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Abstract—We present a task-oriented grasp model, that learns
grasps that are configurationally compatible with a given task.
The model consists of a geometric grasp model, and a semantic
grasp model. The geometric model relies on a dictionary of
grasp prototypes that are learned from experience, while the
semantic model is CNN-based and identifies scene regions that
are compatible with a specific task. A key element of this work
is to use a deep network to integrate contextual task cues, and
defer the structured-output problem of gripper pose computation
to an explicit (learned) geometric model. Jointly, these two models
generate grasps that are mechanically fit, and that grip on the
object in a way that enables the intended task.

I. INTRODUCTION

This paper addresses task-oriented grasping onto new ob-

jects using a single depth image (single viewpoint). Our

solution endows robotic agents with the ability to plan grasps

that enable the execution of the intended task. This skill

enables the use of new tools and objects, which is vital to

our robots’ transition to uncontrolled environments. In this

domain, our community has focused on two important issues:

developing grasp models and developing task models. Grasp

models [13, 14, 21] determine grasping points that are suitable

for picking up an object, while task models [3, 18] often

assume the pre-existence of a satisfactory grip on the object

and focus on modeling the motion that realizes the task.

Despite its importance, task-oriented grasping has received

little attention compared to adjoining domains. The objective

of this work is to bridge the gap between grasp planning

and task (motion) planning, i.e., grasping objects to the end

of completing a task that imposes constraints on the grip

configuration. The work discussed here is presented in greater

detail in a follow-up publication by the same authors [7].

II. TASK-ORIENTED GRASP MODEL

Our aim is to define a task-oriented grasp model, that

encodes grasps whose placement on an object enable a given

task. For instance, if the task is to hand over an object to

an operator, the model encodes grasps that leave part of the

object’s surface available for the operator to secure his own

grip. As alluded above, the model consists of two components,

a geometric model and a semantic model. The geometric

model computes, from a depth image, a distribution of 6D

grasp poses for which the shape of the gripper matches the

shape of the underlying surface [7]. The model relies on a

dictionary of geometric object parts annotated with workable

gripper poses and preshape parameters. This model builds on

the work of Detry et al. [6], whereby an artificial agent learns

Fig. 1. Grasping for a transport task. Left: Depth gradient, input to the CNN.
Middle: the green overlay indicates task-compatible regions encoded by the
CNN (here: grasp handles only). Right: Planning and executing a 7DOF grasp
(pose and preshape) within a compatible region.

such a dictionary from experience via kinesthetic teaching

(Fig. 2). The second component is a semantic model that

encodes task-compatible grasping regions. It relies on a CNN

that parses a depth image into a set of task-compatible regions,

building on the work of Papon et al. [17]. We built the CNN

above the MultiNet architecture proposed by Teichmann et al.

[24]. While we use MultiNet as our architecture, we diverge

from it on the input side: rather than using RGB images as our

input, we use depth image gradients. Depth captures shape,

and shape is better correlated to our task constraints than

color. As a result, using depth facilitates generalization across

objects. The semantic model allows us to encode relationships

such as “grasp from the handle”. The product of the geometric

and semantic agents allows us to initiate manipulative tasks

on previously-unseen objects by identifying grasping regions

where the shape of the gripper fits the shape of the tool

or object, and where the positioning of the gripper allows

the robot to perform the intended task. This work advances

the state-of-the art by leveraging data-driven semantic scene

understanding and combining a qualitative semantic map to

explicit geometric constraints, thereby providing solutions that

are both contextually relevant and physically (mechanically)

realizable.

Previous studies of task-oriented grasping [1, 4, 10, 11,

22, 23, 26] relied on physics-based simulation [4, 20], visual

features and learned statistical models [10, 11, 16, 22], or

explicit semantic rules or ontologies [2, 12, 25]. In this work,

we capture task constraints with a deep convolutional neural

network. Previous studies evaluated the applicability of CNNs

to grasp and manipulation planning or control [9, 14, 15, 19].

One limitation of CNNs for grasping is the difficulty of

learning a structured output. The work of Dehban et al. [5] is

technologically close to ours, with a denoising-autoencoder–

based model of object/robot affordances.



Fig. 2. Geometric model: The two leftmost images show two of the six
grasp prototypes used in this work [6]. The two rightmost images illustrate
the application of this model for grasping a new shape: fitting all prototypes,
and executing the grasp that corresponds to the best-fitting prototype. The
best-fitting prototype is shown in red in the third image.

Fig. 3. Left: Task-constraint labels for a bowl and the pour task, where red
means grasp away from the bowl opening. Middle and right: synthetically
generated image and labels.

