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Development of Object and Grasping Knowledge
by Robot Exploration

Dirk Kraft, Renaud Detry, Nicolas Pugeault, Emre Bageski, Frank Guerin, Justus Piater, and Norbert Kriiger

Abstract—We describe a bootstrapping cognitive robot system
that—mainly based on pure exploration—acquires rich object
representations and associated object-specific grasp affordances.
Such bootstrapping becomes possible by combining innate com-
petences and behaviours by which the system gradually enriches
its internal representations, and thereby develops an increasingly
mature interpretation of the world and its ability to act within it.
We compare the system’s prior competences and developmental
progress with human innate competences and developmental
stages of infants.

Index Terms—robots with development and learning skills,
active exploration of environment, hardware platform for de-
velopment, using robots to study development and learning

I. INTRODUCTION

HE ability to bootstrap the learning of increasingly rich

internal representations of the world is one of the crucial
properties of the human cognitive system. This ability allows
the system to postulate and verify predictions and, ultimately,
to act purposefully—which on the highest level of representa-
tion is connected to planning [1]. Such bootstrapping processes
are required because, on the one hand, it is impossible to
hard-code all relevant objects and actions as well as their
properties and effects (see, e.g., [2]); on the other hand, it is
known that demanding learning tasks such as object learning,
for recognition as well as for grasping, cannot be solved in
general terms without a certain amount of prior knowledge
coded into the system. The alternative ‘tabula rasa’ approach
(as phrased by [3]) would inevitably fail because of the huge
dimensionalities of the learning spaces of the actual problems
[4].

The first competence a human (or human-like cognitive
agent) needs to learn is to control its own body and how it
is linked to its visual system. Infants develop this competence
within approximately six months (as measured by reaching
success [5, p. 174]). Such learning has also been successfully
modelled on humanoid robots (see e.g., [6]). An important
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learning step that follows such body learning and vision-body
calibration is object learning, making use of a rich set of
visual descriptors (e.g., textures, shapes, edges) [7], as well
as the refinement of reaching and grasping based on initial
reaching [8, p. 38] and grasping reflexes [9] (see the discussion
in Sect. IV-A). In this paper, we describe an artificial cognitive
system in which a similar development takes place. More
concretely, mainly driven by pure exploration and without any
innate prior object or object-specific grasping knowledge, the
system develops increasingly rich and mature internal repre-
sentations of objects and knowledge of how to grasp them.
In parallel, starting from some inchoate innate behavioural
patterns, the system develops a set of increasingly complex
competences up to a very premature planning ability. Note
that our system does not attempt to mimic infant development
in the details, but rather in its broad outline, and in particular
to develop object and grasp knowledge by a bootstrapping
process, where each helps the other. Since the embodiment of
our system is different from infants (e.g., high precision of
grasping, and 3D reconstruction through fixed and calibrated
cameras) some problems infants have to solve (e.g., body
learning and learning of association of the visual system to
the motor system) can be ignored or simpler solutions can be
adopted (e.g., using directly the very precise 3D information
for grasping).

It is important to realise what kind of learning is appropriate
(and possible) at an early stage of development. Since lan-
guage is not yet developed, teaching by any explanation is not
an option. Moreover, up until about nine months, it is unlikely
that imitation plays a crucial role in learning to interact with
objects (see Sect. IV-B4). Therefore, exploration is likely to
play a decisive role at that stage of development, which is
also supported by observations in developmental psychology
[10], [11]. Along a similar line of thought, exploration is the
main driving force in our system, supported by very weak
supervision by a human ‘robot-sitter’ whose role it is to create
learning situations and to avoid self-damage, in a way very
similar to infant supervision.

To realise this learning task our system requires a minimal
amount of innate knowledge about the world with which it
interacts. This knowledge is expressed in (1) the system’s
embodiment, (2) the machinery for (visual) feature extraction,
(3) structural knowledge (statistical machineries and memory
system), (4) a number of innate behavioural patterns, and (5)
knowledge of the physical world. However, as we show, this
knowledge is rather generic, and choices are motivated by neu-
rophysiological knowledge as well as results of developmental
psychology (as discussed in Sect. IV-A).
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By carefully combining these innate competences and be-
haviours, we end up with a system that gradually enriches its
internal representations. This process leads to an increasingly
mature interpretation of the world and the system’s ability
to act within it, up to (still very simple) planning and plan
execution with grounded object and grasp representations. We
then compare the system’s prior knowledge with equivalent
knowledge available to humans, and discuss similarities and
differences. In particular, we compare the system’s devel-
opmental progress with developmental stages of infants in
Sect. IV-B.

The modelling of such bootstrapping processes serves (at
least) two purposes. First, it is a necessary competence for
cognitive robots to learn by interacting with the world; hence,
we believe that it is an important capability of future robotic
systems. Secondly (and equally importantly) it provides a bet-
ter understanding of the internal requirements of such complex
processes and thus provides insight for the understanding of
human development.

A. Related work

Since our work focuses on bootstrapping mechanisms in
a cognitive system which makes use of a number of rather
complex sub-modules, a large variety of research questions
are involved (grasping without object knowledge and object
specific grasping, object learning, structure from motion, pose
estimation, etc.) that cannot be fully covered in this section; we
focus here on work that is relevant in the context of bootstrap
learning of grasp representations (Sect. I-A1) or object and
action knowledge generation by exploration (Sect. I-A2). For
a more detailed discussion of the state of the art for each sub-
module used in the bootstrapping process, we refer to more
technical publications (see, [12]-[16]).

1) Learning grasping affordances: Classical approaches to
grasp generation [17], [18] rely on predefined 2D or 3D
models. These models have mostly been used to construct
successful and stable discrete grasping solutions using ana-
Iytical methods. Of the more recent, large body of literature
on learning how to grasp, the majority focuses on methods
that produce a number of discrete grasping solutions [19]. A
few recent methods (including that used by our system [14])
instead aim explicitly at producing a continuous, probabilistic
characterisation of an object’s grasping properties [20], [21].
The latter can naturally be used to produce grasping solutions;
additionally, they allow for ranking grasps by providing a
likelihood of success for arbitrary grasps. Montesano et al.
[21] learnt 2D continuous and probabilistic grasp affordance
models for a set of objects of varying shape and appearance,
and developed a means of qualifying the reliability of their
grasp predictions.

Chinellato et al. [22] describe a relevant manipulation
experiment in which categories of grasps (based on features
derived from 2D-visual and motor information) are learnt.
These categories can be interpreted as symbols representing
different grasp types. The features used by Chinellato et al.
contain a significant amount of prior information. They are
constructed based on the authors’ thorough understanding of

the grasping process. We do not make use of such specifically-
tailored features; the different grasp categories in [22] are ob-
ject independent while our work learns object-specific grasps.

