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AREPO: Uncertainty-Aware Robot Ensemble
Learning Under Extreme Partial Observability

Yurui Du1, Louis Hanut2, Herman Bruyninckx2, Renaud Detry1, 2

Abstract—Real-world applications of vision-based robot learn-
ing face two major challenges: extreme partial observability
and effective simulation-to-reality (sim-to-real) transfer. This
paper introduces a robust robot learning framework that en-
hances uncertainty awareness to address these challenges. We
reinterpret variational-autoencoder–based visual reinforcement
learning (RL) from an uncertainty-quantification perspective,
enabling resilience to high sensory noise and severe visual occlu-
sions—common in industrial robotic tasks. To further improve
sim-to-real transfer, we propose an uncertainty-aware ensemble
RL algorithm. We validate our methods on a laboratory task
designed as a proxy for real-world industrial applications char-
acterized by harsh environments with low visibility and physical
occlusions. Both simulation and real-world results demonstrate
significant improvements in task accuracy and efficiency over
various baselines, highlighting the benefits of uncertainty-aware
robot learning for complex operational contexts.

Index Terms—Reinforcement Learning, Transfer Learning,
Sensorimotor Learning

I. INTRODUCTION

IN vision-based robot learning, using partial and noisy
observations for policy learning presents a substantial

challenge, as a single observational frame often violates the
Markov assumption—i.e., that the current observable state
contains all necessary information for future decision-making.
To address this, three main solutions have emerged: The first
involves using recurrent neural networks (RNNs) to encode
entire past trajectories [1], [2]. While RNNs theoretically
capture comprehensive historical data, they suffer from slow
training times and high computational costs due to the sparse
nature of reinforcement learning (RL) losses, making them

Manuscript received: September, 21, 2024; Revised November, 23, 2024;
Accepted February, 24, 2025.

This paper was recommended for publication by Editor Jens Kober upon
evaluation of the Associate Editor and Reviewers’ comments.

This work was supported by the European Union (robetarme-project.eu).
Views and opinions expressed are however those of the authors only and do
not necessarily reflect those of the European Union or HADEA. Neither the
European Union nor the granting authority can be held responsible for them.

1Yurui Du and Renaud Detry are with KU Leuven, Dept. Electrical
Engineering, Research unit Processing Speech and Images, B-3000 Leuven,
Belgium (e-mail: yurui.du@kuleuven.be; renaud.detry@kuleuven.be).

2Louis Hanut, Herman Bruyninckx, and Renaud Detry are with KU Leuven,
Dept. Mechanical Engineering, Research unit Robotics, Automation and
Mechatronics, B-3000 Leuven, Belgium (e-mail: louis.hanut@kuleuven.be;
herman.bruyninckx@kuleuven.be).

Digital Object Identifier (DOI): 10.1109/LRA.2025.3554451

less viable for industrial applications. The second approach
constructs a belief state as a statistical summary of past
trajectories [3], [4]. However, this method also incurs high
computational costs due to the complexity of continuously
updating and tracking these dynamic states, compounded
by the demand for intensive sequence modeling. The third
approach extracts denoised, compressed latent representations
from noisy observations using an autoencoder, effectively
revalidating the Markov assumption [5], [6]. This allows for
the application of efficient, memoryless RL methods, reducing
computational overhead and better suiting real-world robotic
applications. These autoencoder-based approaches provide a
promising compromise between computational efficiency and
the ability to handle complex, noisy data streams.

While end-to-end RL allows agents to learn directly from
physical interactions with the environment, industrial robotic
tasks often preclude large-scale data collection due to high
costs and safety risks. To mitigate this, RL is frequently
integrated into a simulation-to-reality (sim-to-real) framework,
where policies are first developed in simulation before being
transferred to real-world settings.

Sim-to-real policy transfer is well-established in deep rein-
forcement learning (DRL), but existing methods often over-
look the challenges of observational uncertainty. Many ap-
proaches assume near-complete observability, rely on precise
environmental modeling through domain randomization or
physics-based methods [7], [8], or require continuous adap-
tation with cheap access to the target domain [9], [10]. While
effective in controlled environments, these methods may strug-
gle in the presence of extreme noise and partial observability,
where occlusions obscure true state changes. To address this,
platform-agnostic transfer methods [11] mitigate task-specific
noise by decoupling perception from control, while Kalman
filtering integrated with DRL [12], [13] improves robustness in
dynamic, noisy tasks. However, both approaches still depend
on accurate environmental modeling, which is often impracti-
cal in industrial settings due to the complexity of real-world
dynamics and constraints on large-scale data acquisition.

