by assessing whether the
grasp is compatible with the task, and mechanical success
by having the robot lift the object off the table. The third
criterion C3 represented the robot's ability to transport the
object to a basket located 80cm from the center of the
workspace.

In a �rst experiment, we executed 32 tests with a single
object on the table. Table III summarizes this experiment,
and Fig. 8 shows a set of examples. In Table III, the number
of C2 grasps is larger than the number of C1 grasps. This
observation is illustrated by Fig. 8d: while the mask predicted
for this case correctly rejected the leftmost side of the
container's opening, it missed the other side, hence failing
C1. The partial failure of the grasp model did however not
prevent the grasp from being compliant with the task. In
Fig. 8f, the network rejected the handle, which is the only
part that the robot is allowed to grasp to execute thepour
task, whose constraint is to avoid touching the opening of
the container. This failure can probably be explained by a
lack of suf�ciently similar objects in the training set. Fig. 8e
shows an example of a C3 failure: the weight of the object
overcame the grip during transport.

We repeated the experiment above, with multiple objects
on the table instead of only one. Here, C1 captured whether
the task constraints ofall relevant objectswere correctly
identi�ed by the CNN. We added a criterion C1b that
captured whether the task constraintsof the object the robot
eventually graspedwas correct. Table IV summarizes this
experiment, and Fig. 9 shows a set of examples. The table
shows that in approximately half of the tests, at least one
object was misclassi�ed. To put this number in perspective,
we note that there were on average three objects on the
table for each run. The C1b success rate in this experiment
is similar to the C1 rate of the single-object case, which
demonstrates the robustness of the model to clutter. Fig. 9a
shows a case where two objects were misclassi�ed (the two



C1 Valid task-constraint mask 25 / 32 (78%)
C2 Valid grasp (mechanical & semantic) 28 / 32 (88%)
C3 Successful transport 25 / 32 (78%)

C1 ^ C2 25 / 32 (78%)
C1 ^ C2 ^ C3 22 / 32 (69%)

TABLE III

SUCCESS RATES FOR SINGLE OBJECTS.

C1 Valid task-const. mask (all relevant objects) 12 / 23 (52%)
C1b Valid task-const. mask (grasped object) 19 / 23 (82%)
C2 Valid grasp (mechanical & semantic) 19 / 23 (82%)
C3 Successful transport 19 / 23 (82%)

C1b ^ C2 19 / 23 (82%)
C1b ^ C2 ^ C3 15 / 23 (65%)

TABLE IV

SUCCESS RATES FOR THE MULTI-OBJECT EXPERIMENT.

rightmost objects). Fig. 9b is almost a success, but the front
half of the object's handle is marked suitable, which is
against the constraints of thehandovertask.

While we can observe a distinct performance reduction
between synthetic and real data (Fig. 7 and Fig. 8, 9), our
results support the networks' ability to gear grasps towards
task-compatible regions. The primary factor limiting the
accuracy of real-data results is the noise present in the sensor,
particularly along object boundaries. Further improvements
to the simulation of training data, possibly through the addi-
tion of surface material modeling in the BlenSor framework,
could help account for this. Finally, unwanted returns occur
around the table's edges, because of the absence of those
edges in the training set. Future simulations could bene�t
from dropping objects onto a table, rather than onto a �oor,
so that the edges of the support surface are visible in training.

V. CONCLUSIONS

We presented a model for task-oriented grasping that
jointly exploits a semantic and geometric understanding of
the scene. We implemented the semantic model with a set of
task-speci�c CNNs that we trained to identify image regions
that the robot is allowed to contact to comply with a given
task. We trained the CNN on synthetic scenes randomly
generated with hand-labeled mesh models.

The geometric model is a part-based planner that relies on
a dictionary of prototypical grasps. Given a task directive,
the model searches through scene surfaces that are labeled
positively by the task's CNN, to �nd a prototype pose that
maximizes overlap with the scene. The result of this process
is a gripper pose and preshape parameters that yield a grasp
that is geometrically consistent, and that only contacts object
surfaces that will not preclude the task from performing
correctly. We trained the semantic model on 5000 scenes,
generated with ten hand-labeled objects, and evaluated its
applicability both on synthetic data and on an industrial
robot. Our results make the generalization capability of our
model explicit: despite noisy depth images, we were able

to transfer task constraints to objects that differ in size and
shape from the training set.

VI. ACKNOWLEDGEMENTS

The authors thank Tristan Thrush for his key contributions
to con�guring software drivers for the arm, hand and camera.

REFERENCES

[1] L. Antanas, P. Moreno, M. Neumann, R. P. de Figueiredo, K. Kersting,
J. Santos-Victor, and L. De Raedt. High-level reasoning and low-level
learning for grasping: A probabilistic logic pipeline.arXiv preprint
arXiv:1411.1108, 2014.

[2] D. Berenson, S. Srinivasa, and J. Kuffner. Task space regions: A frame-
work for pose-constrained manipulation planning.The International
Journal of Robotics Research, 30(12):1435–1460, 2011.

[3] R. Ca�isch. Monte carlo and quasi-monte carlo methods.Acta
Numerica, 7:1–49, 1998.

[4] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar. The ycb object and model set: Towards common benchmarks
for manipulation research. InInternational Conference on Advanced
Robotics, 2015.

[5] S. H. Creem and D. R. Prof�tt. Grasping objects by their handles: a
necessary interaction between cognition and action.Journal of Exper-
imental Psychology: Human Perception and Performance, 27(1):218,
2001.

[6] H. Dang and P. K. Allen. Semantic grasping: Planning robotic grasps
functionally suitable for an object manipulation task. InIEEE/RSJ
International Conference on Intelligent Robots and Systems, 2012.

[7] R. Detry, C. H. Ek, M. Madry, and D. Kragic. Learning a dictionary
of prototypical grasp-predicting parts from grasping experience. In
IEEE International Conference on Robotics and Automation, 2013.

[8] R. Detry and J. Piater. Continuous surface-point distributions for
3D object pose estimation and recognition. InAsian Conference on
Computer Vision, pages 572–585, 2010.

[9] A. H. Fagg and M. A. Arbib. Modeling parietal-premotor interactions
in primate control of grasping.Neural Netw., 11(7-8):1277–1303,
1998.

[10] J. J. Gibson.The Ecological Approach to Visual Perception. Lawrence
Erlbaum Associates, 1979.

[11] M. Gschwandtner, R. Kwitt, A. Uhl, and W. Pree. Blensor: blender
sensor simulation toolbox. InInternational Symposium on Visual
Computing. Springer, 2011.

[12] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates. In
IEEE International Conference on Robotics and Automation, 2016.
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