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Robotic Framework for Iterative and Adaptive Profile Grading of Sand
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Abstract— This paper studies sand profile grading, a ma-
nipulation task to obtain a desired geometric curve in sand.
Manipulating sand is challenging because like other amorphous
materials, its properties are difficult to estimate and emergent
effects such as collapses may occur which both influence the
manipulation outcome. To tackle these challenges, humans
iterate and adapt their manual actions to the observed material
states. In this paper, we propose to replicate this adaptive and
iterative approach on a robotic profile grading task. Our results
demonstrate that (1) tool insertion adaptation reduces force
limit violations during tool-material interactions, (2) grading
angle adaptation ensures no undercutting or collisions while
allowing for cutting or smoothing the sand profile, and (3)
adapting progress speed to task evolution provides a balance
between grading precision and execution time. This paper’s
findings pave the way for generalized and transferable robotic
systems manipulating various amorphous materials and au-
tomating a larger set of construction tasks and beyond.

I. INTRODUCTION

In recent years, automation in the construction sector has
become essential to address the rising demand while also
mitigating the adverse working conditions faced by con-
struction workers. Many associated tasks involve amorphous
materials which motivates researching robotic manipulation
of amorphous materials [1]. Those are solids such as sand,
soil, plaster, or wet concrete, that have a disordered atomic
structure (similar to liquid structures) but that hold their
shapes (like solids) when submitted to no external force [2].

The robotics community has investigated the automation
of various construction applications where amorphous ma-
terials are manipulated, ranging from the excavation of soil
trenches [3] to wall plastering [4]. This work focuses on
sand profile grading which refers to the process of shaping a
material surface from an initial distribution Pinit to a desired
one Pdes [5], as illustrated in Fig. 1.

For all these applications, the material manipulation is
challenging because its properties depend on several param-
eters (that possibly vary in time and space) and are therefore
difficult to model. In addition, emergent effects such as
collapses may occur during manipulation. These effects are
defined as difficult to predict and non-deterministic: for
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Fig. 1: Experimental setup composed of a 7-DOF-Kinova-Gen3
robotic arm with grading tool, a Roboception rc visard 160 stereo
camera, and a sandbox. Closeup view with the profile grading
process definition.

a same manipulation action, the observed emergent effect
will not be exactly the same [6]. They also increase the
complexity of perception and, therefore, the uncertainty in
the robot’s belief about the material state.

To work with such challenging materials and deal with
emergent effects, humans iterate and adapt their manual
actions to approach the task objectives progressively, and not
in one final go. This paper takes inspiration from human ex-
ecution and proposes a framework for iterative and adaptive
profile grading of sand.

Our methods include adaptation rules to regulate the
tool insertion, grading angle and progress speed during an
iteration based on interaction feedback with the material of
unknown properties.

With this work, our contributions are:
• Development of a framework for iterative sand profile

grading including adaptation rules for tool insertion,
grading angle, and grading speed.

• Experimental evaluation of the adaptation rules on dif-
ferent profiles and material properties.

II. RELATED WORK

A. Amorphous materials representation

Solid mechanics, discrete element methods, fluid mechan-
ics, or height-map approaches are used for sand modeling [7].
In a dirt cleaning example, a simpler binary map representa-
tion was sufficient [8]. The height-map approach is preferred
in robotic applications because its moderate computational
load allows real-time updates of the material state [9]. In
this work, the height-map approach is used to represent the
graded profiles.
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B. Runtime adaptation during robot-material interaction
Multiple solutions have been proposed to adapt to the

unknown material properties. A self-tuning impedance con-
troller demonstrated online adaptation to perform scooping
actions in diverse amorphous materials [10]. Adaptive exca-
vating iterations allowed to dig desired trenches in various
soil while respecting the robot’s dynamical limits [3]. This
work adopts a similar approach to iteratively shape the profile
until the task objectives are met.