To address these challenges, we revisit visual DRL methods
based on variational autoencoders (VAE), from an uncertainty-
quantification perspective. We explore their connection to per-
formance gaps in sim-to-real transfer, and we introduce a novel
uncertainty-aware ensemble DRL framework. Our approach
enhances decision-making under extreme noise and partial ob-
servability while fostering an uncertainty-based collaborative
ensemble mechanism. This mechanism aids in transitioning
from potentially inaccurate models during training to effective
real-world applications. We achieve this through a unique en-
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semble learning framework that minimizes deviations among
individual policies, encouraging emergent behavior aligned
with collective wisdom: an uncertainty-weighted sum of all
policies within the ensemble, prioritizing the policy with the
least sim-to-real gap.

Our contributions are threefold: (1) We propose uncertainty-
aware DRL algorithms based on a reinterpretation of VAE-
based visual DRL, leading to improved sampling efficiency
(Section IV-A) and enhanced sim-to-real transfer performance
(Section IV-B). (2) To validate our approach, we design a
laboratory task representative of a wide range of real-world
applications, including shotcreting [14], sandblasting [15], and
paint spraying [16] (Section V). (3) We provide a comprehen-
sive survey and reinterpretation of state-of-the-art VAE-based
visual DRL from an uncertainty-quantification perspective,
addressing the challenges of extreme partial observability
and harsh industrial environments (Section IV-A). Our results
demonstrate that policies learned in simulation not only gener-
alize effectively to real-world conditions in a zero-shot manner
but also outperform traditional model-based planners [17] and
DRL baselines [6], [18]–[20].

II. RELATED WORK

Uncertainty quantification in DRL is critical for providing
agents with deeper insights into the learning process. Un-
certainty can be categorized into two types: aleatoric and
epistemic. Aleatoric uncertainty is inherent to stochastic data
and irreducible, whereas epistemic uncertainty arises from the
agent’s incomplete understanding of the environment. Most
uncertainty quantification methods focus on techniques such
as bootstrapping and Monte Carlo (MC) dropout.

Bootstrapped Deep Q-Networks (DQN) [21] introduced
epistemic uncertainty quantification through a shared network
with multiple heads, where variance in head predictions re-
flects uncertainty. Extensions penalize highly uncertain states
via bootstrapped prior Q-networks [22], [23], reweight Bell-
man backups for exploration in ensemble frameworks like
SUNRISE [24], or estimate epistemic uncertainty using cross-
entropy between synthetic and true samples, as in SUMO [25].
While SUMO provides robust estimates, its search-based
design incurs high computational costs, limiting real-time
applicability.

MC Dropout [26] approximates Bayesian inference through
multiple stochastic forward passes. Though effective in su-
pervised learning, its uncertainty quality underperforms vari-
ational inference methods [27]. In continuous control tasks,
combining MC Dropout with bootstrapped Q-values im-
proves uncertainty estimates [28], but repeated inference in-
troduces scalability challenges for real-time robotics. Hybrid
approaches [29] integrating MC Dropout and bootstrapped
ensembles disentangle aleatoric and epistemic uncertainties,
leading to improved decision-making.

Despite these advancements, the role of uncertainty quantifi-
cation in sim-to-real transfer remains underexplored. Existing
methods emphasize theoretical benchmarks while overlooking
partial observability and domain shifts common in real-world
robotics. This work bridges that gap by leveraging variational

uncertainty quantification and ensemble learning to enhance
sim-to-real transfer, addressing epistemic uncertainty in dy-
namic, noisy environments without the inefficiencies of MC
Dropout or search-based methods.

III. PRELIMINARIES

In RL, the problem setting is often formulated as an MDP
described by the tuple (S,A, P,R, γ). Here, S denotes the
state space, A is the action space, P : S × A → P(S) is the
state transition probability function, R : S × A → R is the
reward function, and γ is the discount factor.

The policy πθ is optimized to maximize the cumulative
reward J(θ) of the trajectory τ = (st, at, rt, ..., sT , aT , rT ).
The cumulative reward is written as

J(θ) = Eτ∼πθ(τ)[R(τ)], (1)

where R(τ) =
∑T

t′=t γ
t′−tr(st′ , at′). The policy is generally

optimized via a gradient-based method, with ∇θJ(θ) =
Eτ∼πθ(τ)[∇θ log πθ(at|st) ·Aπθ (st, at)]. The advantage func-
tion Aπθ (st, at) is defined as Aπθ (st, at) = Qπθ (st, at) −
V πθ (st) = Eτ∼πθ(τ)[R(τ)|st, at]− Eτ∼πθ(τ)[R(τ)|st].