2) Body, object and action learning by cognitive agents:
The work of Fitzpatrick and Metta [6] is closely related
to our object learning approach since the overall goal as
well as the hardware setup are similar: discovering relations
between actions and objects by exploration using a stereo
system combined with a grasping device. We see our work’s
main distinguishing features in the larger amount of prior
structure we use and in the more complex and reliable visual
and action models we are able to produce. For example, we
assume a much more sophisticated vision system. Also, the
use of an industrial robot allows for a precise generation of
scene changes exploited for the extraction of the 3D shape
of the object. Similarly to [6], we initially assume ‘reflex-
like’ actions that trigger exploration (connected to the concept
of affordances [23]). However, since in our system the robot
knows about its body and about the 3D geometry of the
world and since the arm can be controlled more precisely, we
can infer more information from having physical control over
the object in terms of an exact association of visual entities
across successive frames based on proprioceptive information.
Therefore, we can learn a complete 3D representation of the
object (instead of 2D appearance models) that can then be
linked to pose estimation.

Our work is very much related to a general research agenda
on bootstrapping cognitive systems outlined by Kuipers. In
particular, Modayil and Kuipers [24], [25] addressed the
problem of the detection of objectness and the extraction of
object shape (of e.g., chairs, trashcan) in the context of a
mobile robot using a laser sensor. Motion information (in
terms of the odometry of the mobile robot) is used to formulate
predictions; in this way, they can extract a 2D cross section
of the 3D environment. In our work we did make use of
a much richer visual scene representation (leading to full
3D object representation covering geometric and appearance
information) as well as a more controlled way to interact
with objects (grasping and highly controlled manipulation of
objects in contrast to mobile manipulation and merely pushing
objects).

Stoytchev [26] shows how to learn to pick up seven dif-
ferent objects by experimentally chaining primitive actions,
taken from a discrete set. In contrast, we learn to grasp in
a continuous parameter space. Stoytchev’s work is done in
a dynamic simulation environment, which simplifies some
vision problems. Corners of objects are input directly; a
different approach would be needed for objects that do not
have the relatively simple structure of the seven objects used.
Furthermore, objects are not recognised, but are colour coded
so that they can be uniquely identified. There is no link
between exploration and the learning of an object’s visual
representation. In contrast to this work, our experiments are
done in a realistic environment which tackles real-world vision
and we do not ground our grasping actions in primitive actions,
but rather use an abstract 6D pose for grasp representation.
Stoytchev’s later work [27] shows how different tools and their
actions can be learnt and how this knowledge can be used
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to solve problems. This work is done in a real-world robot
scenario while manipulation happens in a planar world. The
author also investigates how this learnt tool representation can
be updated in case the tool changes (e.g., breaking off of parts).
Our work does not explicitly address shape changes; however,
our learnt grasp models will adapt to gradually-changing
objects during continued interaction. Moreover, added or re-
moved parts will be robustly handled in the same way as clutter
and occlusion and will generally be inconsequential, unless the
parts in question directly interfere with applied grasps.

This work is based on earlier work [13], [14]. While [14]
focuses on technical aspects, the conference publication [13]
discusses how individual objects and grasp affordances can be
grounded. This article bundles prior work into a bootstrapping
system that is described herein for the first time. In this
context, we also compare this system with findings from
neurophysiology and developmental psychology. In particular,
we review some findings that justify the prior knowledge built
into the system, and discuss how our system relates to the
development of infant grasping abilities in their first year.

II. THE DEVELOPMENTAL PROCESS

The developmental process has three main stages which
themselves can be split again into different sub-stages. This
is visualised in Figs. 1 and 2. The first stage involves a
first learning cycle (see Fig. 3 (top)) called ’Birth of the
object’; the second stage involves a second learning cycle (see
Fig. 3 bottom) similar to playing with an object (grasping and
dropping the object); the third and final stage can then use
the knowledge acquired previously to manipulate objects in a
planful way.

During the first ’innate’ stage the system (I’ in Fig. 1)
merely performs actions triggered by feature-induced affor-
dances (see [28] for a video).! The system does not have
any concepts of concrete objects and how to grasp them.
It only executes a mechanism that tries to perform grasps
on something (i.e., not necessarily an object) triggered by
specific 3D feature constellations which the early cognitive
vision system provides. In case the system experiences a
resistance to a total closing of the two-finger gripper, another
mechanism triggers a rotational movement which provides the
visual system with a set of controlled views of the object,
from which it accumulates features that move in agreement
with the proprioceptive information (see [29] for a video).
The set of these features (provided the predictions of the
visual features based on the proprioceptive information can be
verified) constitute *objectness’ and object shape. Hence at the
end of the first learning cycle the system possesses concrete
object knowledge. Based on this it also has now a more mature
means to analyse the scene by recognising learnt objects and
estimating their pose. This is the second stage reached in *V’
in Fig. 1.

'In this paper we refer to two types of affordances: a feature-induced
affordance is identified by the visual system based on coplanar contours and
requires no prior object knowledge; an object-specific affordance requires an
object model, and refers to a specific gripper pose at a specific point on the
object model.

During the second stage a more complex behaviour com-
pared to the feature-induced affordance driven behaviour of
the first stage is performed. Since the system is now able to
estimate the object’s pose it can perform focused actions on
an object (i.e., grasp it with a certain end-effector pose in
relation to the object). In this way the system can systemat-
ically test grasp hypotheses to build up grasping experience
associated with the object. At the end of this process the
system has acquired object shape and appearance and object-
specific grasping knowledge; this facilitates entry to the third
main stage, which can perform behaviours in which multiple
objects can be manipulated in a systematic way, a precursor to
planning. This third stage is not described in this paper (see
[30] for more detail). Instead, the focus here is on how to
bootstrap a system to such a level of knowledge.

We want to note three issues: First, in human development
(or in a more faithful developmental robot) these stages are
not distinctly sequential. Purely feature-induced affordance-
based behaviour, more focused ‘playing’ and planning will
all be available at later stages. Secondly, during play more is
learnt than grasping a specific object, for example, fine-tuning
of movements, aligning the body with the vision system and
learning more sophisticated grasping affordances. This idea of
significant overlap between different processes is very much in
line with contemporary theories of cognitive development [31,
Ch. 4]. Thirdly, the emergence of deliberate planning is not
a discontinuous development, but rather a process of gradual
increase in the sophistication of skills and their combination;
evidence suggests that the basic strategy of applying a means
to achieve a goal is available in the first six months, but
means-ends performance in manual tasks will not be observed
until about 8 months because the required component skills
(or “planning operators”) are not available earlier [32, p.
40-41]. Later on, as more playing is done, more is learnt
about potential planning operators and so more sophisticated
planning becomes possible.

