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Abstract—The 2011 Planetary Science Decadal Survey identified
making significant progress towards Mars sample return (MSR)
as a top priority for NASA, where a three-mission concept for
MSR is currently being investigated. The Mars 2020 mission is
intended to collect samples which will be sealed in tubes and
left on the surface for potential return to Earth by a future
mission. This paper studies the problem, autonomous pick-up
of sample tubes using a monocular camera attached to a robot’s
end-effector. We estimate the pose of the tube and the gripper in
a single image where both are visible, and compute incremental
arm motions based on the relative transformation between the
tube and the gripper. To estimate the pose of the tube in the tool-
camera frame, we suggest an online sampling-based approach
using image gradients in a coarse-to-fine framework. In order to
reduce the search space, we employ a biased sampling strategy
based on the target shape and projective geometry, and learn
promising sampling regions on the fly. Our experiments demon-
strate the effectiveness and efficiency of our strategy toward
precise Martian sample retrieval.
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1. INTRODUCTION
The NRC’s Planetary Science Decadal Survey identified
making significant progress towards Mars sample return
(MSR) as the top priority long- term goal for NASA [1], and
this was endorsed by NASA’s Mars Program Planning Group
(MPPG) [2]. The Jet Propulsion Laboratory (JPL) is currently
investigating a three-mission concept for the potential MSR
[3]. The Mars 2020 rover will core and collect about thirty
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promising rock and soil targets. These samples will be
hermetically sealed in the tubes and deposited on the Martian
surface for potential return to Earth. In the current concept, a
potential future mission, with a sample retrieval lander (SRL),
would collect the sample tubes and load them into an Orbiting
Sample (OS) payload in a Mars Ascent Vehicle (MAV). The
MAV would release the OS into Martian orbit, which could
then be collected by a third mission, a Sample Return Orbiter
(SRO). Once returned to Earth, these samples would be
studied by scientists in laboratories with special room-sized
equipment that would be too large to take to Mars. This would
help them to answer fundamental questions concerning signs
of past life or the modern Martian environments as habitats.

The presented work is a continuation of the efforts to demon-
strate robust and repeatable retrieval of a sample tube from
a Mars-like environment for potential MSR ([4] and [5]).
While the study presented in [4] served as an initial overall
proof-of-concept, the work by Papon et al.[5] focused on
localizing the tubes in the visual field of a stereo camera fixed
on the robot’s chassis or mast. This study refines Papon’s
solution by parameterizing tube pick-up with images captured
with a camera attached to the robot’s end effector (toolcam).
Given an approximate 3D location of the tube from the mast
or chassis stereo camera, the toolcam can be posed to capture
both the tube (on the ground) and the gripper (attached near
the toolcam) in very near sight. Although 3D pose inference
from monocular vision is inherently difficult, using a toolcam
guarantees no occlusion by parts of the manipulator as well
as minimal calibration errors.

In this paper, we present a study of 3D pose estimation of
sample tubes via online sampling using a monocular cam-
era attached near the end-effector. Unlike the conventional
approach that prepares a large pre-defined set of templates
or models associated with 3D poses, we exploit a geometric
prior for constrained sampling online, and learn the distri-
bution of promising poses on the fly for further improved
sampling. Thus, our approach avoids problems that occur
with offline training techniques, such as extensive compu-
tation and overfitting to the training data. To this end, we
explicitly approach the problem in a coarse-to-fine fashion
using multiple resolutions of image. The overall framework
will be applicable to alternative implementations of details
(for example, the choice of features) for potential extended
studies on vision for grasping the sample tubes.
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Figure 1. (Top-left) The MSTT platform, (Top-right) the
toolcam at the end-effector, and (Bottom Rows) examples of

tube images taken from the camera.

2. MISSION CONCEPT & TEST PLATFORM
As mentioned in [5], localizing and grasping sample tubes
would require a considerable amount of time if accomplished
by a remote human operator. To understand the time com-
mitment, the current estimate of sample drilling operation
is at least five Martian sols to execute since commands of
the rover are only sent once per sol. If one assumes that
retrieving a sample tube requires as much human intervention
as a drilling campaign, retrieving thirty sample-tubes would
require nearly half a year. If human intervention could be
removed, then sample-tubes could potentially be recovered
in a single sol. Automated caching could greatly accelerate
the Sample Retrieval Lander (SRL) mission concept timeline
and thus save other resources.