Generalized advantage estimation (GAE) is widely used
to balance bias and variance, stabilizing training [30].
GAE approximates Aπθ (st, at) as Âπθ

GAE(st, at) =∑T
t′=t(γλ)

t′−t[r(st′ , at′) + γVϕ(st′+1) − Vϕ(st′)], where
λ ∈ [0, 1] is the GAE coefficient, and Vϕ is the value function
estimator learned by minimizing:

LV(ϕ) = Eτ∼πθ
[Vϕ(st′)−R(τ)]. (2)

In this paper, we use proximal policy optimization
(PPO) [18], a model-free, on-policy algorithm that constrains
policy updates via a clipped surrogate loss:

LPPO(θ) = Eτ∼πθ
[min(wθ(st, at) · Âπθ

GAE(st, at),

clip(wθ(st, at), 1− ϵ, 1 + ϵ) · Âπθ

GAE(st, at))], (3)

where wθ(st, at) =
πθ(at|st)
πθold (at|st) , and ϵ is the clipping factor.

In real-world robotic applications, agents rely on sensors to
obtain observations ot of the state st. This complicates RL, as
observations are often high-dimensional, noisy, and partially
occluded. These challenges have inspired methods that utilize
VAEs [5] to learn a denoised, compact latent representation for
state inference [31]–[33]. A VAE consists of a convolutional
encoder pϕ(zt|ot) that processes noisy, partially occluded
observations ot and generates a latent representation zt, which
serves as input to the policy and value functions instead of
st. The decoder pφ(ŝt|zt), structurally mirroring the encoder,
reconstructs an estimate of the corresponding state ŝt from
zt using transposed convolutional layers that incrementally
upscale zt. The VAE is trained by optimizing the following
variational lower bound:

LVAE = −Ez∼qϕ(zt|ot)[log pφ(ŝt|zt)]+
β · DKL[qϕ(zt|ot) || p(zt)] = Lrec + β · LKL, (4)

where qϕ(zt|ot) is the variational distribution, and p(zt) is the
Gaussian prior.
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(a) Uncertainty-Quantifying VAE

(b) Uncertainty-Guided RL Exploration (c) Uncertainty-Aware Ensemble Learning

Fig. 1: Our algorithm (AREPO) revisits VAE-based RL from an uncertainty quantification perspective. It improves training
stability and sampling efficiency with uncertainty-guided exploration and ensemble learning mechanism.

Inspired by these works and empirical evidence from [6], we
propose a novel VAE-based DRL network architecture, where
a denoised latent representation dt is learned and passed to the
policy and value networks instead of zt. In the next section,
we motivate our design choice.

IV. METHOD

In this section, we introduce AREPO (Uncertainty
Aware Robot Ensemble Learning under Extreme Partial
Observability). Our approach integrates a denoising VAE for
uncertainty-aware state reconstruction, an uncertainty-guided
RL strategy that prioritizes exploration based on uncertainty,
and an ensemble method that leverages uncertainty awareness
for more effective sim-to-real transfer.

A. Reframing VAE-based Visual RL with Uncertainty Quan-
tification

Given a sequence of past observations ot−N :t, our goal is
to learn p(dt|ot−N :t), from which we can extract a statisti-
cally equivalent denoised embedding dt. This embedding is
theoretically sufficient for optimal decision-making because
p(dt|ot−N :t) implicitly contains signals of transition dynam-
ics, agent policy, and value functions:

p(dt|ot−N :t) ∝ p(ot|dt) · p(dt|ot−N :t−1) · p(ot−N :t−1)

∝ p(dt−N |ot−N )︸ ︷︷ ︸
encoder

t′=t∏
t′=t−N+1

p(ot′ |dt′)︸ ︷︷ ︸
decoder

· p(dt′ |dt′−1, at′−1)︸ ︷︷ ︸
dynamics

·

π(at′−1|dt′−1)︸ ︷︷ ︸
policy

· q(vt′−1|dt′−1)︸ ︷︷ ︸
value

. (5)

The observation above is corroborated by positive results from
VAE-based DRL [31]–[33]: grounding RL in an autoencoder’s
latent representation, which implicitly encodes the policy,
value, and dynamics, has been shown to improve sampling
efficiency and training stability.

However, despite these benefits, previous works based on
this method often suffer from suboptimal performance in
certain scenarios. Multiple empirical workarounds have been
proposed in the literature to mitigate this issue. These include
alternating the training of the VAE and RL components [32],
[33], using smaller β values in LVAE, or preventing the policy’s
gradient from updating other networks except itself [6]. In
this section, we revisit VAE-based DRL from an uncertainty
quantification perspective, hypothesize key sources of subop-
timality in previous work, and propose an efficient and robust
uncertainty-guided RL method to address them in a principled
manner.

