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Abstract. State-of-the-art methods for estimating the pose of space-
crafts in Earth-orbit images rely on a convolutional neural network ei-
ther to directly regress the spacecraft’s 6D pose parameters, or to local-
ize pre-defined keypoints that are then used to compute pose through a
Perspective-n-Point solver. We study an alternative solution that uses a
convolutional network to predict keypoint locations, which are in turn
used by a second network to infer the spacecraft’s 6D pose. This formu-
lation retains the performance advantages of keypoint-based methods,
while affording end-to-end training and faster processing. Our paper is
the first to evaluate the applicability of such a method to the space do-
main. On the SPEED dataset, our approach achieves a mean rotation
error of 4.69° and a mean translation error of 1.59% with a throughput
of 31 fps. We show that computational complexity can be reduced at the
cost of a minor loss in accuracy.
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1 Introduction

Space agencies and the private sector are showing a growing interest and de-
mand for missions that involve proximity operations, such as on-orbit servicing
(repairing, refuelling, inspection) or space debris mitigation. While some of those
missions conduct proximity operations via tele-operation, the consensus is that
autonomous operations are safer and cheaper, which in turn motivates the devel-
opment of guidance systems that allow a spacecraft to navigate by itself at close
range of its target. A key component of this capability is to estimate on-board
the 6D pose, i.e. position and orientation, of the target spacecraft.

In terrestrial applications, 6D pose estimation is often achieved with the help
of a Lidar or depth camera. Unfortunately, the cost, mass and power require-
ments of space-grade Lidars are obstacles to their integration in an orbital probe.
As a result, there is a strong interest in solutions that rely solely on cameras,
and in particular on a single monocular camera.

To deploy monocular pose estimation on orbit, multiple challenges must be
overcome. Orbital lighting conditions are very different from those encountered
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Fig. 1. Overview of the existing methods to estimate a spacecraft’s pose. (a) Direct
methods use a convolutional neural network to directly predict the target 6D pose. (b)
Keypoints-based methods exploit a convolutional neural network to predict pre-defined
keypoint coordinates which are then used to recover the pose through a Perspective-
n-Point (PnP) solver. (¢) Our solution combines both methods as it relies on a first,
convolutional, neural network to extract the coordinates of pre-defined keypoints and
a neural network to predict pose from those coordinates. The solution is therefore both
keypoints-based and end-to-end trainable.

on Earth: the lack of atmospheric diffusion causes extreme contrast between
exposed and shadowed surfaces. This problem is further exacerbated by spec-
ularity: the absence of dust contamination maintains the specularity of clean
metal surfaces. In addition, spacecraft design often includes near symmetrical
shapes, which requires us to resolve symmetry ambiguities from relatively subtle
features. Finally, pose estimation must be carried out using the limited resources
offered by space-grade hardware [BISITT].

Traditional pose estimators have struggled to overcome the challenges listed
above [30]. Recently, as for terrestrial applications, significant improvements have
been brought by the use of deep convolutional neural networks [28]. In space
robotics, CNN pose estimators generally adopt one of the two following strate-
gies. The first strategy, depicted in Figure (a), trains a model that directly
regresses the 6D pose of the target from a camera image [22I28]. The mapping
from image data to 6D poses is subject to no constraints other than the model’s
loss function, and the inductive bias of classical CNN layers. By contrast, the
second type of model, depicted in Figure b) uses CNNs to predict image key-
points, often set in pre-defined locations on the object [BIT6I2TI912], and adopts
an iterative solver such as RANSAC-PnP to turn the keypoints into pose pa-
rameters. Despite its attractive end-to-end form, the direct-regression approach
(a) generally under-performs compared to the second, keypoint-based, solution
(b) 7.