Localization of the rover and the sample-tubes is critical in
enabling the automation. As in [5], we assume that the global
positioning of the rover is obtained to one-meter-accuracy.
Also, it is assumed that centimeter-accurate localization of
tubes can be achieved by either a feature-based visual lo-
calization method or direct stereo observation as suggested
in [5]. However, considering the commonly faced issue of
camera-arm calibration errors and self-occlusions, accurate
visual detection by a mast- or chassis-mounted camera may
not lead to successful grasping. Hence, we see the need to
investigate pose estimation using a toolcam.

Our problem is structured in the following way: First, the
3D models of the tube and the gripper are known since they
are designed by the mission. Second, an initial pose estimate
is given by the mast- or chassis-mounted stereo camera.
Our aim is to build a visual pose estimation algorithm that
exploit an image from the toolcam and a pose prior from the
mast/chassis camera. The resulting output of this study will
inform robotic grasp planning for sample tubes and can serve
as a baseline for potential extended studies as well, which will
be discussed in later section.

All data collection, developments, and experiments are done
using resources of the Mars Sample Transfer Testbed (MSTT)
platform at JPL (Fig. 1).

3. IMAGE-BASED 3D POSE ESTIMATION
Contrary to our intuition that knowing 3D pose of a cylinder-
shaped object would be easy, obtaining 3D information given
only a single 2D image is an ill-posed problem. In addition,
the bland shape of our target makes the problem challenging
as the lack of 2D and 3D features adds ambiguity in deter-
mining 3D pose. With additional data such as range or depth
observation, the difficulty could be alleviated. For example,
there exist global algorithms to solve 3D pose estimation
given enough time or computational resources [6].

Nevertheless, there have been much work on monocular 3D
pose estimation since the early years of computer vision;
there is strong motivation for this because stereo vision or
depth information is much more expensive and not always
available. Methods based on edge or line extraction [7]
can be beneficial for theoretical studies or industrial settings
where the background or light conditions can be controlled.
However, it is hard to compute those features robustly. Pose
estimation can be also regarded as a classification problem in
some applications, where a precise pose is not required (for
example, [8]). Yet, knowing pose in the 6DoF representation
is critical for 3D interactive applications such as grasping.

Most recent studies on 6DoF pose estimation for general
shapes learn a set of templates or a prediction model and find
the best solution within the trained model at the test time ([9]
[10] [11] [12] [13]). In general, off-line learning could easily
fail to generalize to unseen data. In fact, it is even impossible
to consider all feasible 3D poses, which is infinite, at the time
of training. Powered by large-scale datasets, recent data-
driven learning approaches look promising in dealing with
certain applications. However, the idea of compiling large-
scale data of sample-tubes on the Martian surface would not
be appropriate at this time. Even if we were able to collect a
reasonable amount of data, the problem of overfitting or bias
to the training data is still inevitable. In order to avoid the
inherent limitation of training a model, we suggest an online
sampling framework in which our knowledge of the task can
be encoded efficiently.

To this end, the feature selection will be critical as in any
learning problem. In this paper, we chose image gradient, one
of the most primitive image features. Despite its simplicity,
the image gradient can be a reasonably good feature—it is
very unlikely to have a random image on Mars that produces
a high correlation with the boundary image of a tube. Having
said that, the main contribution of the study lies on the high-
level framework, which can be extended and tested with other
sophisticated features.

Lastly, there have been efforts to solve vision and grasping
in a tightly combined framework. Visual servoing techniques
[14] [15] attempt to directly relate images with control inputs.
However, they basically require known correspondences of
a set of key-points defined on the target, which is hard to
obtain for the tube because it is textureless and symmetric.
An end-to-end learning approach for grasp control [16] would
be powerful, yet this is still restricted to relatively simple
lab environments under many assumptions. Also, it is not
clear how to incorporate available priors of the mission into
the approach. In this study, we focus on visual perception
to estimate the 3D pose of a sample-tube, which will be
followed by grasp planning to pick it up.
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Figure 2. (a) The hierarchical online sampling logic (b) Specific sampling strategies for each level: At the highest level

(l = L), it relies on a small set of templates to find 2D location. At the next level, the sampling region is constrained based on
geometrical priors such as camera projection and target shape together with the found 2D location. As more and more samples

are evaluated, the distribution of high-scored points can be learned and used for improved sampling.