Our objective is to guide RL exploration based on the
epistemic uncertainty p(dt|ot−N :t) of the neural network that
computes dt from ot−N :t. We measure this uncertainty using
the variance of p(ŝt|ot−N :t), as it integrates the uncertainty of
p(dt|ot−N :t) when reconstructing the state ŝt:

p(ŝt|ot−N :t) =

∫
p(ŝt|zt) · p(zt|ot−N :t)dzt

=

∫∫
p(ŝt|zt)p(dt|ot−N :t) · N (µt(dt), σt(dt))ddtdzt. (6)

To compute uncertainty tractably, we follow [27] and use
Monte Carlo integration to approximate the expectation and
variance of the output ŝt by drawing M samples of {zt,ℓ}Mℓ=1

and obtaining M corresponding outputs {ŝt,ℓ}Mℓ=1. We use the
empirical variance σ2

t as the uncertainty measure:

σ2
t =

∫
(ŝt − E[ŝt])(ŝt − E[ŝt])T p(ŝt|ot−N :t)dŝt

≈ 1

M

M∑
ℓ=1

(ŝt,ℓ − E[ŝt])2, (7)

where E[ŝt] =
∫
ŝt · p(ŝt|ot−N :t)dŝt ≈ 1

M

∑M
ℓ=1 ŝt,ℓ.

As shown in Fig. 1a, our method differs from previous
works in several key aspects:
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1) We ground the value and policy networks in dt instead
of zt. The reason behind this design choice is that we model
dt as the denoised latent state that is statistically equivalent
to ot−N :t, whereas zt is intended solely for epistemic uncer-
tainty quantification of p(dt|ot−N :t). Therefore, zt contains
undesirable stochasticity and noise for the RL components
compared to dt, leading to subpar performance. This reasoning
aligns with the empirical findings in [6], where a diminishing
β improves performance and stabilizes training.

2) We integrate training schemes from [32], [33] and [6]
by combining alternating and joint optimization strategies.
[32], [33] stabilize learning by decoupling VAE and RL
optimization, while [6] jointly leverages critic gradients and
VAE losses to regulate zt. To merge these approaches, we
introduce a value head p(v̂t|zt) parallel to the VAE decoder,
mimicking the critic’s role in guiding representation learning.
This design retains the stability of alternating training while
benefiting from critic-driven regularization.

3) Our method uses σ2
t to dynamically adjust the maximum

entropy objective first proposed in [34] to effectively enhance
sampling efficiency. Equation (1) is replaced with an altered
maximum entropy RL objective:

π∗
θ = argmax

πθ

Eτ∼πθ(τ)[

T∑
t′=t

γt′−tr(st′ , at′)+

α1(1− σ2
t )H(π(·|dt))], 0 < σ2

t < 1. (8)

The entropy coefficient in Equation (8) serves two key
purposes. First, it draws inspiration from uncertainty-driven
exploration methods such as MOPO [22] and SUMO [25],
which penalize rewards in high-uncertainty regions of learned
transition dynamics. Although our approach is model-free
and does not explicitly learn dynamics, its uncertainty es-
timator implicitly captures all RL components, as shown in
Equations (5-7). This ensures that the performance guarantees
from [22] remain valid in our setting, maintaining the benefits
of uncertainty-aware exploration. Second, we extend the origi-
nal maximum entropy objective [34] by introducing a dynamic
adjustment mechanism. Instead of a fixed entropy weight,
our approach applies a soft penalty that discourages policy
distributions failing to reduce the agent’s epistemic uncertainty
about the environment. This ensures a principled balance
between exploration and exploitation. In Section V-B, we
empirically demonstrate that this adaptive entropy regulation
significantly improves sample efficiency compared to methods
without uncertainty guidance.

B. Approaching Zero-Shot Policy Transfer with Uncertainty
Aware Ensemble Learning

Assuming that we can sample N MDPs during training and
denote the ith MDP as Mi, our goal is to train a policy π
that achieves the best expected test-time reward. Rather than
learning a globally optimal policy as a generic POMDP solver
might, recent advances in DRL often reduce the global policy
learning problem into a set of local policy learning problems to
scalably solve MDPs. One such example is LEEP [20], which
addresses RL generalization by enabling independent learning

Algorithm 1 AREPO (training)

1: Initialize N training environments with customized pa-
rameterizations, initialize policy θi, value ηi, and VAE
network ϕi for each indexed environment Ei, i ∈ N .