Figs. 1 and 2 exemplify the learning process inherent in the
interaction of the different internal modules and behaviours
interpreted in accordance with the popular model of working
memory of Baddeley [33] (see Sect. IV-A3). We realised a
procedure that reflects this model and leads to a stepwise
enrichment of the internal representations. This enrichment
process produces a gradually maturing interpretation of the
world that allows for increasingly complex actions. The hor-
izontal axis gives the different types of memory that are
involved in the developmental process: Iconic Memory (IM),
Visuospatial Sketchpad (VS), Episodic Buffer (EB), Object
Memory (OM) and Grasp Memory (GM). Note that IM is
part of the sensory store, VS and EB are both part of the
short-term memory (STM) while OM and GM are both part
of the long-term memory (LTM). The vertical axis represents
the time on a coarse scale, corresponding to critical stages
of the system’s development. The horizontal bar on top of
the different memory systems represents competences of the
system. These also change (i.e., develop) over time.

The different memory systems have different roles in the
developmental process. Iconic memory stores and integrates
visual information for only approximately 250 ms [34] and
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Fig. 1. Illustration of how our processes can be interpreted in accordance with human memory models (using the popular working memory model of
Baddeley). See Sect. II for more details. Continued in Fig. 2.
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delivers the information to the visuospatial sketchpad [33,
p.- 63], where internal representations act on the sensory infor-
mation (in our case associating grasping hypotheses to visual
features, see, e.g., Fig. 1I. Experienced relations between
sensory information and action are stored in the episodic buffer
[33, p. 139]. The information in the episodic buffer delivers
input to learning processes that initialise and refine concepts in
the long-term memory—in our case, object-specific grasping
affordances. More specifically, we store visual features which
triggered a grasp, motor information associated to the grasping
attempts, as well as a success evaluation of the grasp attempt.
The success evaluation is based on haptic information.

To view the system from Piaget’s theoretical perspective
[35], we could describe it in terms of the functions of
assimilation and accommodation. The accumulation process
involves assimilation of the object according to the system’s

innate idea of objectness, and then rotating it just as it
would do with any other object. The accumulation process
involves accommodation when the system changes its object
memory to accommodate this new, previously-unseen object.
The playing process first involves assimilation of the object by
a model existing in object memory (pose is estimated in this
assimilation process); a grasp attempt is then triggered. The
result of the grasp attempt leads to a change in the recorded
empirical grasp density; this change corresponds to Piaget’s
accommodation. This procedure is thus broadly compatible
with Piaget’s theory where each process involves an element
of assimilation and an element of accommodation.

The competences and behavioural patterns are activated
in the developmental process. Initially they are directly ac-
tivated by affordances (e.g., the grasping reflex is used to
grasp objects) and later in the developmental process by
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Fig. 3. The two learning cycles. In the first learning cycle (top) a visual object model is learnt after gaining control over the object. The second learning
cycle (bottom) uses this model for pose estimation which enables the system to attach attempted grasps to a common coordinate system. These grasps can
then be used to construct grasp densities, which form a continuous grasping affordance representation.

more purposeful considerations (e.g., the planner decides what
object to grasp in which way). These competences and be-
havioural patterns are combined over time to form more com-
plex concepts and behaviours, providing an increasingly rich
world model: The developing system proceeds from object-
independent, stimulus-driven grasping to more purposeful and
mature grasping of objects, and finally forms sequences of
behaviours to execute purpose-directed plans.

The main developmental steps and the corresponding inter-
nal system states (Figs. 1 and 2) are now briefly outlined by
means of concrete examples, before we describe the actual
sub-modules applied in this process in Sect. III:

D At the initial stage, a ‘grasping reflex’ (see
Sect. III-A2) is triggered by a visual stimulus in the
VS. In this case, the execution of the selected grasping
hypothesis leads to a collision between gripper and
basket; the grasp is labelled as failed and stored
in the EB as a combination of visual features and
outcome evaluation. We note that, at this point of
development, the only competence available to the
system is to trigger one of the feature-induced affor-
dances by the grasping reflex (GR), as indicated by the
only green highlighted competence. This constitutes a
purely affordance-based, reactive scheme.

1)

110)

V)

V)

Another attempt to perform a grasping hypothesis leads
to a successful grasp (measured by haptic informa-
tion); the basket is grasped and the action is labelled
accordingly. Note that, by having physical control
over ‘something’, a new (however innately available)
competence becomes usable by the system (‘Rotation
/ Accumulation’).

At this stage, an accumulation process (see
Sect. III-A3) is triggered following the successful
grasp, during which the object is observed from
different perspectives.

After a set of views have been collected, they are incor-
porated into a common model. An object is born when
a sufficient number of the features moving according
to the robot’s proprioceptive information have been
accumulated. The EB is updated accordingly and the
object model is stored in OM. This concludes the first
learning cycle as described in Sect. III-B1.

At this stage, the new entry in the object memory
allows for a more complex representation in the vi-
suospatial sketchpad via the use of the pose estimation
process (see Sect. I1I-A4). Now the scene represented
in the VS contains not only grasping affordances but
also a concrete object that can be localised by a
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pose estimation algorithm, as indicated by the green

highlighted box.

A new competence combining grasping reflex and pose

estimation, generating new entries in EB and GM, is

activated. From this point onwards, learning happens
by playing, i.e., picking up and dropping the object.

This is essentially an iterative combination of the

grasping reflex with the pose estimation (described in

Sect. I1I-B2).

X) After grasping the object multiple times, the grasping
model (described in detail in Sect. III-A4) becomes
sufficiently complete. This concludes the second learn-
ing cycle.

XI-C) Additional objects are born and grasping models are

learnt by the very same mechanisms.

Based on the learnt object and grasp representations,

planning with grounded objects and grasps finally

becomes possible. This is described in detail in a

separate publication [30].

VD)

CI

III. SUB-MODULES AND LEARNING CYCLES

This section presents the technical implementation of the
developed system. The implementation is based on an em-
bodiment (see Fig. 4) consisting of a classical six degree of
freedom industrial robot arm (Staubli-RX60) with an attached
two finger gripper (Schunk PG-70) and a calibrated stereo
camera system (Point Grey BumbleBee2). In addition the
system uses a Force/Torque sensor (Schunk FTCL-050) to
detect collisions between gripper and environment. In this
context, a foam floor leads to a slow increase of forces and
hence allows for longer reaction times.

Fig. 4. Hardware setup (description see text).

We now describe in Sect. III-A the modules that are used
by the system and how they interact within the two learning
cycles (described in Sect. III-B) in a cognitive agent which
is able to learn object representations and grasping actions
autonomously.

A. Visual and Behavioural Modules

This section details the technical implementation of the
a priori competences and behaviours that build the basis for
the realised system. Here we want to stress that although many
parts of the system are motivated by and have analogies to hu-
man information processing, these analogies are not modelled
on a neuronal level but represent functional abstractions of
processes realised in the human brain by means of neurons
(for an in depth discussion of analogies to the human visual
system we refer to, e.g., [36]). Moreover, some processes are
also realised rather differently in the human brain as discussed
in detail in section IV.