C. Human-inspired robot programming
To address the challenging manipulation of amorphous

materials, studies have drawn inspiration from human ex-
pertise. At the low level, robotic implementations have
replicated human-like skills, such as bulldozing primitives
[11], [12] or dirt cleaning actions derived from qualitative
human observations [8]. Domain knowledge was used to
design the action space (smearing, gathering, flipping) and
reward function in a Reinforcement Learning (RL) frame-
work [1]. At a higher level, human-inspired heuristics were
used to plan sand-shaping actions [13] or to initialize an
optimization-based action planner for robotic plastering [4].
Beyond skills and planning algorithms, robots have also been
programmed to emulate human workflows. An improved
performance was achieved by explicitly structuring a Convo-
lutional Network with distinct scooping and dumping models
[14]. Similar to the way humans iteratively plan and validate
the outcome of their actions, a robot wiping surfaces used
haptic perception to assess performance and refine its action
plan [15]. In this paper, the robot uses an iterative workflow
analogous to human methods for sand grading, with different
adaptation rules inspired by qualitative domain knowledge
influencing the grading execution within each iteration.

III. PROFILE GRADING - PROBLEM
FORMULATION

The profile grading task illustrated in Fig. 1 is specified
with the following objectives, constraints, and simplification
assumptions:
Objectives:

• Minimize the profile error, i.e. the distance between the
obtained profile distribution Pmes and the desired one
Pdes. The profile error metric (PE) is defined as the
root mean square error (RMSE) between the measured
profile and the desired profile:

PE =

√√√√ n∑
i=1

(zi,des − zi,mes)2

n
, (1)

where zi,des and zi,mes are the desired and measured
profile height at pixel i, respectively. n is the number
of pixels along the evaluated profile.

• Obtain the specified surface finish properties. In this
case, a low surface roughness is desired. The profile
roughness metric, Ra, is defined as:

Ra =
1

n

n∑
i=1

|zi,avg − zi,mes|, (2)
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Fig. 2: Iterative profile grading process consisting of two steps:
(1) Grading Iteration Control, regulating the robot’s motion during
an iteration using insertion, angle and speed adaptation rules. (2)
Grading Quality Assessment, evaluating the task objectives and
configuring the next iteration.

where zi,avg is obtained by averaging zi,mes over its
neighboring pixels. Therefore, (zi,avg − zi,mes) corre-
sponds to the high frequency variations of the measured
profile only.

Constraints:
• Respect the dynamical limits of the robot.
• The task is asymmetrical: undercutting (i.e., grading

deeper than desired profile) should be avoided while
overcutting can be compensated by performing an extra
iteration.

Simplification assumptions:
Assumption 1: The initial material distribution is higher

than, or equal to, the desired one along the whole profile.
In that case, the problem is purely subtractive: grading
operations are repeated to progressively remove the excess
material. The grading trajectory planning is simplified, each
iteration covers the whole profile.

Assumption 2: The material is graded along a 1D straight
line trajectory.
World Model: The current and desired profiles are stored in
the robot’s world model. The measured profile is updated in
between iterations to avoid occlusions from the robot arm.

IV. METHODS

Fig. 2 illustrates the iterative process employed by the
robot during grading of a given profile. This process consists
of two essential steps that are repetitively executed until
the task is completed. The Grading Iteration Control is
responsible for generating the robot’s motion during one
grading iteration, and it employs multiple adaptation rules to
account for material properties and achieve the task objec-
tives while respecting constraints. Following each iteration,
the Grading Quality Assessment evaluates the task objectives
to determine whether the task is finished, or another iteration
is necessary.

A. Grading Iteration Control: Adaptation rules

1) Insertion setpoint adaptation: Since the material prop-
erties are not known a priori, the interaction forces during
contact can vary significantly and may even exceed the
robot’s limits [3]. To address this, tool insertion is regulated
based on the interaction force between the tool and the
material, allowing deviations from the desired profile when
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Fig. 3: Definition of α as a function of the measured force Fmes.
For low forces (Fmes < Flim/2), α = 1 such that zsetpoint = zdes. For
higher forces, α linearly decreases until 0, then zsetpoint = zmes and
the robot maintains its current insertion height. In the dead zone,
α is kept at 0. In the limit zone, Equation (4) is overridden and the
tool is forced to move away from the material to avoid exceeding
the limit.