In this paper, we consider a third strategy, depicted in Figure c). Here,
a neural network replaces the iterative solver. This network estimates the tar-
get’s pose from the keypoints predicted by the upstream CNN. This approach
enables the end-to-end training of both networks from a loss of direct interest
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Fig. 2. Framework overview. The high-resolution input image is processed by an Object
Detection Network to detect a Region-Of-Interest. The region is fed into a Keypoint
Detection Network that regresses multiple candidate locations of K pre-defined key-
points. Finally, a Pose Inference Network computes the spacecraft 6D pose from those
candidate locations.

for the spacecraft pose estimation task instead of a surrogate loss. Furthermore,
as the iterative solving required by RANSAC-PnP is replaced by an inference
through a network that can be parallelized, the proposed method is faster than
its PnP-based counterpart. A similar strategy has been tested successfully on
terrestrial images of natural objects in [I4]. Our work is the first to explore its
applicability to images of satellites and spacecrafts orbiting the Earth. We study
the relationship between model complexity and pose accuracy, and we validate
our work on the standard SPEED [29] dataset.

The rest of the paper is organized as follows. Section 2 presents our method.
Section 3 introduces our validation set-up, and presents the results of our exper-
iments. Section 4 concludes.

2 Method

Figure [2| depicts our spacecraft pose estimation framework. The input image
goes through an Object Detection Network (ODN) that outputs a square re-
gion forming a minimal bounding box around the object. Then, this region is
processed by a Keypoint Detection Network (KDN) that predicts multiple can-
didate pixel coordinates for K pre-defined keypoints. Finally, we map keypoint
coordinates to the spacecraft’s 6D pose with a neural network that we refer to
as the Pose Inference Network (PIN).

This section discusses the KDN (Section and PIN (Section [2.2), as well
as the approach we followed to train these two networks jointly (Section .
We assume that object detection is carried out with one of the many solutions
previously discussed in the literature [BI2TJTI923] and discuss it no further. In
Section 3] we limit the scope of our evaluation to the KDN and PIN, and use
ground truth bounding boxes.

2.1 Keypoint Detection Network

The Keypoint Detection Network used in this paper was originally proposed by
Hu et al. [15] to predict the locations of K pre-defined keypoints in natural and
terrestrial images. As depicted in Figure [3| this network consists of a backbone
and two heads. The first head performs a segmentation task that separates the
spacecraft from the background (empty space or Earth’s disk) while the second
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Fig. 3. Architecture of the Keypoint Detection Network [15]. It is made of a backbone
and two decoding heads. The first head performs a segmentation of the spacecraft while
the second head regresses candidate locations of some pre-defined keypoints. Dashed
lines represent skip connections [25].

Fig. 4. Illustration of some offsets predicted by the KDN. (x],f,yff) are the ground-truth
coordinates of the keypoint k. (x;;,y:;) are the coordinates of the center of a patch.
This patch predicts an offset (xfj, yfj) pointing toward keypoint k.

head predicts one composite field, f, for each 3D keypoint. Each cell of these
composite fields encodes a 2D vector that points to the location of the associated
keypoint, and a parameter that models the confidence associated to this offset.

The width/height of the maps produced by either head of the network are
an eighth of the width/height of the input image. The segmentation stream
outputs a map that predicts, for each cell, whether the corresponding 8 x 8
patch in the input image belongs to the foreground or the background. The
fields f € RE*3XWXH yegressed by the second head can be represented over the

output map as:
k

E ,k k
ij — [wij»yijvcij] (1)
where i and j index the output feature cell over the feature map height H and
width W respectively, and 1 < k < K denotes the keypoint index. As depicted
in Figure [ = and y denotes the coordinates of the vector pointing from the
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center of the cell to the keypoint location while ¢ is the confidence of cell in its
prediction.

In summary, the KDN fulfills three tasks: (a) Segmentation of the spacecraft,
(b) Offsets prediction on predefined keypoint locations, (¢) Confidence estima-
tion on the accuracy of these predictions. Following Hu et al. [I5], we model
these three tasks with three loss functions respectively denoted by Lgcg, Lipts
and Lcons, and we train the KDN with a loss written as

EKDN = 5seg£seg + katsﬁkpts + ﬂconfﬁconfa (2)

where Bseg, Brpts and Beons are numerical parameters that weight the contribu-
tion of each task in the KDN.