1) Early Cognitive Vision System: In this work, we make
use of a visual representation delivered by an early cognitive
vision system (ECV) [16], [36], [37]. Sparse 2D and 3D
features, so-called multi-modal primitives, are created along
image contours. The 2D features represent a small image
patch in terms of position, orientation and phase. These are
matched across two stereo views, and pairs of corresponding
2D features permit the reconstruction of a 3D equivalent. The
2D and 3D primitives are organised into perceptual groups
in 2D and 3D (called 2D and 3D contours in the following).
The procedure to create visual representations is illustrated in
Fig. 5 on an example stereo image pair. Note that the resultant
representation contains not only geometrical information (i.e.,
2D and 3D position and orientation) but also appearance
information (e.g., colour).

The sparse and symbolic nature of the multi-modal primi-
tives allows for the coding of relevant perceptual structures that
express relevant spatial relations in 2D and 3D [38]. The rela-
tions between contours allow us to define grasping hypotheses
(see Sect. ITI-A2). The formalisation of a primitive’s visual
change under a rigid-body motion enables us to accumulate
the 3D primitives belonging to an object (see Sect. I1II-A3).

2) Feature-induced Grasping Affordances: To gain physical
control over unknown objects, a grasp computation mechanism
based on previous work [15] is used. Pairs of 3D contours
that share a common plane and have similar colours suggest
a possible grasp (see Fig. 6a—c). The grasp location is defined
by the position of one of the contours. Grasp orientation
is calculated from the common plane defined by the two
contours and the contour’s orientation at the grasp location.
Every contour pair fulfilling this criterion generates multiple
possible grasps (see Fig. 6a for two such possible grasp
definitions and [28] for a video showing the execution of the
grasping behaviour in a complex scene). In the context of this
behavioural module, the visual features, the feature relations
used for defining the grasps as well as a haptically-generated
succes evaluation are required and are hence stored in the
episodic buffer (for details see [15]).

Here we want to note that the grasping mechanism can be
generalised to more complex hands than two-finger grippers.
For example in [15] the feature-grasp associations shown in
Fig. 6a were mapped to a five finger hand. In general, in
[39] it has been shown that the high-dimensional manifold
of joint configurations of a five-finger hand can be mapped to
a much lower-dimensional subspace that is able to represent
most grasping actions. This indicates that a rather limited set of
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Fig. 6. Grasping reflex. a) Based on two coplanar and co-colour visual contours certain grasps are predicted. b) Concrete situation and the grasps predicted
by a specific contour pair. ¢c) More complex scene and a selection of predicted grasps. d) Results based on real grasping attempts stored in the episodic buffer.
The gripper pose (p), the position of the centres of the two generating contours (visualised as red dots here) as well as the evaluation result are stored. e) The

success rate after learning versus the increase of the learning set.

feature-action associations might already generate a significant
variety of grasping actions.

The system’s embodiment allows it to detect collisions with
its environment (e.g., the object it tries to grasp) and to
judge if it successfully grasped ‘something’. This allows for
an autonomous operation and an autonomous generation of
labelled experiences (see Fig. 6d. We have shown in [15] that,
based on these labelled experiences, we can learn an improved
feature-based grasp generation mechanism. The system uses
an artificial neural net to determine which feature relations
predict successful grasps. Fig. 6e shows how the success rate
increases with the amount of labelled learning data the system
can make use of.

3) Accumulation: Once the object has been successfully
grasped, the system manipulates it to present it to the camera
from a variety of perspectives, in order to accumulate a full
3D symbolic model of the object [16]. This process is based
on the combination of three components. First, all primitives
are tracked over time and filtered using an Unscented Kalman
Filter based on the combination of prediction, observation
and update stages. The prediction stage uses the system’s
knowledge of the arm motion to calculate the poses of all
accumulated primitives at the next time step. The observation
stage matches the predicted primitives with their newly ob-
served counterparts. The update stage corrects the accumulated
primitives according to the associated observations. This al-
lows the encoding and update of the visual primitives. Second,
the confidence in each tracked primitive is updated at each
time step according to how precisely the accumulated primitive
was matched with a new observation. The third process takes
care of preserving primitives once their confidences exceed
a threshold, even if they later become occluded for a long

period of time. It also ensures that primitives are discarded if
their confidence falls below a threshold. New primitives that
were not associated with any accumulated primitive are added
to the accumulated representation, allowing the progressive
construction of a full 3D model. Note that the sparse nature
of primitives yields a condensed description. Fig. 7a shows
how an object model improves qualitatively by applying the
accumulation scheme over different frames. Fig. 7b shows the
variation of the Kalman gain over frames clearly indicating a
convergent behaviour.

4) Statistical Machinery—Pose Estimation and Grasp Den-
sities: The accumulated 3D symbolic reconstruction described
above can serve for object pose estimation. Pose estimation is
performed using the model of Detry et al. [12]. This model
has the form of a hierarchy of increasingly expressive object
parts, where bottom-level parts correspond to generic multi-
modal primitives. The model is learnt from the accumulated
3D symbolic reconstruction (see Sect. III-A3) of the object,
and allows for a probabilistic estimation of the object pose in
an arbitrary scene. Visual inference of the hierarchical model
is performed using a belief propagation algorithm (BP) [12],
[40], [41]. Means of autonomously learning the hierarchical
model from an accumulated 3D symbolic model are presented
in prior work [12].

The role of pose estimation is to align object-specific
grasp affordances to arbitrary object poses. Object-specific
affordances represent the different ways to place a hand or
a gripper near the object so that closing the gripper produces
a stable grip. The grasps we consider are parametrised by a 6D
gripper pose composed of a 3D position and a 3D orientation.
Object-specific affordances are represented probabilistically
with grasp densities. A grasp density represents the spatial
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Tllustration of the accumulation process. This accumulation is the product of two interleaved processes. In the generative process, illustrated in panel

a), the object is rotated over a number of frames; for every frame the visual features are extracted and accumulated, enriching the object model. The second
process, illustrated in panel b), tracks and corrects features over time. The reliance on the predicted features increases while the influence of new observations
decreases, as can be seen in the reduction of the gain. Please note that at every step new features (with an initial high Kalman gain) are introduced, which
leads to larger error bars. It is important to point out that even though such new, uncertain features continue to be introduced, the overall Kalman gain still
decreases. At a Kalman gain of 6.5 new observations and predicted features have approximately the same impact on the update stage. These two sub-processes
occur at very different timescales. The accumulation of new information, in panel a), requires large viewpoint variation to be effective, and the object’s shape
becomes complete only after a half revolution of the object (~ 35 frames); in contrast, the correction process, in panel b), converges after only a few frames

(~ 5 frames).

distribution of relative object-gripper poses which yield stable
grasps; it corresponds to a continuous probability density
functions defined on the 6D pose space [14]. The computa-
tional representation of grasp densities is non-parametric: A
density is represented by a large number of weighted grasp
observations. Density values are estimated by assigning a
kernel function to each observation and summing the kernels
[42]. Letting K; denote the kernel associated to the i*" grasp
observation, and letting w; denote the associated weight, the
value of a density at pose x is given by » . w;K;(z). The
learning of grasp densities—acquiring grasp observations and
learning the weights—is detailed in Sect. III-B2. An intuitive
illustration of a grasp kernel is given in Fig. 8a and Fig. 8b
illustrates a kernel-based grasp density. Grasp densities are
registered with the visual reconstruction of the object they
characterise, allowing for their alignment to arbitrary object
poses through visual pose estimation. The association of grasp
densities with the visual model is covered in more detail in
prior work [14].