necessary. The tool insertion is controlled through the vertical
velocity vz using the simple proportional controller defined
in (3). The height setpoint zsetpoint is determined by the
adaptive rule in (4), where α is defined by the empirical
mapping shown in Fig. 3. Similar to the self-tuning of
the stiffness based on the cartesian position error in the
impedance controller in [10], the parameter α adjusts the
insertion setpoint based on the measured interaction force.
Equation (4) is only valid for zdes < zmes. Otherwise,
zsetpoint = zdes to ensure a rapid profile tracking when moving
upward and to prevent undercutting.

vz = k (zsetpoint − zmes), (3)

zsetpoint = zmes + α (zdes − zmes), (4)

2) Grading angle adaptation: The grading angle (θ)
adaptation is constrained to avoid undercutting from the
front parts of the tool and prevent contacts between the
robot links and the material. Additionally, skills-based rules
are employed to determine the ideal tool angle based on
the desired behavior. For instance, if material needs to be
removed, the tool is presented with a higher angle of attack
(β, set to 45° arbitrarily), while a smaller angle (parallel
to the surface) is used to smooth out the material surface.
The implementation is outlined in Algorithm 1, which begins
by computing the minimum and maximum possible angles
as graphically explained in Fig. 4. Lines 2 to 6 correspond
to a behavior switch selecting a cutting or smoothing an-
gle depending on the local distance to the desired profile
(zmes − zdes). Finally, the computed angle is constrained to
the computed boundaries in line 7.

Algorithm 1 Tool orientation adaptation algorithm. For a given
position pcontrol, boundary values are computed to constrain the tool
orientation. Based on the distance to the desired profile, a cutting
or smoothing angle is adopted.

1: (θmin, θmax)←Compute minmax angle(pcontrol)
2: if (zmes − zdes) > ∆zthreshold then
3: θ ← β = 45°
4: else
5: θ ← θmin
6: end if
7: θ ← Bound angle(θmin, θmax)

Desired profile Current profile Contact point defining or

pcontrol pcontrol

(a) (b)

Fig. 4: Orientation adaptation constraints: θmin and θmax. (a) θmin
is defined as the minimum angle where the tool does not intersect
the desired profile in front of it (avoiding undercutting). (b) θmax is
defined as the maximum angle where the robot links do not intersect
the material behind pcontrol.

3) Progress speed adaptation: The third adaptation rule
controls the speed at which the tool advances along the
desired profile. This rule is inspired from the way humans
typically work: fast while distant from the objective, and
slowing down to achieve greater precision during finishing
steps. It is implemented with discrete gain scheduling where
the scheduling signal, namely the local profile height error,
determines the progress speed values following Table I [16].

TABLE I: Discrete values for the progress speed, determined by
the value of the local distance to the desired profile (zmes − zdes).

Scheduling thresholds eth,1 eth,2 eth,3 eth,4

(zmes − zdes) [mm] < 2 ]2; 5] ]5; 10] > 10

vprogress [mm/s] 5 10 20 30

B. Grading Quality Assessment

The Grading Quality Assessment is the process step that
takes place between grading iterations. It is responsible to
verify the task objectives. The robot terminates its execution
if the profile error PE is below a given objective or if the
iteration progress (difference between current and previous
PE) is smaller than ∆PEmin. Otherwise, another grading
operation is configured. Here, the grading trajectory will
always cover the whole profile (considering Assumption 1).
In more complex cases, distribution of the material might
require more sophisticated iteration configuration.

V. EXPERIMENTS

Two sand profile grading experiments were conducted
using the setup shown in Fig. 1. Experiment 1 evaluates
the impact of the adaptation rules of Sec. IV-A, and Ex-
periment 2 identifies the framework limitations on more
complex profiles. The robot system is composed of a 7-DOF
Kinova-Gen3 manipulator arm equipped with a rectangular
3D-printed plastic grading tool (15x10 cm). A Roboception
rc visard 160 stereo camera provides RGB images and depth
maps to measure the material surface. The tool-material in-
teraction force is estimated by the internal Kinova controller
from the measured joint torques. The robot arm is placed on
the side of an 85x66x25 cm box containing ±50 kg of sand.
The executed trajectories are centered in the box such that
borders have no effects on the obtained profiles.