4. POSE ESTIMATION VIA ONLINE SAMPLING
This study explicitly exploits a hierarchy of visual resolutions
in pose sampling. Our method starts from a coarse 2D
template matching and continues to sample 3D poses for
higher resolution images based on online information as well
as available prior knowledge.

Technical details will be described later in this section, but let
us give a sketch of how sampling is planned as the resolution
level propagates. At the very initial search, we only look for
2D clues of the tube location, i.e. the pixel coordinates (u and
v) and tilt (ψ) on the image plane. In a very low resolution,
the two-dimensional information becomes dominant and any
attempt to find details would be less meaningful. Considering
the uncertainty and noise of the measurement, we model the
2D variables as Gaussians, which are used to sample them.

Given the 2D samples, we consider sampling 3D poses at the
next level. A rough range of depth is known from visual
detection by the stereo camera of the platform. Then we
may sample z from a uniform distribution U [zmin, zmax].
The other 3D coordinates, x and y, of a pose sample can
be determined by the projective relation with u and v, given
camera parameters and the depth sample z. This allows
us to sample more likely points that are consistent with the
image observation. Also for orientation sampling, we take the
advantage of the projective geometry together with the Euler-
angle representation. The two Euler angles other than the
angle around the symmetry-axis must be correlated to appear
in a certain tilt angle ψ on the image. Thus, using the fact
that one Euler angle is dependent on another given ψ, we can
reduce one dimension for pose sampling .

After testing many samples, we may pick the best sample for
the estimate. However, there exists a trade-off between the
resolution and the number of samples: finer estimation can be
achieved in a higher resolution but a larger number of samples
is required, whereas fewer samples would work in a lower
resolution but only provide a coarser solution. Our strategy
for this is to learn the distribution of score over pose in order
to revisit the regions of high score later. This process can be
repeated for each level, and the sampling resolution can be
increased accordingly.

The idea of our hierarchical online sampling is illustrated in
Fig. 2. Now let us present a more technical description of our
method.

Problem Statement

Our goal is to estimate the 3D pose of the tube, including
rotation R and translation t, from an image observation I .
Its 3D shape model and the camera parameters are available
in advance, which allows us to render a tube image given a
pose. Let us call a rendered image Ih using a pose hypothesis
h ∈ SE (3 ), a feature extraction function of an image f(I),
and a score function of two inputs s(·, ·). Then, we may write
the problem as follows,

R̂, t̂ = arg max
R,t∈SE(3)

s(f(Ih), f(I)). (1)

With this in mind, our implementation adopts the magnitude
of image gradient G as the feature f(·), and the image
correlation corr(·, ·) as the score function. Then, we can
rewrite Eq. (1) as,

R̂, t̂ = arg max
R,t∈H

corr(Gh, G). (2)

where H is a subset of SE (3 ). Since there is no analytic
way to express the cost function, we evaluate the score
by sampling. In theory, it is possible to obtain a solution
close to the optimal as we infinitely increase the number of
samples (as far as the score function reflects the actual score).
However, in practice, we must restrict the search range to a
certain set of hypothesesH as well as the number of samples.
Thus, in this problem, it is important how to define the pool
of sample poses H. The rest of this section discusses our
coarse-to-fine strategy to obtain a good set ofH.

Initial Search

We build a pyramid of gradient images {G0, G1, ...GL},
where L represents the top level of the pyramid. For the
highest level, l = L, we prepare a small set of templates
{GLh} from a predefined set of poses HL for the initial 2D
localization on the image. Specifically, {GLh} are a set of
cropped tube images where the target is centered and rotated
5 degrees around the optic axis of the camera while other
dimensions are fixed, including depth. The image size is
reduced up to 48 × 30 (pixels), and what is important at this
coarse resolution is only u, v, and ψ on the image.

