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Abstract. Grasping is one of the most important abilities needed for fu-
ture service robots. In the task of picking up an object from between clut-
ter, traditional robotics approaches would determine a suitable grasping
point and then use a movement planner to reach the goal. The planner
would require precise and accurate information about the environment
and long computation times, both of which are often not available. There-
fore, methods are needed that execute grasps robustly even with impre-
cise information gathered only from standard stereo vision. We propose
techniques that reactively modify the robot's learned motor primitives
based on non-parametric potential �elds centered on the Early Cogni-
tive Vision descriptors. These allow both obstacle avoidance, and the
adapting of �nger motions to the object's local geometry. The methods
were tested on a real robot, where they led to improved adaptability and
quality of grasping actions.

1 Introduction

Consider grasping an object at a speci�c point in a cluttered space, a common
task for future service robots. Avoiding collisions is easy for humans, as is pre-
shaping the hand to match the shape of the object to be grasped. Most adults
perform these actions quickly and without excessive planning. All of these ac-
tions occur before the hand comes into contact with the object, and can therefore
be accomplished using stereo vision [1,2]. In contrast, robots often struggle with
executing this task, and rely on specially designed sensors (e.g., laser scanner,
ERFID) to get accurate and complete representations of the object and environ-
ment [3, 4], followed by lengthy planning phases in simulation [5].

To avoid excessive planning, a robot can employ a sensor-based controller,
which adjusts its motions online when in the proximity of obstacles or other ex-
ternal stimuli [6]. Sensors such as time-of-�ight cameras, ultrasonic sonar arrays,
and laser range �nders are favored for these purposes due to their relatively dense
sampling abilities [7,8]. Stereo vision systems, while usually giving sparser read-
ings, have also been used for obstacle detection, especially in the �eld of mobile
robots. However, these methods often rely on task-speci�c prior knowledge (e.g,
assume the ground is �at) and are designed to avoid obstacles completely [8,9],
while the robot must get close to the object for grasping tasks. In terms of robot
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A. Scene B. ECV Representation

Fig. 1. A) The robot used in our experiments and an example of a grasping task in a
cluttered environment. B) The green ECVDs represent the object to be grasped, while
the surrounding ECVDs in the scene are clutter. The coordinate frame of one of the
robot's �ngers and variables used in section 2 are shown. The x-y-z coordinate system
is located at the base of the �nger, with z orthogonal to the palm, and y in the direction
of the extended �nger. The marked ECVD on the left signi�es the jth descriptor, with
its position at vj = (vjx, vjy, vjz)

T , and edge direction ej = (ejx, ejy, ejz)
T of unit

length. The position of the �nger tip is given by p = (px, py, pz)
T .

manipulators, the research has focused on coarse object representations of novel
objects [10�13] and using additional sensor arrays when in close proximity to
the object [14,15].

In this paper, we propose a sensor-based robot controller that can perform
human inspired grasping motions, including preshaping of the hand, smooth and
adaptive motion trajectories, and obstacle avoidance, using only stereo vision to
detect the environment. The controller uses potential �eld methods [6], which
treat the robot's state as a particle in a force-�eld; i.e. the robot is attracted to
a goal state, and repelled from obstacles.

The system uses the dynamical system motor primitive (DMP) framework [16,
17] for the attractor �eld, which are capable of encoding complex trajectories
and adapting to di�erent grasp locations. These DMPs are implemented as a
passive dynamical system superimposed with an external force; i.e.,

ÿ = αz(βzτ
−2(g − y)− τ−1ẏ) + aτ−2f(x), (1)

where αz and βz are constants, τ controls the duration of the primitive, a is an
amplitude, f(x) is a nonlinear function, and g is the goal for the state variable y.
The variable x ∈ [0, 1] is the state of a canonical system ẋ = −τx, which ensures
that the di�erent hand and arm motions are synchronized. The function f(x)
is used to encode the trajectory for reaching the goal state, and takes the form
f (x) = (