B. The Two Learning Cycles

The modules described in the previous section can be
combined into two learning cycles. The first cycle learns visual
object models; the second learns object-specific grasping affor-
dances from these models. The issue of learning to recognise
affordances which are not specific to known objects is not
tackled here but is the subject of ongoing work (see end of
Sect. IV-B2).

1) Birth of the object: Fig. 3 (top) shows how the two sub-
modules described above interact to generate visual object
models for unknown objects. The initial grasping behaviour
(see Sect. III-A2 and steps I-II in Fig. 1) is used to gain
physical control over an unknown object. If no object has
been grasped in the process (this is determined using haptic
feedback, i.e., the distance between the fingers after grasping)
another grasping option is executed. When the object has been
grasped, the accumulation process (see Sect. III-A3 and steps

III-IV in Fig. 1) is activated. If a stable representation emerges
after some steps, then the grasped entity possesses temporal
permanence. Together with the attributes manipulability and
constrained size relative to the agent (which have been estab-
lished by the agent being able to pick up the entity), the entity
fulfils all of Gibson’s [43] criteria of objectness. We use the
name Birth of the object for this transition process, from entity
to object. The generated object model is then stored in the
Object Memory. This process can be repeated until all objects
in the scene have been discovered. Object models resulting
from the first learning cycle can be seen in Fig. 3 (top) in the
column labelled Object Memory and in [44].

2) Object-specific grasp affordance learning: Affordances
can initially be constructed from a grasp generation method
that produces a minimum ratio of successful grasps (e.g., the
initial feature-induced grasping behaviour in Sect. I1I-A2). In
this work we used an approach where we initially use grasp
hypotheses at random orientations at the position of the ECV
primitives of the object model (see Fig. 8d). A grasp density
model is constructed from these hypotheses by using each
hypothesis as a grasp observation; observation weights are
uniform. We call the representations built with any of these
weak priors grasp hypothesis densities [14].

An object’s grasp hypothesis density allows for grasping,
but yields low success rates. In order to improve success
rates, the system uses exploration and the execution of a
number of random grasps sampled from the hypothesis den-
sity. Successfully-executed grasps are used as observations
for building an empirical grasp density (see Fig. 8e). The
weights associated to these grasps are computed through an
importance sampling algorithm [14] in an effort to remove
the bias introduced by the grasp hypothesis density. The
empirical grasp density yields higher success rates than the
grasp hypothesis density, models more accurately the object’s
properties and reflects the robot’s morphology (see Sect. I1I-A4
and steps VI-X in Fig. 2). In [45] a video of the learning and
execution of this grasping behaviour is shown for a variety of
objects.
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Hypothees Density

Empirical Density

Fig. 8. Grasping affordances are represented using kernel-based grasp densities. a) Iso-probable surface of a ‘grasp kernel’, and relation between a two-finger
grasp and a kernel representing this specific grasp in the model. b) Kernel-based grasp density. The right-hand side shows lighter sampling for illustration
purposes. D represents the density, while w; and K; represent the individual weights and kernels. ¢) Grasp success rates for the basket, (i) counting kinematic
path planning errors as failures, and (ii) excluding such errors from the score. Red bars correspond to grasps drawn randomly from the the hypothesis density
d). Green bars correspond to grasps drawn randomly from the empirical grasp density e). Blue bars correspond to maximum-likelihood grasps from the
empirical grasp density e). d) Initial grasping knowledge is modelled with a hypothesis density (right) which is based on kernels placed at the positions of

the visual features at random orientations (left). ¢) Empirical grasp density.

The success rate of grasps sampled randomly from the hy-
pothesis and empirical densities of the plastic basket are shown
in Fig. 8c in red and green respectively. Instead of drawing
a grasp randomly from a density, a robot may also select
the grasp that has the maximum success likelihood. This is
done by combining the grasp density with reaching constraints
to select the achievable grasp that has the highest success
likelihood. The success rates of maximum-likelihood grasps
computed with the empirical grasp density of Fig. 8e are
shown in blue in Fig. 8c. The process of computing hypotheses
densities, pose estimation and execution of random samples
from the grasp hypothesis density, through which an empirical
grasp density is generated, is shown in Fig. 3 (bottom).

IV. REFLECTION ABOUT SIMILARITIES AND DIFFERENCES
TO HUMAN DEVELOPMENT

In this section we first discuss the prior knowledge that
has been applied in our system and relate it to knowledge
about innate structures in humans (Sect. IV-A). We then
discuss in Sect. IV-B similarities and differences between our

system’s development and the development of infants’ object
representation and grasping abilities.

A. Prior Knowledge

The system’s innate knowledge can be distinguished by
(1) its embodiment, (2) the machinery for (visual) feature
extraction, (3) structural knowledge (statistical machineries
and memory system), (4) a number of innate behavioural
patterns and (5) knowledge of the physical world. These will
be discussed in more detail in the rest of this section.

1) Embodiment: The system has knowledge about its em-
bodiment and the consequences of its movements in the three-
dimensional world. In technical terms, the system knows about
its body shape and body kinematics and is able to relate its
self-motion to the visual information it perceives. In addition it
has the ability to plan collision-free motions while respecting
the limits of its work space.

Besides the actual control of its body, an important property
of the system is that it is able to achieve a high level of control
over objects by grasping. Interestingly in this context, Pinker
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Early Vision

Early Cognitive Vision

. J

Fig. 5. An overview of the visual representation. a) Stereo image pair, b)
Filter responses, ¢) 2D primitives, d) 2D contours, e) 3D primitives (note that
the surface on which the colour is displayed is for display only and has no
geometric meaning, for details see [37]), f) close-up of c).

[46, p. 194] speculates that the superior manual dexterity
of humans may be one of the factors which facilitated the
species’s development of higher-level cognitive competences.
In the development described here, the robot makes use of very
precise predictions on how visual features change according
to its ego-motion once the object is grasped. It has also the
ability to ‘subtract’ its hand from visual features generated
from the grasped object.

In our system, we decided not to have this knowledge
develop. Instead, this body knowledge is hard-coded to allow
us to focus exclusively on the problems of object and grasp
learning. This is appropriate in the embodiment we chose since
an industrial arm allows for a high degree of precision in
robot-camera calibration and execution of movements (this is
a significant difference from infant precision, and necessarily
leads to a number of other differences in our system). It has
also been shown that such knowledge can indeed be learnt by
exploration (see, e.g., [6]). In humans, the body knowledge
and its link to visual information must develop in parallel with
object and grasp learning because the body itself is changing
due to growth (see Sect. IV-B).