The best estimate is obtained by template matching based on
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the image correlation criteria:

(û, v̂, φ̂) = arg max
g∈{GL

h}
corr(g,GL). (3)

Then, we model the variables as Gaussians with a covariance
corresponding to the resolution of image and templates.[ u

v

]
∼ N

([ û
v̂

]
, R>(ψ̂)ΣR(ψ̂)

)
ψ ∼ N(ψ̂, σψ)

. (4)

Geometry-constrained Sampling

After obtaining a rough 2D location of the tube (Eq. (4)),
we sample poses within its neighborhood for the next level.
Instead of naively sampling uniformly on SE (3 ), we impose
known projective geometric priors to bias the sampling.

First, z ∼ U [zmin, zmax], and x and y can be simply
computed as x = (u− cx)z/fx and y = (v− cy)z/fy where
fx and fy are the camera focal lengths of the x- and y-axis,
and cx and cy are the image center.

Next, let θ = [ θ1 θ2 θ3 ] be the Euler angle represen-
tation of the orientation of the tube, where θ3 is the angle
around the symmetry-axis. A derivation of the second angle
θ2 as a function of other variables can be found in Appendix.
The resulting model can be written as,

θ2 ∼ N(θ̂2(θ1, ψ, [ x y z ]) + sπ, σθ). (5)

where s ∼ Ber(0.5) represents the flip between 0 or 1 ac-
cording to the Bernoulli distribution, and σθ is the uncertainty
parameter.

Online Learning for Improved Sampling

Having evaluated many samples, we get statistics of which
regions may give higher scores. We use a radial basis function
(RBF) network [17] with the squared exponential (Gaussian)
nodes to capture this tendency of the score distribution over
the pose domain. We chose this function in order to use it as
a Gaussian mixture model to generate samples after learning.
The i-th node of the network can be written as,

φi(x|µi , σ) = exp(−||x− µi ||2

2σ2
) (6)

where x is the input of the network, and ŝ =
∑
i wiφi(x)

is the scalar output. The network is learned to minimize the
squared loss with the L1 regularizer,

L = (ŝ − s)2 + λ
∑
i

|wi |. (7)

The means µi are randomly initialized from the same distri-
bution used for sampling, and weights are uniformly initial-
ized (wi = 1/N). The parameters are updated via stochastic
gradient descent with a scheduled learning rate. The spherical
variance parameter is used for σ and it is not learned to
avoid overfitting. The regularization plays a role to force
the network to have a sparse set of dominant nodes. After
learning, nodes with small weights are removed and new
nodes are regenerated from the major nodes with added noise.
When used for sampling a pose, a Gaussian unit is randomly
chosen by the normalized weight of the node and a pose is
sampled from that Gaussian.

5. EXPERIMENTAL RESULTS
We collected a set of tube images and also generated ground
truth poses for a subset of it (24 images) by manually adjust-
ing the 3D rendered model on the images for evaluation. The
depth of the tube from the toolcam was kept within range of
18 to 25 cm and severe occlusions were not considered at this
point of the study. Our implementations were written in C++
using OpenCV and OpenGL libraries. The Contrast Limited
Adaptive Histogram Equalization (CLAHE) algorithm [18]
was used in the preprocessing step to enhance the gradient
quality under different light conditions. We extracted the
binary boundary image of the tube mesh model rendered
using the OpenGL shader for a sampled 3d pose. Lighting
effects or other edge features are not considered for the
rendering.

In the tests, we compared the following three methods: (1)
naive uniform sampling, (2) geometry-constrained sampling
(without learning), and (3) geometry-constrained sampling
with learning. We examined the all scores of samples gen-
erated by each method, the scores of final estimates, and
the pose errors of the estimates. As mentioned earlier, the
image correlation is used as the score (OpenCV matchTem-
plate() with the option method=”CV TM CCORR”). Since
each sampling method includes random factors, all tests are
repeated ten times and the statistical performance is reported.
We also varied the number of samples to see the estimation
performance.