For both experiments, the sand was manually arranged
to have an initial PE of approximately 5.5 cm, ensuring
comparable starting conditions and adherence to Assumption
1. The objective PE was set low (2 mm) to observe where
the grading process would stop due to insufficient progress
(∆PEmin = 0.5 mm). The material properties were adjusted
by modifying the water content in the sand (wet sand is
heavier and more viscous, leading to higher interaction forces
with the tool). The moisture level of the sand could take one
of the three following values: (S1) dry sand, (S2) dry sand
+ 0.5 L water, (S3) dry sand + 1.25 L water.

A. Experiment 1: Validation of grading adaptation rules

In this experiment, the tool insertion, angle, and speed
adaptation rules were successively evaluated by repeating
grading on the profile illustrated in Fig. 7.

1) Results for insertion adaptation: The three profiles
obtained (without and with adaptation using Flim = 30 or
50 N) are geometrically similar (as shown in Fig. 7 (a)).

The interaction force between the tool and the material is
depicted in Fig. 5 for the non-adaptive case with sand level
S2, along with a histogram to better visualize the proportion
of measurements that exceed the force threshold. Table II
contains the percentage of force violation for the different
testing conditions. These results suggest that adapting the
tool insertion helps regulating the interaction force for the
different sand moisture levels (and therefore material resis-
tance) and with different imposed limits.

Fig. 6 illustrates how the insertion setpoint is adapted
based on the measured force, as described in (4). Although
the insertion adaptation reduces the force excesses, force
peaks are still observed. These peaks occur at profile sum-
mits, where the desired angle to follow the curvature, θdes,
decreases rapidly. The grading angle adaptation rule does not
account for material accumulated in front of the tool, which
becomes compacted when θ decreases, resulting in sudden,
high reaction forces from the sand. The force peak at the
end of the profile is more pronounced due to the increased
accumulation of material.

TABLE II: Percentage of measurements that violate force limits in
Experiment 1.1. The adaptive versions allow to keep that percentage
lower (at least 50% violation reduction).

Configuration Flim = 30 N Flim = 50 N

Insertion Adaptation On Off On Off

Sand level S2 8.09 18.28 4.96 9.88
Sand level S3 6.86 21.25 4.68 11.29

2) Results for grading angle adaptation: Fig. 7 (b) shows
that undercutting occurs when θ is fixed at 10° due to the
presence of features in the profile whose tangent is larger
than 10°. The tool size impacts the area where undercutting
can occur, as indicated in red in Fig. 7 (b). With a low θ, the
iterations progress slower because the tool is inserted with a
larger contact area which leads to higher interaction forces.

Additionally, we tested the hypothesis that grading with a
large tool angle results in rougher surface finish. The surface
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Fig. 5: Estimated force at the end effector for Experiment 1.1
(with sand level S2 and without insertion adaptation). (a) Force
measurements over time. (b) Histogram to visualize the proportion
of force measurements exceeding the force limit during contact.
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Fig. 6: Measured height, grading angle, and force during an
iteration (with insertion adaptation and sand level S2). Orange
areas highlight the moments where the measured force suddenly
increases. This is due to compaction of the accumulated material
while the tool angle changes rapidly (at hill peaks).

roughness obtained with θ fixed at 45° (Ra45 = 0.36 mm)
should be higher than with θ = 10° (Ra10 = 0.25 mm)
or with angle adaptation (Raadaptive = 0.32 mm). Although
the measured values concur with the hypothesis, those are
close to the camera depth resolution (0.4 mm) which suggests
that a better roughness estimation method is required for a
rigorous hypothesis validation.