Fig. 5. Computation of pseudo ground-truth segmentation masks. left: Keypoint co-
ordinates may be computed by projecting the spacecraft model on the image plane
according to its relative pose. middle: Body Edges are directly computed from the
body keypoints while antennas may be approximated as a straight line segment be-
tween their corresponding keypoint and their basis on the spacecraft body. right: The
approximate segmentation mask can be recovered by filling in the body parts.

We define the segmentation loss L., as the Binary Cross Entropy between
the predicted segmentation map and the ground-truth segmentation mask [I5].
As SPEED [29] does not contain segmentation masks, we define approximate
segmentation masks from the known keypoint coordinates as depicted in Figure

The keypoint loss Ly,+s is the term associated to the mean error between the
predicted keypoint coordinates and their ground truth, computed only in offset
map locations that belong to the foreground, M. Let Afj denote the prediction

error of the k' keypoint from cell (4, j)’s location, with

A = \Jlwy + ok — )2+ (g + k- b2, (3)

where (x;;, y;;) are coordinates of the center of the patch of the input image
that corresponds to cell (i, j) in the output map, and (2%, y*) are the coordinates
of keypoint k& in the input image. We define the keypoint loss as the sum of all
prediction errors [I5], with

11 S 4
kpts—K|M| Z Z g ()

(i) eM k=1
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Finally, we design the confidence loss L.on¢ to control the training of the
confidence map prediction. As in previous work [I5], this is done by adopting a
MSE loss to ensure that the confidence map fits a decreasing exponential of the
offset approximation error. Formally,

K
_ 1 1 k —r AR (2
£conf = ? |M| ( Z Z(C” — e ZvJ) . (5)

i,j)eEM k=1

This network was evaluated on SPEED [I0], in conjunction with a RANSAC-
PnP pose solver, during SPEC2019 [I7] where it achieved the second best per-
formance. Unlike the SPEC2019 winner [3], the network is inherently resilient
to occlusions because it can predict the location of keypoints hidden or located
outside the image, via the predictions made by patches that are in the frame.
This relaxes significantly the constrains on the rest of the system and therefore
motivates its selection as a baseline for this paper.

2.2 Pose Inference Network

This section presents how the 2D keypoint location candidates are turned into
a 3D pose, using a neural network trained to convert 2D cues into 3D pose.
This gives the opportunity to make the pose prediction system end-to-end, but
requires a specific training for each target satellite and each camera intrinsic
parameters.

The Keypoint Detection Network computes W x H predictions of the location
of each keypoint. Among those predictions, those made by background cells
are highly uncertain. Hence, the second network only processes the predictions
made by foreground cells. Furthermore, since the input resolution of the second
network is fixed, we sample m predictions per keypoint out of the foreground
predictions.

Because each prediction associates a location on the 2D image with a 3D
reference keypoint, those predictions are referred as 2D-3D correspondences.
The 2D locations are predicted by the Keypoint Detection Network while the
3D keypoints are learned by the Pose Inference Network and implicitly encoded
in its weights. In the text below, we refer to the set of correspondences associated
to a single keypoint as a cluster. This term alludes to the typical clustered nature
of predictions around the keypoint’s ground truth position.

To infer the spacecraft pose from those clusters, we use the network proposed
by Hu et al. [14], as depicted in Figure |§|, where each prediction, under the
form of a 4 dimensional vector containing the patch center coordinates and
the predicted offsets ([z;;, yij, i:fj,g)fj]), is supplied as input to a MLP unit, in
charge of extracting a high-dimensional representation of the prediction. The
representations corresponding to a same keypoint are then pooled to obtain a
representation of the whole cluster. The spacecraft pose is computed through a
MLP fed by the representations of all clusters.