∑M
i=1 ψi)−1

∑M
j=1 ψj(x)wjx, where ψ(x) are M Gaussian basis func-

tions, and w are weights. The weights w can be programmed through imitation
learning [18]. The DMPs treat the goal state g as an adjustable variable and
ensure that this �nal state is always reached.
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The scene's visual representation is used to augment the DMP motions and
form the basis of the repelling �eld. The scene description needs to be in 3D, work
at a �ne scale to maintain geometric details, and represent the scene sparsely to
reduce the number of calculations required per time step. The Early Cognitive
Vision system of Pugeault et al. [19, 20] (see Fig. 1) ful�lls these requirements
by extracting edge features from the observed scene. The system subsequently
localizes and orientates these edges in 3D space [21], with the resulting features
known as early cognitive vision descriptors (ECVD) [19]. By using a large number
of small ECVDs, any arbitrary object/scene can be represented.

The methods for generating the DMP and ECVD based potential �elds are
detailed in Section 2. In Section 3, the system is tested on a real robot and
shown to be capable of avoiding obstacles and adapting the �ngers to the local
geometry of the object for improved grasps using only stereo vision.

2 Methods for Reactive Grasping

The methods proposed in this section were inspired by human movements. Hu-
man grasping movements can be modeled as two linked components, transporta-
tion and preshaping, synchronized by a shared timer or canonical system [22,23].
Transportation refers to the actions of the arm in moving the hand, while the
preshaping controls the opening and subsequent closing of the �ngers [24].

Humans perform the reaching/transportation component in a task-speci�c
combination of retina and hand coordinates [25], which allows for easier speci�-
cation of object trajectories in a manipulation task than joint coordinates would
and also results in a reduction in dimensionality.

Similar to the transportation component, the main purpose of the �nger
posture component is to preshape the hand by extending the �ngers su�ciently
for them to pass around the object upon approach, and then close on the object
simultaneously for a good grasp [22,24]. Over-extending the �ngers is undesirable
as it makes collisions with the environment more likely and is usually restricted
to situations where the shape of the object is uncertain [22,26].

The DMP and ECVD based potential �eld implementations are described in
Sections 2.1 and 2.2. Section 2.3 proposes methods that improves the interpola-
tion of grasping movements to new grasp locations.

2.1 Regular Dynamical Motor Primitives for Grasping

The �rst step towards specifying the grasping movements is to de�ne an attractor
�eld as a DMP that encodes the desired movements given no obstacles. The
principal features that need to be de�ned for these DMPs are the goal positions,
and the generic shape of the trajectories to reach the goal.

Determining the goal posture of the hand using the ECVDs has been investi-
gated in a previous paper [27]. Possible grasp locations were hypothesized from
the geometry and color features of the ECVDs, and subsequently used to create
a kernel density estimate of suitable grasps. It was then re�ned by evaluating
grasps on the real system. However, this grasp synthesizer only gives the desired
location and orientation of the hand and not the exact �nger locations.
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Using the ECVDs, the goal position of each �nger is determined by �rst
estimating a local contact plane for the object in the �nger coordinate system
shown in Fig. 1. If the region to be grasped is not planar, it can still be linearly
approximated as such for each �nger to give good results. To ensure the approx-
imation is accurate in the proximity of the �nger, the in�uence of the ith ECVD
is weighted by wi = exp(−σ−2

x v2
ix − σ−2

y v2
iy − σ−2

z v2
iz), where σx, σy, and σz are

length scale constants that re�ect the �nger's length and width, and vi is the
position of the ECVD in the �nger reference frame. The hand orientation was
chosen such that the Z direction of the �nger should be approximately parallel
to the contact plane, which reduces the problem to describing the plane as a
line in the 2D X-Y space. The X-Y gradient of the plane is approximated by
φ = (

∑N
i=1 wi)−1

∑N
i=1 wi arctan(eiy/eix), where N is the number of vision de-

scriptors, and ei is the direction of the ith edge. The desired Y position of the
�ngertip is then given by p̃y = (