3) Results for progress speed adaptation: In Fig. 7 (c),
a trade-off can be observed between profile similarity (im-
proved when progress speed is lower) and execution speed.
The experiment with the speed fixed at 3 cm/s leads to a
spatial shift between the obtained and desired profiles due
to delays in the insertion controller. The adaptive approach
allows to take advantage of the task progress to switch
between rapid grading when the objective is still far and then
work with more precision for the finishing steps, as indicated
by the results in Table III.

B. Experiment 2: identification of limitations

This Experiment, with sand of moisture level S1 and S2,
grades five profiles (Fig. 8(g)) whose shape complexity was
expected to require better performance than the presented



TABLE III: Comparison of the obtained PE and the total execution
time after third iteration (last iteration for v = 3 cm/s).

v = 5 mm/s v = 3 cm/s Adaptive speed

Obtained PE [mm] 5.03 9.19 5.66
Execution time [s] 254.63 89.93 200.8
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Fig. 7: Profiles obtained after the last iteration in Experiment 1.
(a) With and without insertion adaptation: no significant geometric
difference is observed. (b) With and without angle adaptation: a low
fixed angle (10°) leads to undercutting. (c) With and without speed
adaptation: there is a trade-off between profile grading fidelity (with
lower speed) and speed execution (with faster grading). The profiles
are graded from right to left, the tool size is indicated in (c).

framework can offer. The results are reported in Table IV.
All profiles exhibited low force violation percentage for
both sand moisture levels, except for profile 3, in which
force peaks similar to those observed in Experiment 1 were
detected on the last hill. For each profile, the obtained PE is
lower with sand S2 than S1, as it is also shown in Fig. 8.

Steeper slopes can be graded in wetter sand due to the
increased repose angle, which is influenced by the water
content and characterizes the inherent stability of the material
[17]. As shown in Fig. 8(c) and (e), the vertical steps could
not be obtained in dry sand (S1), resulting in higher PE and
even collapses (see green area in (c)). The desired profile
is steeper than allowed by the sand natural stability and so
it collapsed to form a slope at its repose angle which is
graphically computed to a value of 33°, as highlighted in
yellow in (c). Wetter sand could be graded more deeply in
the valleys, as shown in Fig. 8(b) compared to (a).

In Fig. 8(d) and (f), the steps are not perfectly vertical due
to controller limits, specifically the ratio between vertical and
horizontal speed (see yellow highlights in (d)). Higher angles
could be obtained by increasing the control gains or limits
of the vertical speed control rule. Another possibility is to

extend the profile specification and add control points along
the steep cliffs. On the profile of Fig. 8(f), the arbitrary limit
that we imposed for the max angle (60°) is seen on the rising
steps.

Finally, an emergent effect appeared while grading val-
leys deeper. The accumulated material then pushed on the
following hill peaks, causing a shift of the hill peak that
appears as undercutting. This effect, which we will refer to
as Accumulation shift, is observed on profiles 1, 2, and 3
for both S1 and S2 sand, but is more pronounced with S2
as the valleys are deeper (see yellow highlights in Fig. 8(a)
and (b)). Due to the negative impact of Accumulation Shift
on the progress metric PE, the grading process terminates
before completely digging the profile valleys.

VI. DISCUSSION

Experiment 1 demonstrated the effectiveness of the adap-
tation rules introduced in Sect. IV-A. The grading angle
adaptation rule enabled the switching between cutting and
smoothing angles based on task progress, avoiding undercut-
ting and collisions between the robot links and material. The
progress speed adaptation provided a good balance between
profile grading precision and execution time.

Experiment 1.1 shows that the insertion adaptation rules
reduced at least 50% of the force limit violations. Those vio-
lations can be completely eliminated with a better handling of
force peaks resulting from accumulated material compaction.
To achieve this, the condition to cut or smooth (line 2 of
Algorithm 1) could be refined to use the measured force and
adopt the cutting angle when material resistance is high. An
adaptation rule that prevents any force limit violation ensures
that the grading task can be performed regardless of the robot
capabilities and the graded material’s resistance. This means
that any robot can grade any material (a weaker robot will
simply require more iterations to reach the task objectives).