In order to train the network, we make use of the 3D reconstruction loss [32JI8/T4]
that captures the 3D-error made on all the keypoints between the estimated
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Fig. 6. Architecture of the Pose Inference Network [I4]. Local features are extracted
from every candidate location through a MLP which weights are shared across all
candidates and all keypoints. Those local features are then aggregated per keypoint
into a single representation. Finally, the final pose is inferred through a MLP fed by
those keypoint representations.

spacecraft pose and the ground-truth:

Lomv == S IRp, + )~ (Rp, + )]l (6)

=1

where R and R are the estimated and true rotation matrices, t and t are the es-
timated and true translation vectors, p, is the 3D coordinates of the it" keypoint
in the spacecraft 3D model and K is the number of keypoints.

2.3 Joint Training of KDN and PIN

Training a concatenation of the KDN and PIN with the PIN loss only is unlikely
to converge, because the output of the PIN can only make sense if its input con-
sists of keypoint predictions clustered around their ground truth. We therefore
train the model as follows: We first train the KDN alone, using the combined
loss described in section Next, we train a concatenation of the KDN and
PIN with all KDN weights frozen, using the 3D reconstruction loss described in
section Finally, we unfreeze the KDN weights and fine-tune both networks
jointly. Since both aim at complementary but different goals, the total loss must
represent both of them. We opt for a weighted sum of Lxpy and Lpyy:

Lot = LkDN + BposeLPIN (7)

3 Experiments

This section considers the on-orbit pose estimation task. Section discusses
the dataset and implementation details considered in the following. Section [3.2]
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assesses the proposed framework performance on the SPEED [29] dataset and
compares its performance with previous works. Section [3.3]studies how complex-
ity reduction affects the pose estimation accuracy. Finally, Section [3.4] presents
some ablation studies of the Keypoint Detection Network and the Pose Inference
Network.

3.1 Dataset and Implementation Details

In this section, we evaluate our framework’s performance on SPEED [29] and
compare it to previous works. SPEED was used in the Satellite Pose Estimation
Challenge (SPEC) [I7] that was organized in 2019 by the Advanced Concepts
Team (ACT) of the European Space Agency (ESA) and the Space Rendezvous
Laboratory (SLAB) of Stanford University. It consists of 15,000 synthetic images
and 305 real images. An OpenGL-based rendering pipeline was used to produce
the 1920x1200, grayscale, synthetic images depicting the target spacecraft at
distances between 3 and 40.5 meters. On half of them, random Earth images
were added. The synthetic images were post-processed with Gaussian blur and
Gaussian noise. The dataset is split into 12,000 images for training and 3,000
for testing. For each training image, the ground-truth pose label is provided
under the from of a translation vector and a unit quaternion that represents the
relative rotation between the camera and the target spacecraft [I7]. The real
images were produced in the Testbed for Rendezvous and Optical Navigation
(TRON) facility of SLAB [20].

80% of the training set was used to train the model while the model accuracy
was evaluated on the remaining 20%. Training was carried on a NVIDIA Tesla
A100 while inference was performed on a NVIDIA GeForce RTX 2080 Ti to
provide a fair comparison with previous works.

Two assumptions are adopted through the whole section.

— We have at our disposal a perfect Object Detection Network to crop the
input image from its initial resolution of 1920x1200 pixels to the KDN input
resolution, i.e. 608x608 pixels. In practice, we follow the process used in [21]
where the crop is taken as the smallest square containing all the keypoints
enlarged by 20% in inference or by a random percentage (from 0 up to 50%)
during training. In addition, both horizontal and vertical shifts of at most
20% of the crop size are applied during training.

— A wireframe model of the spacecraft is provided. Here, as SPEED does not
contain the spacecraft model, we used the one recovered by Chen et al [3].
In this model, the keypoints are defined as the 8 corners of the spacecraft
body combined with the top of the 3 antennas as depicted in Figure [5] (a).