2: for each iteration do
3: for i ∈ N do
4: Collect data {s, o, a, s′, o′}D using πi in Ei.
5: for each mini-batch B in D do
6: Similar to [32] [33], we train the VAE and RL

parts in an alternating fashion to stablize training.
Activate VAE network ϕi.

7: for j ∈ N, j ̸= i do
8: Freeze all networks of agent j, i.e., πj , ηj , ϕj ,

so agent j is not updated.
9: end for

10: Compute and update VAE network ϕi with LVAE
computed with Equation (4) and the regularization
loss Lreg = L1(vt, v̂t) in Fig. 1a.

11: Freeze VAE network ϕi.
12: Activate policy and value networks θi and ηi.
13: Use Equation (3) to compute LPPO with altered

entropy term in Equation (8) and compute LV with
Equation (2). LRL in Fig. 1b is computed using
LPPO + LV .

14: Compute σ2
t,i,train = Eσ2

t,i∼Si,train
[σ2

t,i], where Si,train

is the set of all computed σ2
t,i during training.

15: Compute uncertainty measure σ2
t,i with Equation

(7) as σ2
t,i,test. Compute δi with Equation (9).

16: Compute combined ensemble policy πen with
Equation (10).

17: Compute ensemble loss Len with Equation (11).
18: Update θi, ηi using L = LRL + Len.
19: Freeze policy and value networks θi and ηi.
20: end for
21: end for
22: end for

Algorithm 2 AREPO (inference)

1: Load N trained agents, initialize policy θi, value ηi, VAE
network ϕi, and epistemic training uncertainty σ2

t,i,train for
each agent i, i ∈ N .

2: while the task is not done do
3: Receive observation ot−N :t.
4: for each agent i ∈ N do
5: Compute denoised latent state dti using VAE network

ϕi and ot−N :t.
6: Compute the corresponding epistemic uncertainty

σ2
t,i with Equation (7) as σ2

t,i,test.
7: Compute δi with Equation (9).
8: Compute policy πi(·|dt,i) using policy network θi

and dt,i.
9: end for

10: Compute combined policy πen with Equation (10).
11: Return action a ∼ πen.
12: end while
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for each agent and facilitating cross-agent knowledge sharing
through a linker function. In LEEP, the optimal global policy
π∗ is obtained by combining local policies π∗

i optimal in their
respective MDPs using a linker function π∗ = f({π∗

i }i∈[N ]),
where {π∗

i }i∈[N ] = argmaxπ1,...,πN

1
N

∑N
i=1 JMi

(πi)− α2

·
∑N

i=1 Ep
πi
Mi

[
DKL[πi||f({πi}i∈[N ])]

]
.

However, LEEP proposes a probability-based linker func-
tion that combines policies by selecting the most probable
action. This can limit the capacity of ensemble learning, as
each agent is likely to prioritize its own policy during training,
and the sim-to-real gap is not explicitly optimized.

To address this issue, we derive an uncertainty-based gen-
eralization gap and use it to assign weights to each agent’s
policy contribution in the linker function. This ensures that
the combined policy directly optimizes the generalization gap,
leading to improved sim-to-real transfer performance.

The generalization gap from [35], [36] can be written as
Eτ,s∼pπ

Mtrain
[R(τ)|s] − Eτ,s∼pπ

Mtest
[R(τ)|s]. Recent work has

shown that this gap can be measured by the latent representa-
tion deviation ∆dt between training and testing environments,
i.e., ||dt,test −dt,train|| [37]. However, this metric is impractical
in real-world robotic policy transfer because it requires dtrain

t

and dtest
t to share the same underlying state st, which is often

infeasible to obtain due to noisy and partial observations.
To tractably quantify the generalization gap, we relate ∆dt

to the deviation in the reconstructed state ∆ŝt, i.e., ||ŝt,test −
ŝt,train||. Following [37], we assume Lipschitz continuity in a
set of functions that map ŝt to dt with a constant L > 0, yield-
ing ∆dt ≤ L∆ŝt. Similar to [22], we assume an admissible
error estimator with upper bounds σ2

t,train, and σ2
t,test on the

reconstruction errors for both training and testing. Applying
the triangle inequality, we obtain: ∆dt ≤ L(σ2

t,test+σ2
t,train). We

define the generalization gap as a vector δ = (δi)
N
i=1, where

δi denotes the generalization gap of agent i. By normalizing
∆dt,i by the continuity constant and the estimator error bound,
we define:

δi = 1 +
σ2
t,i,test

σ2
t,i,train

. (9)

To leverage the derived uncertainty-based generalization gap
for ensemble learning, we propose a linker function based on
the generalization gap to combine policies as a weighted sum
of individual policies, with weights inversely proportional to
the generalization gap. This ensures that agents with smaller
sim-to-real gaps have a greater influence on the combined
policy, while still incorporating knowledge from other agents:

πen =

N∑
i=1

softmax(−δ)i · πi(·|dt,i). (10)

We further compute the KL-divergence between each agent’s
policy and the combined policy, serving as an additional loss
term during training. This loss encourages coherence across
the ensemble, ensuring that individual policies do not diverge
significantly from the ensemble consensus:

Len = DKL[πen||πi(·|dt,i)]. (11)

We propose AREPO, a novel ensemble learning architecture
that manages individual agent-environment interactions via

shared uncertainty quantification in Fig. 1c. Each agent in the
ensemble is instantiated with the uncertainty-quantifying VAE
and uncertainty-guided RL modules, described (see Fig. 1a
and Fig. 1b respectively). We summarize AREPO in Alg. 1
and Alg. 2.

V. EXPERIMENTS

This section presents the experimental evaluation of
AREPO, addressing two primary questions:

1) Can AREPO achieve improved sampling efficiency and
stability compared to uncertainty-unaware DRL baselines un-
der extreme partial observability?

2) Can AREPO generalize to novel scenarios character-
ized by temporally-correlated dynamics and varying levels of
spatially-correlated partial observability?

To investigate these questions, we evaluate AREPO on a
task that involves guiding a tool to sprinkle material onto a
target surface to a specified thickness (See Fig. 4, displayed
on page 7 to conveniently appear next to its sibling Fig. 5).
This task serves as a proxy for industrial applications like
shotcreting [14], sandblasting [15], and paint spraying [16],
where robots must operate under severe visual occlusions and
sensory noise. By contrast, standard RL benchmarks used in
previous works (e.g., Control Suite [2], [6], Mujoco [10], [19],
or Atari [3], [24]) fail to capture temporally and spatially cor-
related occlusions and noise common in real-world industrial
settings. The evaluation is conducted both in simulation and
on a laboratory testbed. The simulation allows for systematic
variation of key parameters, such as noise, occlusion, and
material flow rates, providing a comprehensive performance
assessment. The laboratory testbed then validates the sim-to-
real policy transfer under real-world constraints.

To further illustrate the task’s difficulty and relevance, we
evaluate a Model Predictive Control (MPC) [17] planner, and
a vanilla planner that operates by always guiding the tool
to the position with the least material deposition alongside
DRL methods. As is shown in Sections V-C and V-D, the
performance deteriorates significantly for all methods except
AREPO in scenarios with increasing noise and occlusion,
highlighting the difficulty of the task and its suitability for
evaluating policies in noisy, partially observable environments.

To address Question 1, we evaluate ARPO (the non-
ensemble version of AREPO) in simulation against several
baselines: DrQ-v2 (encoder-only DRL) [19], MaxEntRL (PPO
+ maximum entropy objective [34]+VAE), CRL+VAE (Max-
EntRL + critic-guided representation learning [6]), ARPO-
NVH (SAC+VAE + uncertainty-guided exploration), and
ARPO (ARPO-NVH + value head).

In the synthetic experiment addressing Question 1, we
simulate spatially correlated noise, with severe occlusions
concentrated near the contact point where the material meets
the surface. Portions of the target surface are also obscured,
simulating real-world conditions where dust, debris, and air-
borne particles reduce visibility and complicate task execution.
The material flow rate is modeled as temporally correlated
and episodic, with adjustable episode durations to reflect
fluctuating pressures or discharge rates typical in real-world
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Fig. 2: ARPO achieves the best sampling efficiency and
training stability under extreme partial observability com-
pared to DRL methods without uncertainty awareness.

TABLE I: In the experiment on sampling efficiency and
training stability, ARPO obtains the best surface quality
and most efficient material usage compared to uncertainty-
unaware DRL baselines at a slight cost of inference time due
to uncertainty quantification. ARPO performs consistently
better than MPC and vanilla planners.
Metrics Rrms (mm) Rt (mm) rwv (%) tavg (ms)
ARPO 0.6 ± 0.2 3.9 ± 1.4 23.8 ± 0.01 17.2± 1.4
CRL+VAE 1.7± 0.9 8.3± 4.9 32.5± 0.02 16.6± 2.3
MaxEntRL 1.3± 0.6 5.5± 2.5 33.8± 0.01 7.7 ± 0.5
MPC 2.8± 0.4 13.5± 1.6 31.3± 0.05 59.2± 2.5
Vanilla 10.2± 0.4 40.6± 1.5 53.8± 0.02 50.1± 1.2

Fig. 3: For each method, the first row displays the observed
heightmaps used as input to the models, where the white areas
are unobservable to agents. The second row shows corresponding
states. The color shift in the heightmaps indicates task progress.
ARPO achieves the most uniform surface.