Experiment 2 reveals several limitations of the current
grading framework. The material itself imposes constraints,
such as the repose angle visible in Fig. 8(c) and (e), and
emergent effects like collapses and accumulation shifts.
Without actively altering the material properties, the robot
can at best monitor its own execution to detect such oc-
currences and adjust future actions accordingly (e.g., how
to satisfyingly adjust the desired profile considering the
maximum angle before collapse).

Additionally, the robot, its tool, and control rules restrict
the complexity of profiles that can be graded. Specifically,
steep cliffs are limited by the control bandwidth and the
imposed maximum angle.

In this paper, several parameters (α, β and eth,1-4) were
defined arbitrarily. While these parameters could be tuned,
adapted, or learned to enhance the manipulation of specific
materials, this work deliberately focuses on simple control
rules, relying on limited knowledge of material behavior
(primarily trends). This approach highlights the trade-off
between optimality and versatility, as more sophisticated
control rules may yield improved performance in specific
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Fig. 8: (a-f) Evolution of the profiles throughout the grading process of sand S1 and S2. Profile 1 is shown in (a) and (b), profile 4 in
(c) and (d), and profile 5 in (e) and (f). (g) Profiles used in Experiment 2. Profiles 1, 2 and 3 are obtained from cubic spline interpolation
between 15 randomly generated equidistant points. Profile 4 is a step. Profile 5 is a staircase profile (series of falling and rising steps).

TABLE IV: Results for Experiment 2. Each profile from Fig. 8(g) is graded on S1 and S2 sand. The table contains different metrics
characterizing the quality of the grading task: (a) the profile error between the measured and desired profile (in mm), (b) the percentage
of force limit violations, (c) the maximum force (in N) measured throughout the whole task execution, (d) the observed emergent effects
types (C: Collapse, AS: Accumulation shift, /: none), and (e) the number of iterations required before terminating (insufficient progress).

Graded profile 1 2 3 4 5

Sand moisture level S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

(a) Profile error [mm] 7.15 5.96 7.4 5.29 8.35 9.59 11.22 10.3 7.98 5.1
(b) Percentage of force violation [%] 0.33 1.28 0.77 0.94 7.15 6.11 1.45 2.06 0.51 1.92
(c) Maximum force measured [N] 56.96 85.4 80.74 84.31 129.09 141.94 81.29 84.33 77.14 74.55
(d) Emergent effects AS AS AS AS AS AS C / / /
(e) Number of iterations 5 6 6 7 6 4 4 5 3 5

scenarios but may also reduce adaptability to changing
conditions.

Future work may involve extending the profile grading
task to tackle profiles specified over 2D surfaces, rather than
the current linear specification. This will require advanced
planning algorithms between iterations to find adequate ma-
terial redistribution trajectories [4], [8], [13]. Additionally,
a better handling of emergent effects could improve task
quality, by detecting and identifying the observed emergent
effects and their implications on the world model and future
actions (e.g., triggering a recovering action in response to
emergence or adapting task objectives based on material
limits). Finally, the framework could be generalized to more
complex applications by improving it to allow for multi-skill
tasks, where the assessment step between iterations selects
and configures the most adequate skill to perform.

VII. CONCLUSIONS

In this paper, we present a framework for the iterative and
adaptive profile grading of sand. The tool insertion adapta-
tion reduces the percentage of force limit violations during
tool-material interactions. Additionally, the grading angle

adaptation allows to switch between cutting and smoothing
behaviors based on task progress, while avoiding undercuts
and collisions between sand and robot links. Moreover,
adapting the speed to the task progress provides a balance
between grading precision and execution time.

However, in cases of large emergence effects, the robot
may not be able to resolve the situation, resulting in signifi-
cant deviations from the desired profile. To address this, the
framework can be expanded to include emergence handling
mechanisms to recover from emergent situations if possible.
Otherwise, emergence monitors can be employed to adapt
the world model and robot capabilities for future executions.

We envision the potential for generalizing this approach
to other amorphous material manipulation tasks using this
iterative process as a framework, where multiple task-specific
skills would contain the necessary knowledge-based behav-
iors to perform iterations, while the inter-iteration component
would deal with situation awareness and skill configuration.
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