The KDN backbone and decoding streams were pre-trained on Linemod [I512]
and then trained for 200 epochs using SGD with a momentum of 0.9 and a weight
decay of le™*. After a grid search, the initial learning rate was set to 5¢~2 and
divided by 10 at [50, 75, 90] % of the training. We used brightness, contrast
and noise data augmentation as explained in section [3.:4] After a grid search,
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Table 1. Our framework performance compared to previous works. Our two-network
solution achieves slightly better performance than the solution combining the first
network with a PnP strategy, at a higher throughput. It is also close to, but not yet
on par with, state-of-the art solutions. Values from [I5J2TJ4)16] are copied from their
original paper, or from [16] (indicated by the 1 in superscript).

Ours Previous works

Metric

e B g B B |Z

= = 2 Z = =

F @ : B OB g

o o = : =

Z 5 =
Complexity [M] 1 721 71.2 89.27 5.64 17627 [51.5
Throughput [fps] I EX! 23 127 ~70 0.70%  [18-35%
scoregsa |/] 1 [l0.098  |o0.112 0.02 [I7] [0.073  [0.012" [0.016-

0.018

mean Er, N [%)] 4 ][1.589 2.561 - 1.9 - -
median Er, N [%] | ||1.048 0.820 - - - -
mean Er [m] 1 flo.201  ]0.267 - 0.211  [0.0359 |-
median Er [m] 1 [l0.089  |0.078 - 0.124  [0.0147 |-
mean Eg [] 1 [[4.687  [|4.957 - 3.007 [0.728 |-
median Er [°] 1 [3.272 1.402 - 2,568  [0.521 |-

the loss hyperparameters were fixed to Bseg = 1, Bipts = 4, Beonf = 1, T =5
and Bpose = 1. Regarding the strategy used to select the K x m correspondences
out of the KDN predictions, we observed that selecting the correspondences as
the m most confident predictions per keypoint did not provide any improvement
compared to randomly sampling them from the predicted foreground mask. We
therefore adopted this second, simpler, strategy.

3.2 Comparisons with a PnP-based Solution and Prior Works

Table[[Jranks competing solutions according to three metrics: complexity, frames
per second, and pose accuracy. We define complexity as the number of param-
eters in a model. We opted for this definition because of its generality and
hardware-independence, by contrast to floating point operations which depend
on software implementation and hardware configuration. In addition to this def-
inition of complexity, we provide an empirical measure of complexity given by
the processing rate (FPS) of each model on a GeForce RTX 2080 Ti. The third
metric provided in Table [1| reflects pose accuracy. We follow the definition pro-
posed by ESA in SPEC2019, which is defined as a sum of normalized translation
and rotation errors [17]:
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N
1 , .
SCOTepSA = g [Eq(f)N + EI(%L)] (8)
i=1

The normalized translation error on image 7, Eéf’)N is defined by the following

equations where tii) and t® are the ground-truth and estimated translations,
respectively.
(&)

Eg,f)N = ‘ (f where E¥) = ’tgf) — ¢
y t*l ‘

)

2
2

For each image i, the rotation error, in radians, between the predicted and
ground-truth quaternions is computed as:

Eg) = 2arccos (’<qf), q(i)>D (10)

where qf) and ¢() are the ground-truth and estimated quaternions, respectively.

As highlighted by Table [I| our solution, which combines a Keypoint Detec-
tion Network with a Pose Inference Network, achieves a pose estimation accuracy
similar to the one obtained when using a more classical RANSAC-PnP solver
applied on the keypoints detected by the same KDN. Furthermore, our solution
runs 34% faster than the RANSAC-PnP approach. However, even if both solu-
tions lead to a decent accuracy, they remain beyond the state-of-the-art methods.
Those preliminary results are promising, and demonstrate the relevance of study-
ing architectures composed of two networks when dealing with space imagesﬂ
Paths for improvements include joint end-to-end training of both networks, but
also end-to-end learning of keypoints, for example using an approach similar to
D2-Net [6].