∑N
i=1 wi)−1

∑N
i=1(wiviy − tan(φ)wivix), which

can be converted to joint angles using the inverse kinematics of the hand.
Many of the bene�cial traits of human movements, including smooth motions

and small overshoots for obstacle avoidance [23, 24, 28], can be transferred to
DMPs through imitation learning. To demonstrate grasping motions, we used
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A. Proposed DMP coordinate system B. Example Trajectories

Fig. 2. A)The above diagram shows the the coordinate systems for the transportation
DMPs. The axes Xw-Yw-Zw are the world coordinate system, while Xp-Yp-Zp is the
coordinate system in which the DMP is speci�ed. The trajectory of the DMP is shown
by the pink line, starting at the green point, and ending at the red point. Axis
Xp is parallel to the approach direction of the hand (the black arrow a). Axis Yp is
perpendicular to Xp, and pointing from the start s towards the goal g.
B) The plot shows reaching trajectories, wherein the x and y values are governed
by two DMPs sharing a canonical system. The standard DMPs and the augmented
DMPs described in Section 2.3 are presented along with their respective �nal approach
directions.

a VICON motion tracking system to record the movements of a human test
subject during a grasping task. It is not necessary for the object used for the
demonstration to match that grasped by the robot later. VICON markers were
only required on the back of the hand and �nger tips. As the reaching trajectories
are encoded in task space rather than joint space, the correspondence problem
of the arm was not an issue for the imitation learning step. Details for imitation
learning of DMPs using locally weighted regression can be found in [18].
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As DMPs are provably stable [17], they are safe to execute on a robot and
also ensure that the �nal arm and �nger postures will also always be achieved
when physically possible. The repelling �eld must maintain this stability.

2.2 Adapting the Motor Primitives with Vision Descriptors

Having speci�ed the basic grasping movements, a repelling �eld re�nes the mo-
tions in order to include obstacle avoidance for the transportation and ensure
that the �nger tips do not collide with the object during the hand's approach.

The repelling �eld is based on ECVDs, which can be understood as small line
segments of an object's edges localized in 3D (see Fig. 1).

A. Preshaping B. Grasping

C. Lifting

Fig. 3. The three main phases of a basic
grasp are demonstrated. The preshap-
ing of the hand (A) tries to pose the
�ngers to match the object's geometry.
The grasping (B) then closes the three
�ngers at the same rate until they se-
cure the object. Finally (C) the object is
lifted. The objects on the bottom A and
B are clutter that had to be avoided.

The repelling potential �elds for
ECVDs are characterized by two main
features; i.e., the repelling forces of
multiple ECVDs describing a single
line do not superimpose, and the �eld
should not stop DMPs from reach-
ing their ultimate goals. The system
therefore uses a Nadaraya-Watson
model [29] of the form

ua = −s(x)
∑N

i=1 ricai∑N
j=1 rj

,

to generate a suitable repelling �eld,
where ri is a weight assigned to the i

th

ECVD, s is the strength of the over-
all �eld, x is the state of the DMPs'
canonical system, and cai is the re-
pelling force for a single descriptor.
Subscript a speci�es if the detractor
�eld is for the �nger motions �f � or
the reaching movements �h�.

The weight of an ECVD for col-
lision avoidance is given by ri =
exp(−(vi − p)Th(vi − p)), where vi

is the position of the ith ECVD in the
local coordinate system, h is a vector of width parameters, and p is the �n-
ger tip position, as shown in Fig. 1. A suitable set of width parameters are
h = 2[w, l, l]T, where w and l are the width and length of the �nger respec-
tively.

The reaching and �nger movements react di�erently to edges and employ dif-
ferent types of basis functions cfi and chi for their potential �elds. For the �ngers,
the individual potential �elds are logistic sigmoid functions about the edge of
each ECVD of the form ρ(1+exp(diσ

−2
c ))−1, where di =

∥∥(p− vi)− ei(p− vi)Tei

∥∥
is the distance from the �nger to the edge, ρ ≥ 0 is a scaling parameter, and
σc ≥ 0 is a length parameter. Di�erentiating the potential �eld results in a
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force term of cfi = ρ exp
(
diσ

−2
c

) (
1 + exp

(
diσ

−2
c

))−2. As the logistic sigmoid is
monotonically increasing, the repelling always forces the �ngers open further to
move their tips around the ECVDs and thus ensure that they always approach
the object from the outside. Similarly, a symmetrical potential function can be
employed to force the hand closed when near ECVDs pertaining to obstacles.