All methods started from initial template matching with the
image size reduced to 48 × 30 (l = L). The number of
templates were 72 and the entire initial step took only 10
msec. After the initial search, the suggested method (method
(3)) sampled initial 3000 images of 240× 150 (l = L− 1)for
learning the score distribution and then moved to 480 × 300
(l = L− 2) for the rest. Other methods (methods (1) and (2))
sampled images of 480×300 for a fair comparison. Although
we considered three levels (L to (L − 2)), the learning-and-
sampling scheme could be extended to higher resolutions and
higher dimensions. Since it is usually difficult to deal with
high dimensional data, we limited the dimension to four (
x, y, z, and θ1) in order to better observe the behavior and
performance of the method. Hence, θ2 was determined by
the geometry-constrained sampling, and θ3, which appeared
ineffective to the score in most cases, by uniform sampling.

Score Distribution

Fig. 3 shows the histogram of scores of all test instances for
each method, and it demonstrates that geometry-constrained
sampling with online learning (Geo-OL) actually produced
samples of better quality than the uniform sampling (Unif)
and the geometric-sampling without online learning (Geo).
The stretch of the tail of ’Geo-OL’ toward higher scores
results in higher chances of getting better samples in every
trial. Note that the scores are normalized by the maximum
correlation score of the corresponding image because the
absolute value differs from image to image. Each trial returns
a best estimate that has the maximum score among its sample
pool, and Fig. 4 shows the result distributions of the best
scores from all trials with 5k and 20k samples respectively.
Obviously we observed that, as the number of samples is
increased, it is more likely for a best score of one trial itself
to be larger for all methods.

So far, we have validated that Geo-OL produces samples
of higher score than the other two methods. Let us now
investigate the performance in terms of 3D pose.
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Figure 3. Histogram of Sample Scores for Each Method:
This shows an example of sample score distributions for all

test instances. (The y-axis is relative frequency.)

Figure 4. Maximum Score: The maximum sample score
distributions for all trial with 5k samples (Up) and 20k

samples (Down). (The x-axis is normalized score, and the
y-axis is relative frequency.)

Figure 5. 3D Center Position and Orientation Errors: The
numbers indicate the median values. (Note for boxplot: The
red center line indicates the median, the box indicates 25 to

75%, and the whiskers indicate 1 to 99% of the data.)

Figure 6. Position Error in Depth (Z) and X-Y: : The
numbers indicate the median values.

Pose Accuracy

We evaluated the pose error of the estimates—the aim of this
work is to estimate the 3D pose of the tube. In general, it is
not easy to define what would be a proper measure for 3D
pose error. In our application, the center of the tube can
be be the target point of grasping. In addition, the angle
around the major axis (θ3) would not affect much for the
grasping task. Therefore, we chose the squared distance
of the center estimate and the ground-truth center, and the
angular distance between the estimate of major axis and the
ground-truth major axis of the target, for the evaluation of
pose error.

Fig. 5 shows the boxplot of pose errors over all test images
with the varied number of samples. The median values
of error are indicated near the corresponding boxes. The
statistics are from ten independent trials. We can see the
suggested sampling method (red) resulted in the best perfor-
mance no matter how many samples are used. In addition,
the tendency of improvement is clear only for the suggested
sampling method (red) when the number of samples is in-
creased from 10k to 20k; Both the uniform samples (gray)
and the geometry-constrained sampling (blue) do not show
this tendency, meaning that it is unlikely to obtain a signif-
icant improvement simply by having more samples. When
examining the position error in depth (z) and 2D (x-y) as
shown in Fig. 6, we found the main portion of position
error is the depth component, which is not surprising for
monocular vision. This 3D analysis of uncertainty, including
the numbers and the directional tendency, can be used for
grasp planning.

6. DISCUSSION AND FUTURE WORK
Some examples of the boundary image from a pose estimate
are displayed in Fig. 7. Two test instances are shown, and
each one is arranged in three rows: one for uniform sampling
(row (a)), another for geometry-constrained sampling (row
(b)), and the last for geometry-constrained and learned sam-
pling (row (c)). Each column represents a different trial for
the same image instance. Although the projected major axis
is well aligned in most cases, we can see that the head and tail
of the estimate are often off from the actual image. This sticks
out in the cases of uniform sampling, (a)’s. From this we can
visually see that the naive method results in poor samples. It
is hard to tell that (c) shows better performance than (b) only
from this small subset of arbitrary visual results, but we have
seen from the quantitative analysis that the combination of
geometric constrains and learning improved the probability
of sampling better poses.