3.3 Complexity Reduction

Although SPEC2019 showed that it was possible to accurately estimate the pose
of a spacecraft using a conventional camera and neural networks, it also high-
lighted the fact that those methods are often too complicated to run on space-
grade hardware [I7]. This section therefore evaluates the complexity-accuracy
trade-off of our framework. Because the PIN accounts for only 1.3% of the total
size of our model, we limit this section to a discussion of the complexity-accuracy
trade-off of the KDN.

Backbone Figure [7] summarizes the complexity-accuracy trade-off obtained by
6 different backbones (DarkNet-53 [24], ShuffleNet v2 [19], EfficientNet [31],
MobileNet v2 [27], MobileNet v3 small [I3] and MobileNet v3 large [13]). All
of them were pre-trained on ImageNet [26], except DarkNet-53 which was pre-
trained on Linemod [I2], and then trained on SPEED using the training strategy

4 The accuracy of our solution must still be measured on spaceborne images.
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Fig. 7. Complexity/accuracy trade-off for 6 different KDN backbones. The common
trend is that larger networks achieve lower errors on keypoint locations.

described in Section [3.1] Figure [7] reveals that the large version of MobileNet v3
offers the best trade-off among the selected architectures.

MobileNet v3 small, large and ShuffleNet offer interesting trade-offs. Mo-

bileNet v3 large offers a trade that contrast sharply with DarkNet, and it po-
sitions itself as a compromise between MobileNet v3 small and ShuffleNet. We
therefore chose to use it as an additional baseline.
Segmentation and Regression Heads. To further reduce the KDN complex-
ity, we may simplify the 2 decoding heads as it becomes relevant when using
most simple backbones. Each head is made of 3 stages that process the features
map at different spatial resolutions. Each stage is made of 3 blocks that imple-
ment depth-wise convolutions. To simplify the network, we simply decrease the
number of blocks in each stage.

Figure[§ summarizes the complexity-accuracy trade-off that occurs in a KDN
made of a large MobileNet v3 with a regression stream made of 3 stages composed
of 1,2 or 3 blocks and a segmentation stream made of 3 stages composed of 1,2
or 3 blocks.

We draw the following conclusions:

— Adopting a single block per stage in the segmentation head reduces by 30%
the number of total parameters without impacting accuracy.
— Reducing the number of parameters in the regression head by a factor 0.65

k. by a factor 1.3, a trade that many

inflates the keypoint estimation error, Alj,

end-users are likely to consider worthy.

As a result, we decided to use a large MobileNet v3 with regression and
segmentation streams made of 3 stages composed of 2 and 1 blocks, respectively.
Such a network achieves a mean error of 2.05% on the keypoint locations while
using only 7.8 millions parameters. Compared to our first baseline, based on
DarkNet, which uses 71.2 millions parameters to reach a 0.67% accuracy, it
represents a solution that may fit on space-grade hardware while achieving a
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Fig. 8. Complexity/accuracy trade-off for a KDN based on MobileNet v3 large with 9
different heads architectures. Each setting is labelled (RX,SY) where X is the number
of blocks per stage in the regression head and Y is the number of blocks per stage in the
segmentation one. Reducing the complexity of the regression head increases the error
on the keypoints. The complexity of the segmentation head has a negligible impact on
the predictions accuracy.

Table 2. Average error on the keypoint locations (E [Am) in percent of the image
size for different data augmentation techniques

Bright./Contr. |Noise Rotation Background E [AG] [%]

1.33

v 0.62

v 1.18

v 1.34

v 1.66

v v 0.67

sufficient accuracy on the keypoint locations. This results in an ESA-score twice
larger than the one obtained with DarkNet in Table

3.4 Ablation study

This section studies the impact of the data augmentation techniques used to train
the KDN and evaluates the impact of the PIN architecture on the complexity-
accuracy trade-off.

KDN Data Augmentation. Table [2[ summarizes the mean error on the key-
point predictions normalized by the image size obtained by the KDN when
trained with different data augmentation techniques. Each data augmentation
is applied randomly on each image with a 50% probability.
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Table 3. Pose Estimation Accuracy for 2 global pose inference MLPs of different

complexities.