The reaching motion uses basis functions of the form % exp(−0.5dT
i diσ

−2
d ),

where di = (q−vi)−ei(q−vi)Tei is the distance from the end e�ector position,
q, to the edge, and % ≥ 0 and σd ≥ 0 are scale and length parameters respectively.
Di�erentiating the potential with respect to di gives a force term in the Y
direction of chi = %(di.Y)σ−2

d exp(−0.5dT
i diσ

−2
d ), which can be interpreted as a

radial force from the edge with an exponentially decaying magnitude.
To synchronize the repelling �eld with the DMPs and ensure the repelling

strength is zero at the end of a motion, the strength s is coupled to the canonical
system of the DMPs. Hence, s(x) = (

∑M
j=1 ψj(x))−1

∑M
i=1 ψi(x)wix, where x is

the value of the canonical system, ψ are the DMP basis functions, and w specify
the varying strength of the �eld during the trajectory. To re�ect the human ten-
dency towards more precise movements during the last 30% of a motion [28], the
strength function was set to give the highest strengths during the �rst 70% of the
motion for the reaching trajectories, and the last 30% for the �nger movements.

The repelling �elds of both the grasping and reaching components have now
been de�ned, and can be superimposed into the DMP framework as

ÿ =
(
αz(βzτ

−2(g − y)− τ−1ẏ) + aτ−2f(x)
)
− τ−2ua,

which then represents the complete ECVD and DMP based potential �eld.

2.3 Generalizing Dynamical Motor Primitives for Grasping

Fig. 4. Examples of di�erent approach
directions are presented, all based o� of
a single human demonstration.

Having de�ned the potential �eld for a
single grasping motion, we must gen-
eralize the movements to new target
grasps. By interpolating the trajec-
tories in a task-speci�c manner, the
number of example trajectories re-
quired from the demonstrator for im-
itation learning can be greatly de-
creased. While the goal states of
DMPs can be set arbitrarily, the ap-
proach direction to the grasp cannot
be easily de�ned and the amplitude
of the trajectory can be unnecessarily
sensitive to changes in the start posi-
tion y0 and the goal position g.

The correct approach direction
can be maintained by using a task-
speci�c coordinate system. We pro-
pose the Xp-Yp-Zp coordinate system
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A. Flat B. Slanted C. Cylindrical Handle

D. Arched Handle E. Knob F. Extreme Point

Fig. 5. Pictures A and B show the system adjusting to di�erent plane angles. Images
C and D demonstrate the preshaping for di�erent types of handles. Picture E shows
the preshaping for a circular disc structure, such as a door knob, and manages to get
its �ngers closely behind the object. Picture F shows a preshape where the object was
too far away to be reached by two of the �ngers, but still hooks the object with 1 �nger.

shown in Fig. 2, which dedicates one axis xp speci�cally to the approach direc-
tion. The majority of the unobstructed reaching motion will lie in a plane de�ned
by the starting point, the goal location, and the �nal approach direction, which
we use to de�ne our second axis yp. The �nal axis zp is given by zp = xp × yp.

The second problem relates to the sensitivity of scaling motions with ranges
greater than ‖y0−g‖, which grasping motions require to move around the outside
of objects. The system can be desensitized to variations in y0 − g by employing
the amplitude term a = ‖η(g − y0) + (1− η)(gT − y0T )‖ instead of the standard
a = (g−y0) [16], where gT and y0T are the goal and start positions of the training
data respectively, and η ∈ [0, 1] is a weighting hyperparameter that controls how
conservative the generalization is. By taking the absolute value of the amplitude,
the approach direction is speci�ed solely by the choice of Xp-Yp-Zp coordinate
system and not the amplitude term. This amplitude term is a generalization of
the amplitude proposed by Park et al. [12], which corresponds to the special case
of η = 0. Example interpolations of a transportation trajectory can be seen in
Fig. 2.