2) Sensory System: The robot is equipped with a sophisti-
cated vision system (which we have called ‘Early Cognitive
Vision (ECV) system’ [36], [37]) which provides semantically
rich and structured 2D and 3D information about the world.
This system contains prior knowledge about image features
and their relations, knowledge about basic geometric laws and
how they affect visual features, and most importantly, basic
laws of Euclidean geometry used for stereo reconstruction and
the prediction of the change of visual features of moving rigid
bodies.

There has been a long debate on the innate components of
V1, with contradicting evidence [47]-[50]. It has been argued
that orientation columns in V1 are innate [47] or develop in
some species without visual experience [50]. However, some
work points to a large degree of plasticity [49] and it has
been shown that filters associated with early feature extraction
mechanisms can indeed be learnt [51] (for further discussion
see [52]).

Our assumption of having a calibrated stereo system which
is also precisely calibrated with the robot arm is an assumption
which is not justified by human development, but possible in
our specific set-up. It has been argued that infants are able
to perceive 3D information from birth, probably based on
the convergence cue [53], [54]. Stereo is used after approxi-
mately twelve weeks [55]. The stereo machinery starts rather
instantaneously, probably caused by maturational change in
cortical disparity-sensitive units [54] pointing to a large degree
of innate structuring. The actual robot-camera calibration
however can be learnt, as demonstrated by [6]; this also reflects
the significant change of embodiment taking place in the first
year (which is not modelled in our system either).

In summary, the ECV system provides a large degree of
semantically-rich information in terms of 2D and 3D fea-
ture extraction and spatiotemporal relations between features.
There exists evidence that complex feature extraction mech-
anisms in terms of orientation columns are already present
at birth [47] or develop without visual experience of real-
world data [48]; however, it is very likely that there are also
adaptive and maturational components in this process that are
not modelled in our system (see section 3 in [52] for an in-
depth discussion).

3) Structural prior knowledge: Our system represents
structural knowledge of objects using learnt, statistical models
that relate ECV features to each other and to grasp parameters.
This allows for robust object detection and pose estimation
under uncertainty and noise by probabilistic inference. While
it is unclear how this machinery compares to equivalent
processes in the brain, there is substantial evidence that many
brain processes operate in ways consistent with probabilistic
reasoning [56].

For learning, the system makes use of a memory system
that has been created in analogy to a model of the human
memory system by Baddeley (see [33]) covering different
sub-systems: First, an iconic memory which stores the im-
mediate pre-processed sensory data for a short time period
(approximately 250 ms, see [34]). Second, a visuospatial
sketchpad [33, p. 63] in which internal representations can
map on transient visual information. As a consequence of the
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developmental process, the interpretation of the visual data in
the visuospatial sketchpad becomes more and more complex
starting from feature-induced affordances and ending up in
complex scene representations in terms of objects and their
poses as well as optimal grasping options (compare Fig. 1
step V and Fig. 2 step CI). Third, an episodic buffer [33,
p- 139] in which sensory data, actions upon them as well as
action consequences are stored. In the technical system, this
is required to make instantaneous experimental information
temporarily available to later learning stages. Hence, it can
be seen as part of the short-term memory. Finally, object
representations and grasping affordances (abstracted over long
phases of exploration) are stored in a long-term memory.

There is a general notion that an elaborated memory archi-
tecture is available to infants. Indeed, it has been argued that
limitations of such a memory system lead to severe constraints
distinguishing competences of humans and apes. For example,
apes are able to create and execute a plan for stacking boxes to
reach a banana when the boxes are in their immediate reach.
However, they have great difficulties achieving this task when
the boxes are not available in the problem area (e.g., the boxes
are in another room) [57]. This suggests that they cannot get
sufficient access to representation in their long-term memory.

4) Behavioural prior competences: The system has two in-
nate behavioural patterns that drive the bootstrapping process.

First, there is a premature mechanism to grasp unknown
objects based on visual feature combinations (coplanar con-
tours). This endows the system with physical control over
objects (although with a rather low success likelihood for an
individual grasping attempt). When successful, it triggers a
second behavioural pattern (discussed below). An important
aspect of the grasping mechanism is that individual grasps
can be evaluated by haptic information leading to labelled data
in the episodic buffer. Based on this information, the success
likelihood of the initial (premature) grasping behaviour can be
improved.

It is known that infants indeed possess a premature, innate,
visually-elicited reach and grasp mechanism [8, p. 38]. This
mechanism, together with the tactually-elicited palmar grasp
reflex is thought to help bootstrap the learning of a more
mature reach and grasp, which begins to appear at about four
months (see more detailed discussion in Sect. IV-B).

The second mechanism performs a rotation of the grasped
object (inspecting the object from all sides) and allows the
system to segment objects and creates visual object models
based on ECV features utilising the visual predictions derived
by combining visual features and self-controlled object mo-
tion. Recent experimental work suggests that six-month-old
infants do create 3D representations of objects, while four-
month-infants do not, and it is suggested that this may be learnt
when the infant begins to sit up, between four to six months,
and can thus engage in extensive visual-manual exploration of
objects [58], [59].

5) Knowledge of the physical world: The system rotates the
grasped object in order to see the other side, and thus to build
a complete representation of the object. This ability reflects an
implicit expectation that objects do have an unseen side, which
rotation can reveal. Evidence from psychology suggests that

this may be something that infants need to learn [60]. Infants
lack the capability to intentionally rotate an object to find an
unseen side until about nine months [61, p. 120], which is quite
late compared to grasping (more detail on grasping is given in
Sect. IV-B below). Although infants may rotate during random
exploration at six months [35], it is doubtful that it is done with
the intention of seeing the other side. Instead, it is likely that
this exploration helps the infant to develop towards knowledge
of other sides. Given the coarse object representations which
are likely to be in use up to six months, it is quite probable that
such an infant rotating a box may not distinguish the sides as
different. The inclusion of this rotation behaviour in the robot
therefore represents an implicit knowledge which helps it to
bootstrap its object representations.

B. Infant development of object and grasp representations

Human infants, in their first year, progress through sig-
nificant changes in internal object representations as well as
grasping abilities. Compared to our robot system, analogies as
well as differences can be discerned.