It will be interesting to extend the suggested method to multi-
level progressive learning and sampling. Considering that
only the first 3k samples are used for learning to obtain
the results reported in the previous section, the performance
could be improved if it continues to learn from all samples.
Also when it becomes confident enough, a local optimization
for refinement could be applied for best candidate samples.

There are many potential issues that we could not directly
address in the study. For example, it did not cover strate-
gies for adversarial background textures, but assumed that
the boundary gradient is informative enough to discriminate
the tube from the background. However, the conventional
structure-from-motion method can be used to infer 3D infor-
mation when there are distinctive textures in the image. This
study is more for when no strong texture is available in the
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Example 1

(a)

(b)

(c)

Example 2
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Figure 7. Visualized pose estimates for a subset of all trials using 10k samples for two arbitrarily chosen test examples: (a)
Uniform sampling, (b) geometry-constrained sampling (without learning), and (c) geometry-constrained sampling followed by

learned sampling. The rendered boundaries are highlighted in green-and-black double lines on the gray-scale images. (Best
Viewed in Color)

scene. Also, there could be occlusions of the boundary by
dust built over time. For this concern, a future study may
exploit the segmentation information from the stereo camera
in rendering of the boundary image, in order to reflect any
partial visibility of the target.

Lastly, pose estimation of the end-effector is assumed to have
done offline, and potentially manually. Since the end-effector
pose will be fixed as intended, we see no need to involve an
additional estimation problem for the task. In a preliminary
study, we were able to test grasping using the end-effector
pose obtained by the same way we generated the ground truth
poses of the test images.

7. CONCLUSION
Autonomous grasping of sample tubes on the Martian surface
would be a difficult task, but one that is desirable for recov-
ering all samples with a reduced amount of time and other
resources. In this work, we have presented a study on visual
3D pose estimation of the sample tube using a camera near the
end-effector of a robotic arm. Instead of involving any pre-
training models, we suggested and demonstrated a sampling-
based approach using an image gradient-based score in a
coarse-to-fine framework. In order to efficiently sample pose

hypotheses, our method encodes geometric priors into the
framework and employs an online-learning strategy. Our
experiments demonstrated the effectiveness and efficiency of
our strategy toward precise Martian sample retrieval.

APPENDIX
We summarize the derivation of θ̂2(·) in Eq. (5). Let zb =
[0 0 1]> be the unit vector of the tube along the major

axis, and θ be the Euler angle of the tube. We define a rotation
R(θ) as follows,

R(θ) = R(θ1, 1)R(θ2, 2)R(θ3, 3). (8)

Then the position of the vector’s tip can be expressed as, xl =
xc +R(θ)zb, where xc is the translation of the center.

Now consider the projection of xc and xl onto the image and
let us denote them as [uc vc] and [ul vl] respectively.
By the projective relation, uc = fx ·xc/zc and vc = fy ·yc/zc,
while ul and vl can be written as,

ul =
fx(xc + sin θ2)

zc + cos θ1 cos θ2
(9)

6



Predecisional information for planning and discussion only

vl =
fy(yc − cos θ2 sin θ1)

zc + cos θ1 cos θ2
. (10)

We define the 2D tilt angle ψ as tanψ = (vl−vc)/(ul−uc),
which can be rewritten using Eq. (9) and Eq. (10) as,

tanψ =
−yc cos θ1 cos θ2 − zc cos θ2 sin θ1
−xc cos θ1 cos θ2 + zc sin θ2

. (11)

From this, given θ1, xc, and ψ = ψ0, we can derive θ2 as a
function of the variables. Specifically,

cos2 θ2 =
z2c

a2 + z2c
, (12)

where a = xc cos θ1−tanψ0(yc cos θ1+zc sin θ1). By taking
a square root followed by arccos for both sides, we finally
have,

θ̂2 = arccos

√
z2c

a2 + z2c
. (13)

Note that in fact there exist four solutions of θ2 in Eq. (12):
±θ′2 and ±θ′2 + π where θ′2 is a solution such that 0 ≤ θ′2 <
π/2. After first computing θ′2 from Eq. 13, we can decide the
sign by checking the angle consistency with Eq. 11. Then we
may determine whether to add the π term or not based on the
Bernoulli distribution.
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