3 Grasping Experiments

The methods described in Section 2 were implemented and evaluated on a real
robot platform consisting of a Videre stereo camera, a Barrett hand, and a 7-
degrees-of-freedom Mitsubishi PA10 arm, as shown in Fig. 1.

3.1 Grasping Experiment Procedure

To test the system's obstacle avoidance ability, the robot was given the task of
grasping an object without hitting surrounding clutter (see Fig. 1). Each trial
begins with an estimate of the pose of the object relative to the robot [30] and
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setting the desired grasp location. The model's ECVD are then projected into
the scene, and the robot attempts to perform the grasp and lift the object o�
the table.

If the hand collides with an obstacle or knocks the object down during its
approach, the trial is marked as a failure. Grasp locations on the object were
prede�ned, and all successful trials had to lift the object from its stand (see
Fig. 3). After each grasp attempt, the hand reverses along the same approach
direction, but with a static preshaping of the hand in order to determine if
collisions would have occurred if the proposed controller had not been used. The
experiment consisted of 50 trials and were varied to include di�erent approach
directions and locations around the object.

Additional trials were performed on another object to further explore how the
system's preshaping ability adapts to di�erent object geometries. The clutter was
removed in these trials to demonstrate the range of grasps that a single human
demonstration can easily be generalized to.

3.2 Experimental Results

A. Preshaping

B. Grasping

Fig. 6. The preshaping allows for more
controlled grasping. (A) The preshape
has matched the local geometry of the
object. When grasping, the two �ngers
on the left immediately pinch the pad-
dle, while the �nger on the right turns
the paddle about the pinched point. (B)
The grasping ends when the paddle has
become aligned with all three �nger tips.

The repelling �eld and preshaping of
the hand allowed the system to han-
dle the cluttered environment that the
object had been placed in, which was
not a trivial task. The hand came
into contact with the clutter for an
estimated 8% of the grasp attempts,
but never more than a glancing con-
tact. When the proposed controller
was deactivated and a static preshape
was used, the hand collided with one
or more pieces of clutter in 86% of
the trials. Thus, the proposed sensor-
based controller led to a factor of ten
decrease in the number of contacts
with the clutter. The few instances
when the hand did collide with the
obstacles were the result of obstacles
being partially occluded, and thus not
fully represented by the ECVDs. This
problem represents the main restric-
tion of the current method, which can
be overcome by simply using multiple
views to accumulate the ECVD rep-
resentation of the scene, as described
in [19, 20]. The repelling �elds of the
�ngers ensured that the hand always
opened su�ciently to accept the object without colliding with it.
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Using only a single human demonstration, the robot could perform a wide
range of reaching movements with varied approach directions, as demonstrated
in Fig. 4. Requiring fewer demonstrations hastens the imitation learning process,
while still allowing the robot to perform smooth and natural reaching motions.

The incorporation of ECVDs allowed the �ngers to adapt to a wide variety
of di�erent object geometries, as shown in Fig. 5, and place the �nger tips very
close to the object before applying the grasp. This close proximity to the object
restricts how much the object can move during the �nal grasping phase, as the
�ngers make contact with the object at approximately the same time, and leads
to grasps being applied in a more controlled manner. An example of a controlled
grasp is shown in Fig. 6, which would not be possible without the proposed
preshaping, as the �nger on the right would have made �rst contact with the
paddle and simply knocked it down.

The results ultimately show that our hypothesis was correct and the proposed
methods represent a suitable basis for avoiding obstacles without relying on a
complicated path planner, and using only stereo vision information.

4 Conclusions

The proposed methods augment dynamical system motor primitives to incor-
porate Early Cognitive Vision descriptors by using potential �eld methods, and
represent important tools that a robot needs to execute preshaped grasps of an
object in a cluttered environment using stereo vision. The techniques allow for
preshaping the �ngers to match the geometry of the object and shaping the tra-
jectory of the hand around objects. The controller was tested on a real robot,
and was not only successful at performing the task, but also requires very few
demonstrations for imitation learning, improves obstacle avoidance, and allows
for more controlled grasps to be performed.
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