MLP layers

mean Et [%)]

mean Er [°]

scoregsa [/]

parameters [M]

1408 — 512 — 256 — 7

1.59

4.69

0.098

0.86

1408 — 1024 — 512 = 7

1.37

3.87

0.081

1.97

Table 4. Pose Estimation Accuracy achieved by the Pose Inference Network when
fed with the predictions emitted by the ground-truth foreground cells or with the
predictions made by the foreground cells predicted by the KDN.

Candidates sampling strategy

mean Er [%)]

mean Er [°]

scoregsa |/]

PIN fed with foreground ground-truth

2.30

6.60

0.138

PIN fed with predicted mask

1.59

4.69

0.098

— Brightness/Contrast. We make use of brightness/contrast data augmen-
tation to account for the wide diversity of illumination scenarios encountered
in orbit. In practice, we follow the method proposed by Park et al. [21]. The
contrast is modified by a random factor in between 0.5 and 2 while the
brightness is randomly increased by at most 10%. Such a data augmentation
provides a reduction of 0.7% on the mean error on the keypoint locations,
AE

— Gaussian Noise. Adding Gaussian noise which variance is randomly chosen
below 10% of the image range decreases by 0.14% the average error.

— Rotation. Random rotations of [90,180,270]° did not provide any improve-
ments compared to unaugmented training.

— Background. We tested a random background data augmentation tech-
nique. Using the segmentation mask recovered in we paste the masked
original image on an image randomly taken from the PASCAL-VOC dataset [7].
Unfortunately, this data augmentation did not provide any improvement,
even worse, it decreased the keypoint detection accuracy. The reason of
such a decrease probably comes from the raw cut-and-paste strategy used in
the data augmentation. In particular, since the background and spacecraft
brightness’s are not similar, the network may have learned to detect changes
of brightness which do not exist on the original image.

— As both Brightness/Contrast and Noise data augmentation improve
the KDN performance, both were combined, leading to an error reduction
of 0.66%.

PIN Architecture. In this section, we discuss some elements of the Pose In-
ference Network that impact the accuracy of our system.

Despite its appealing performance, the Pose Inference Network is not yet on
par with existing solutions. However, as summarized in Table |3} adding more
parameters in the global pose inference MLP improves its ability to predict
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accurate pose labels. We may therefore expect that a smarter architecture may
lead to more accurate pose estimates.

Table |4| compares the accuracy of a PIN network fed with candidate loca-
tions extracted from either the segmentation map predicted by the KDN or the
foreground mask. Using the ground-truth foreground mask leads to an ESA-
score increased by 50% compared to the KDN segmentation output. Since the
misclassifications happen mainly in some specific parts of the image such as the
spacecraft edges, antennas or darker areas, we believe that there is a link between
the nature of the different patches and the accuracy of their predictions.

The PIN could therefore be enhanced by associating a keypoint-specific level
of confidence to the prediction of the 2D candidates, e.g. to take into account
the visibility of each keypoint in the 2D image. Furthermore, the Pose Inference
Network could be modified to learn by itself the 3D keypoints according to its
ability to accurately predict them.

4 Conclusions

This paper has investigated a spacecraft pose estimation framework adopting
a first, convolutional, neural network to predict candidate locations of some
pre-defined keypoints, from which a fixed number of candidates are randomly
sampled from a predicted foreground mask to feed a second neural network that
infers the spacecraft 6D pose.

The method was tested on SPEED [29] where it achieves a mean rotation

error of 4.69°, a mean translation error of 1.59% and an ESA-score of 0.098 for
a throughput of 31 fps. This is promising in terms of accuracy, although behind
the performance of state-of-the-art solutions. Furthermore, our work reveals that
the complexity of the network initially recommended in [14] can be significantly
reduced to run on space-grade hardware while preserving a reasonable accuracy.
Finally, we highlighted that the Pose Inference Network can be improved either
by exploring smarter architectures or by feeding it with the confidence associated
to the keypoint candidates.
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