1) Development of grasping competences: Infant grasping
begins with a ‘neonatal palmar grasp’ reflex present from
birth, where the fingers close on stimulation of the palm.
This is followed by a voluntary palmar grasp, and grasping
then progresses through a number of stages [9] leading to a
scissor grasp at about 8.5 months, which uses the volar sides
of the extended thumb and index finger. After some further
intermediates this eventually develops into the pincer grasp at
about twelve months, which uses the volar surfaces of the tips
of the thumb and index finger. Development is by no means
finished here; the second year will see an improvement in the
use of appropriate forces, and the grasp will not approximate
adult performance until six to eight years, with further subtle
improvements continuing until adolescence [62]. Compared
with an infant, our robot system does not develop different
grasps and is pre-calibrated for simplicity. The grip used by
our robot is two-fingered, and could be mapped to the scissor
or palmar grasp, but without mechanical compliance. This
simplification is justified in order to make technical aspects
simpler; the calibration is simpler, the grip is firm, and also
there is less occlusion as there are only two rigid fingers. A
much more accurate computational model of infant grasping
appears in the work of Oztop et al. [63], however it does not
incorporate vision. If a more human-like hand is used in our
system, then it may be necessary to extend the accumulation
process so that a number of grasps and rotations from different
points would be combined (to gather information about parts
of the object that were occluded on the first rotation).

In terms of reaching to grasp seen objects, it has been
observed that neonates have a very premature reach and grasp
mechanism which reduces in frequency over the first two
weeks, and is hard to elicit in the period from four to 20 weeks
[5, Ch. 6]. The primitive reach motion is visually elicited,
and may be ballistic, with no visual feedback to correct the
reach motion while it is in progress [8, p. 38]; it has a nine
to 40 percent chance of contacting the target [54, p. 250],
[5]; furthermore, there is little evidence that the capability to
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grasp accurately is present, although some elements such as
hand opening are present [8]. The hand opening disappears
at about two to three months, and the behaviour becomes
more of a swiping with a closed fist, which is then replaced
by an open-handed reaching, but with no grasp [64]. Note
that palmar grasping without vision is developing in parallel
at this time, and there is significant exploration of objects
with the hands [65]. The more mature reach and grasp which
appears at about 20 weeks (c. five months) has about an 80
percent chance of contacting the target, with the possibility of
visual feedback to correct the reach in progress, although the
grasp coordination appears to have regressed [5]. It seems that
the primitive reach-grasp was undifferentiated (i.e., the reach
and grasp are coupled), and by 20 weeks two differentiated
(or decoupled) motions have replaced it, which can now
be executed independently, or coordinated. Gordon [62] also
notes that this type of regression followed by advancement is
common: reorganisations can initially result in a decline of
the motor skills, before improvement. After this period the
coordinated reach and grasp develops rapidly; Bower reports
100 percent accuracy on visually elicited reaching [5, p. 174]
at six months and an increasingly developed preadjustment of
the hand is seen.

Compared to human grasping development our robot also
makes use of an initial premature grasping behaviour which
has a rather low success rate; however, after multiple attempts,
this leads reliably to situations in which physical control
is achieved. However our robot skips some of the infant
development where reach and grasp must be decoupled and
then coordinated; the starting position of our system is more
akin to a six-month-old than a neonate.

One main problem for the young infant is that the motor
system and the visual system are not well co-ordinated in the
first four months. Infants may regard their hands moving in
the second month, but the vision does not guide the hands [35,
p- 102]. Subsequent to this, vision augments the activity of the
hand. It is not until about the fourth month that proper visually
directed grasping will commence, and that the infant will bring
the hand into view to grasp seen objects even when the hand
is not initially in view [61, p. 110]. After that, the calibra-
tion between both systems (comparable to the robot-camera
calibration in our system) develops rapidly, leading to a well-
calibrated system after six months as described above. For
simplicity’s sake, our robot is pre-calibrated: the infant must
go through a calibration phase because its body is not produced
to a precise standard specification and the rapid growth during
infancy would necessitate perpetual recalibration in any event;
these issues do not apply to our robot.

2) Visual information used to elicit reaching and grasping:
There are few studies which address this issue specifically,
but these show that five-month-olds seem to organise what
they see into manipulable units with internal coherence and
external boundaries, and they reach for the boundaries of these
perceived objects [66]. Objects adjacent in depth seem to be
treated as one object. This is consistent with Bower’s finding
that an object is at this stage defined by a bounded volume of
space [5, p. 126]. There is a developmental progression in the
infant’s use of information about the size of objects; infants

as young as eight weeks make more reaches to a graspable
ball than one that is too large [8, p. 43]); five-month-olds
tend to reach with two hands regardless of size, seven to
eight-month-olds use two hands for large objects more often
than for small ones, and at eleven to twelve months reaching
closely reflects the object’s diameter [67]. A similar pattern
appears for the thumb-index finger angle opening during the
reach, which increases after seven to eight months, as well
as the adjustment of the angle to the object diameter and the
proportion of the object within hand opening at touch [67].

With regard to edge detection, some differences between
the infant and our robot system can be seen. Edges can arise
due to discontinuities in luminance, colour, texture, depth or
motion [54, p. 139]. Five-month-old infants use only depth and
motion to determine object boundaries, probably because these
have higher ecological validity [54, p. 149]; it is not exactly
known when infants begin to use luminance and colour, but it
is sometime in the second half of the first year [54, p. 149].
In contrast our vision system uses only luminance and colour
edges from the beginning, because it detects edges from still
2D images.

Our robotic system recognises potential feature-induced
grasping affordances by finding two coplanar contours. Copla-
nar contours are especially suitable for grasp attempts by our
gripper with two rigid fingers, but if a more human-like hand is
used this grasp reflex may need to be extended to make grasp
attempts of a wider variety of features. The infant does not
restrict him/herself to attempting grasps on coplanar contours,
but will often attempt to grasp planes which may be at 90
degrees, or more irregular surfaces. The infant will learn that
this is not so effective on a wooden block, for example, but
can work quite well on a soft material such as a sponge
or plastic bag; furthermore, although ineffective for picking
up some rigid objects, a poor grasp can be adequate to pull
it closer. The infant will thus learn to recognise different
affordances, not only those that are good for grasping and
lifting, but also those good for grasping and shaking, or
pulling. Besides grasping, other exploratory actions (sucking,
scratching, shaking, hitting, squeezing, etc.) are performed
by infants which are not modelled in our system. This then
reflects differences in the richness of the world of the infant
vs. robot, and also the richness of its behavioural repertoire,
which in turn reflects the richness of its embodiment. Given
the simplicity of our robot’s embodiment it is reasonable that
it is limited to a subset of the infant’s repertoire.

Infants’ knowledge of grasping seems not to be as object-
specific as realised in our robot’s grasp densities. Infants are
quite successful at grasping during the second-half of the
first year, but they do not seem to build whole 3D object
models until about 24 months [68]. This means that during the
first year infants are probably recognising graspable fragments
of objects in a coarse grained way, allowing for a higher
degree of abstraction of grasp-object associations generalising
across objects (generic affordances). However, our system
generates knowledge which creates data for grasp learning
in terms of more precise grasp densities on specific object
models. Currently, we are working on finding feature-action
associations across objects taking the grasp densities as input.
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3) Development of object representations: Compared to
human development, our robot system starts with a visual
system that is much more mature than the infant’s system
at birth (approximately comparable to a six-month-old). In
contrast, in the infant case, as discussed above, it is only after
approximately four months that the infant begins to perform
visually controlled movements of its arms [61, p. 110]. As
a consequence, babies are in a position at the age of four
months to produce controlled training data as we did with our
robot and camera. Interestingly enough, the infant’s concept
of objects changes dramatically at this stage of development;
babies younger than four months perceive an object as ‘some-
thing at a certain position’ or ‘something moving with a certain
velocity’ [5, p. 227]; the infant does not seem to understand
that a stationary object can begin moving without losing its
identity, this understanding develops and tends to be present in
the four to six months period. After approximately six months
the representation of objects starts to be based on shape and
colour cues [5], with colour being used considerably later
than shape [69]. It is also about this time objects begin to
acquire permanency, i.e., objects continue to exist while being
occluded [60]. (Note that some later results contradicted this,
but more recent results supported it; it is a subject of ongoing
debate [70].)