III. TASK-ORIENTED GRASPING EXPERIMENT

To evaluate the applicability of our model, we trained

models for four different tasks: transport (grasp by the handle),

handover (grasp away from the handle), pour (grasp away from

opening), and open (grasp away from lid). We trained CNNs

on a synthetic, hand-annotated dataset. We constructed this

dataset by annotating 3D object meshes with task constraints

(Fig. 3, left), and generating random views of random con-

figurations of those object synthetically (Fig. 3, right). We

rendered simulated depth images using the BlenSor sensor

simulation framework [8], which provides a realistic depth-

camera sensor model. This process allowed us to produce 5000

training images while keeping the annotation effort within

reason. We trained one CNN for each of the four tasks listed

above.

We tested our method on a robot composed of a 7-DOF

articulated arm, and a three-finger gripper from Robotiq.

Depth data are provided by a Kinect 1 camera that is

rigidly connected to the robot base. In this experiment, we

executed thirty-two grasps on novel objects that differed in

size and shape from those used for training. We computed

task constraints by submitting a single depth image to the

CNN. We computed the grasp (hand pose and preshape) using

the geometric model, restricting it to points marked as task-

compatible by the CNN. We executed thirty-two tests with

a single object on the table. Success was established if the

constraints computed by the CNN correctly matched the task’s

constraints (evaluated by inspection) and if the robot was

able to transport the object to a basket situated 80cm away

from the center of the workspace. Twenty-two of these grasps

were successful, yielding a 69% success rate. Fig. 4 illustrates

sample results.

IV. CONCLUSIONS

We discussed an original solution to task-oriented grasping,

that addresses geometric and semantic planning jointly. Our

(a) transport task, success

(b) transport task, success

(c) handover task, success

(d) pour task, failure: the se-
mantic model excluded the han-
dle, that is the only part of the
object compatible with the pour-
ing task

Fig. 4. Task-oriented grasp examples. The first three examples are successful.
The fourth example failed, for lack of similar examples in the training set
(objects for the pouring task in the training set were a mug and a pitcher).

model allows the agent to grasp new objects for which the

agent has no mesh model, and works on partial object images

such as those captured by stock RGBD sensors. Our results

show that the model is capable of transferring between objects

that are globally different in shape: the geometric planner only

exploits local 3D structure, and the CNN learns class traits that

are not necessarily anchored in global object structure.
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and José Santos-Victor. Denoising auto-encoders for

learning of objects and tools affordances in continuous

space. In IEEE International Conference on Robotics

and Automation, 2016.

[6] Renaud Detry, Carl Henrik Ek, Marianna Madry, and

Danica Kragic. Learning a dictionary of prototypical

grasp-predicting parts from grasping experience. In IEEE

International Conference on Robotics and Automation,

2013. doi: 10.1109/ICRA.2013.6630635.

[7] Renaud Detry, Jeremie Papon, and Larry Matthies. Task-

oriented grasping with semantic and geometric scene

understanding. In IEEE/RSJ International Conference on

Intelligent Robots and Systems, 2017. under review.

[8] Michael Gschwandtner, Roland Kwitt, Andreas Uhl, and

Wolfgang Pree. Blensor: blender sensor simulation tool-

box. In International Symposium on Visual Computing.

Springer, 2011.

[9] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey

Levine. Deep reinforcement learning for robotic manip-

ulation with asynchronous off-policy updates. In IEEE

International Conference on Robotics and Automation,

2016.

[10] Martin Hjelm, Renaud Detry, Carl Henrik Ek, and Dan-

ica Kragic. Representations for cross-task, cross-object

grasp transfer. In IEEE International Conference on

Robotics and Automation, 2014. doi: 10.1109/ICRA.

2014.6907697.

[11] Martin Hjelm, Carl Henrik Ek, Renaud Detry, and

Danica Kragic. Learning human priors for task-

constrained grasping. In International Conference on

Computer Vision Systems. Springer, 2015. doi: 10.1007/

978-3-319-20904-3 20.

[12] Rigas Kouskouridas, Theodora Retzepi, Eleni Charalam-

poglou, and Antonios Gasteratos. Ontology-based 3d

pose estimation for autonomous object manipulation. In

IEEE International Conference on Imaging Systems and

Techniques, 2012.

[13] O. Kroemer, E. Ugur, E. Oztop, and J. Peters. A kernel-

based approach to direct action perception. In IEEE

International Conference on Robotics and Automation,

2012.

[14] Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep

learning for detecting robotic grasps. The International

Journal of Robotics Research, 34(4-5):705–724, 2015.

[15] Jeffrey Mahler, Florian T Pokorny, Brian Hou, Melrose

Roderick, Michael Laskey, Mathieu Aubry, Kai Kohlhoff,
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