TABLE II: In the experiment on zero-shot sim-to-sim transfer, AREPO remains robust under varying levels of extreme partial
observability, achieving better surface quality and robustness than LEEP due to the uncertainty weighted ensemble policy. DR
generally achieves the worst performance, indicating a failed sim-to-sim transfer to tasks under extreme partial observability.

Scenarios Scenario 1: 65% Random Occlusion + 15% Plume Scenario 2: 80% Random Occlusion + 50% Plume Scenario 3: 95% Random Occlusion + 85% Plume
Metrics Rrms (mm) Rt (mm) rwv (%) tavg (ms) Rrms (mm) Rt (mm) rwv (%) tavg (ms) Rrms (mm) Rt (mm) rwv (%) tavg (ms)
AREPO 1.6 ± 0.3 8.1 ± 1.3 30.0 ± 0.01 32.3 ± 2.2 1.7 ± 0.5 8.6 ± 1.9 30.0 ± 0.01 32.1 ± 3.2 1.7 ± 0.3 8.8 ± 1.4 31.3 ± 0.01 30.7 ± 2.7
LEEP 3.6 ± 0.6 16.6 ± 2.8 42.5 ± 0.03 28.1 ± 3.6 3.9 ± 0.6 17.9 ± 2.5 40.2 ± 0.03 28.9 ± 3.1 4.6 ± 0.5 20.7 ± 2.0 47.5 ± 0.02 27.2 ± 2.5
DR 4.3 ± 2.6 18.4 ± 4.0 58.8 ± 0.07 17.5 ± 1.2 4.5 ± 3.4 18.5 ± 14.0 62.5 ± 0.06 17.4 ± 1.3 6.0 ± 3.4 25.7 ± 10.1 71.3 ± 0.01 17.3 ± 1.5
MPC 2.8 ± 0.4 13.5 ± 1.6 31.3 ± 0.05 59.2 ± 2.5 3.1 ± 0.5 13.6 ± 1.9 32.5 ± 0.04 59.3 ± 3.2 3.9 ± 0.5 17.1 ± 1.7 37.5 ± 0.03 59.8 ± 2.4
Vanilla 8.9 ± 0.6 35.7 ± 2.36 48.8 ± 0.04 50.2 ± 1.2 10.1 ± 0.7 40.3 ± 2.5 52.5 ± 0.03 50.1 ± 1.2 10.2 ± 0.4 40.6 ± 1.5 53.8 ± 0.02 50.1 ± 1.2

TABLE III: In zero-shot sim-to-real transfer to the laboratory
testbed, AREPO achieves the best surface quality compared
to baselines without uncertainty awareness.

Metrics Rrms (mm) Rt (mm) rwv (%) tavg (ms)
AREPO 1.1 ± 0.5 7.6 ± 1.5 24.2 ± 2.1 30.2 ± 3.2
LEEP 3.3 ± 0.6 17.1 ± 2.8 30.2 ± 2.5 29.2 ± 2.1
DR 4.3 ± 1.8 21.2 ± 4.3 45.7 ± 4.3 16.7 ± 1.5
MPC 3.7 ± 0.3 18.7 ± 2.2 32.4 ± 3.1 61.1 ± 3.7

operations. Fig. 3 shows a visual representation of the data
generated by our simulator.

To address Question 2, We evaluate MPC, DR (vanilla do-
main randomization) [7], and LEEP (ensemble-based transfer
learning method) [20] against AREPO (LEEP + uncertainty-
weighted linker function in Equation 9). All DRL methods use
ARPO as their agents for a fair comparison.

This experiment consists of two training scenarios, both
carried out in simulation: one with a constant material flow
rate and another with a extremely varied flow rate ranging

from 10% to 1000% of the first rate. Both scenarios feature
the same spatially correlated partial observability as in the
previous experiment.

After training, the evaluation of Question 2 is conducted in
two phases. In the first phase, zero-shot tests are performed in
simulation under varying degrees of extreme occlusion. This
phase evaluates how AREPO and the baseline models adapt to
severe partial observability in a controlled simulation. In the
second phase, the learned policies are transferred zero-shot to
the laboratory testbed. For a detailed layout of the laboratory
setup, see Fig. 4a and Fig. 4b.