Kaufman et al. [71] describe how the two separate visual
processing streams in the infant brain (dorsal or ventral)
are responsible for different tasks, and this has interesting
implications for the development of object representations.
The dorsal route should be primarily used for knowledge
relating to grasping, while the ventral would be for repre-
sentation and recognition of the object; yet these must be
integrated to allow grasp knowledge to be associated with an
object representation. In contrast our system has one integrated
pathway where grasp knowledge and object representations are
integrated as soon as they are available. It may be at quite a
late age (maybe nine months [71]) that infants can integrate the
information from the two streams. Even after this, recent work
in psychology suggests that object recognition may undergo
a long developmental trajectory; fragmentary representations
based on view-dependent images and parts of objects are used
up until about 18 months, and then there is a period of rapid
change where 3D whole-object geometric representations are
built by 24 months [68]. The picture emerging from the psy-
chological literature is rather complex; Kellman and Arterberry
explain that ‘perception leads to multiple representations that
may be recruited for different tasks’ [54, p. 262].

During this long development, psychological theories ac-
knowledge the importance of action as the foundation for per-
ceptual and cognitive development [11], [60], and suggest that
there should be a strong relationship between self-controlled
movements of objects and the development of internal object
representations. However, this has only recently begun to
be investigated in more detail. The results by Soska et al.
(mentioned in Sect. IV-A4 above) showed that self-sitting
experience and coordinated visual-manual exploration were
the strongest predictors of success on a looking task testing
perceptual completion of 3D form [59]. The importance our
system gives to active object exploration is very much in line

with these theories. Furthermore, our system shows that the
ability to create a situation in which an object appears under
controlled conditions may help to learn a suitable representa-
tion of objects, and the same may be true in biological systems.

In the other direction there is evidence to suggest that
‘perceptual competence may precede and guide emerging
action systems’ [54, p. 247]; therefore there is evidence of
a bidirectional interaction between perception and action in
development.

Our robot’s learning cycle copies this idea in spirit but not
in the precise details: in our system (and in infants) visual
representation and action knowledge are built up together and
bootstrap from each other; i.e., visual recognition of some
possible feature-induced affordances facilitates action (to lift
and rotate) which facilitates developing a visual representation,
which in turn facilitates further development of grasping
knowledge. However the robot’s cycle is much more rapid
than in infancy; a single successful grasp of the robot leads to
a full rotation of the object, and the immediate construction
of a full 3D model. Thereafter pose can be estimated on any
new presentation of the object, and grasp positions can be
associated with positions in the model. The competences em-
ployed here (3D model construction, pose estimation, rotation
behaviour) take much longer to develop in infants [68]. Also,
the robot immediately works on whole objects, whereas infants
probably represent fragments such as handles or protruding
parts before integrating these in full object representations.
Infants are however probably going through a similar cycle
with their coarser grained fragmentary representations; i.e.,
they are likely to be recognising a fragment such as a handle
in different orientations, and learning about grasping strategies
on this fragment.

4) Social Learning: As noted in the introduction, there is
no social element in our system, apart from some supervision
by a ‘robot-sitter’. This is probably a reasonable match with
the development of object and grasping knowledge in early
infancy where social learning does not seem to play a crucial
role. Interactions which require the infant to note an object,
another person, and relationships among them, are known as
‘triadic’ interactions; Carpenter et al. trace their development
from nine to 15 months of age, and note that twelve months
is an important milestone: ‘It is around one year of age that
infants first begin to look where adults are looking flexibly
and reliably, use adults as social reference points, and act
on objects in the way adults are acting on them.” [72, p. 1].
Therefore the omission of social learning from our system
probably does not diverge far from the human development of
grasping knowledge up to about nine months.

V. DISCUSSION

In this paper, we described a bootstrapping system which
acquires rich object representations as well as knowledge about
how to grasp these objects by autonomous exploration. This
becomes possible by making use of a number of innate compe-
tences; these include substantial but generic prior knowledge
about the visual perceived world, a sophisticated machinery
to deal with uncertainties for pose estimation as well as
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grasp representation, an elaborated memory systems and a
set of initial behaviours. The system’s exploration process
can build on these competences to evolve a richer set of
competences such as ‘playing’ and very simple ‘planning’.
The developmental process of the system has been compared
to human development and similarities as well as differences
have been described.

The system has been inspired by results from psychology
in the broad outline of its developmental approach; however,
in the details it is quite different, and part of the reason
for this is that the precise details of how infants develop
grasping knowledge are not known. The research for this paper
has shed light on some gaps in the psychology literature,
and thereby opens some interesting research directions which
could be pursued by infant studies. For example there is a
need to find what visual information is used to elicit and
guide grasping; e.g., what exact shapes (e.g. handles or other
protuberances) on parts of objects elicit specific grasp attempts
with specific pre-adjustment of the hand, to what extent does
this generalise across objects, and especially how does this
develop throughout the first two years. Further to this, it would
be interesting to investigate how this developing knowledge of
shape fragments feeds into the process of building 3D object
representations, and how it interacts with processes such as
object identification and categorisation. Recent results from
psychology suggest that recognition via fragments develops
early in infancy and that the progression to whole-object shape
happens between 18 and 24 months [68], and that action, to
manually explore objects, is of prime importance throughout
this development [59], [68]. It is the detail of this development
which has yet to be worked out.

An important aspect of infant’s bootstrapping is the bidirec-
tional interaction between the development of visual represen-
tations and action knowledge. In some work on grasping we
have seen one direction showing how visual features can be
used to learn to identify good grasping points [19], [21]; in the
other direction we have seen how exploratory actions can aid
with visual segmentation [6], and some recent work has shown
how object shape can be learnt via exploratory grasping [73].
The developmental psychology literature however suggests
the need for a close bidirectional interaction over a long
developmental period, where vision can guide exploratory
actions, and these actions in turn help in the development of
more advanced visual representations (see Sect. IV-B3). In
our system such bidirectional processes take place, e.g., the
physical control over objects facilitates the learning of object
representations while these learnt representations can be used
to create higher level behaviours such as ‘playing with the
object’ to bootstrap object-specific grasping affordances. The
potential of such bidirectional processes needs to be further
explored.
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