A. Technical Details

All models in the experiment receive input in the form of
2D heightmaps, representing the material deposition status on
the target surface. The output of each model is a 2D velocity
vector that controls the nozzle’s position in a plane parallel to
the target, determining where material is applied.
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(a) Side view (b) Top view

Fig. 4: Our sand sprinkling testbed serves as a proxy for a
variety of industrial applications characterized by significant
visual occlusions and noise, like for instance tasks that
involve spraying granular material. Fig. 4a: Sand stored in an
overhead container is transmitted through a hose to a sprin-
kler positioned over a target (a rectangular bin). Sprinkling
generates plumes that create visual occlusions. Fig. 4b: The
sprinkler is held by a robotic arm which is guided using
heightmaps of the target, derived from images captured by
an overhead stereo camera. The heightmaps are illustrated in
Fig. 5.

Fig. 5: For each method, the first row displays the grayscale
images of the scenario. The second row shows their corre-
sponding heightmaps of the target surface. In the sim-to-real
experiment, AREPO is most robust to partial observability
caused by dust and sensory noise (unobservable white parts of
the heightmaps) and achieves best surface quality compared to
other methods.

To account for variability during evaluation, the perfor-
mance metrics are averaged over 20 independent validation
trials. For a fair comparison, all DRL models are imple-
mented using Stable-Baselines3 [38], and trained for 1.6
million timesteps before evaluation. Full details of model
architectures and hyperparameters can be found in our publicly
available source code at https://gitlab.kuleuven.be/detry-lab/
public/arepo.

The performance of the agents are compared with 4 metrics:
i) root-mean-square roughness Rrms: the square root of the
mean of the squares of the deviations of the surface height
values from the mean surface height, ii) peak-to-valley rough-
ness Rt: the difference in height between the highest point
and the lowest point on a surface, iii) waste volume ratio rwv:
the ratio between the wasted volume and the desired volume
to be fulfilled. The wasted volume is defined as the material
volume that has been sprayed outside the target surface or that
exceeds the target thickness. iv) average inference time tavg:
the average time the agent takes to compute at given ot−N :t.

B. Simulated Experiment on Sampling Efficiency and Training
Stability

Fig. 2 reveals several key insights. First, VAE-based DRL
enables more robust representation learning as compared
to DrQ-v2 that relies on an encoder-only DRL. Second,
SAC+VAE, which augments learning with critic loss, is more
stable than MaxEntRL but is more prone to local optimality.
Finally, while ARPO-NVH outperforms SAC+VAE by avoid-
ing local optimality using uncertainty-guided exploration, its
stability is lower. The inclusion of a value head in ARPO

stabilizes training further, highlighting the importance of the
value head in balancing exploration and stability. Additionally,
Fig. 3 demonstrates ARPO’s superior surface quality and
minimal material waste, as supported by Tab. I.

C. Simulated Experiment on Zero-Shot Sim-to-Sim Transfer

Tab. II shows that AREPO outperforms LEEP across vary-
ing levels of partial observability. This success is attributed
to the uncertainty-weighted ensemble policies, which enable
AREPO to adapt effectively to occlusion and noise in the envi-
ronment. In contrast, DR and MPC agents exhibit significant
performance deterioration as occlusion increases, indicating
failure in sim-to-sim transfer under extreme partial observabil-
ity. While the vanilla planner shows robust performance due
to its simple rules, this simplicity also limits its effectiveness
in handling more complex tasks.

D. Real-World Experiment on Zero-Shot Sim-to-Real Transfer

As illustrated in Fig. 5, AREPO demonstrates superior
surface quality, achieving a more homogeneous material ap-
plication across the target surface compared to other methods.
Tab. III further quantifies this performance, showing that DR
and MPC struggle to generalize effectively, with DR producing
the poorest surface quality. Both LEEP and AREPO outper-
form DR and MPC, highlighting the value of ensemble DRL
approaches. AREPO’s superiority over LEEP is attributed to
its uncertainty-weighted combined policy, which dynamically
adjusts based on real-time uncertainty estimations, resulting in
more robust material application.

https://gitlab.kuleuven.be/detry-lab/public/arepo
https://gitlab.kuleuven.be/detry-lab/public/arepo
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VI. CONCLUSIONS

This paper introduces AREPO, an ensemble DRL frame-
work that enhances robustness under extreme partial observ-
ability by incorporating uncertainty quantification through a
VAE-based approach, thereby improving sampling efficiency
during exploration and training stability via an additional
value prediction head. This uncertainty estimation bridges
the sim-to-real generalization gap, enabling a more adaptive
ensemble mechanism that leverages real-time uncertainty. Em-
pirical results demonstrate AREPO’s superior learning effi-
ciency and policy robustness compared to traditional methods.
Although this approach increases computational demands, it
offers promising research directions in resource-constrained
robotic systems and policy transfer across diverse tasks in
highly uncertain environments.
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