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Abstract— We propose a new object descriptor for three
dimensional data named the Global Structure Histogram (GSH).
The GSH encodes the structure of a local feature response on
a coarse global scale, providing a beneficial trade-off between
generalization and discrimination. Encoding the structural
characteristics of an object allows us to retain low local
variations while keeping the benefit of global representative-
ness. In an extensive experimental evaluation, we applied the
framework to category-based object classification in realistic
scenarios. We show results obtained by combining the GSH
with several different local shape representations, and we
demonstrate significant improvements to other state-of-the-art
global descriptors.

I. INTRODUCTION

The development of depth sensors has led to a wide
availability and use of 3D sensory data [23], [26], [32]. This
created a need for defining suitable data representations that
facilitate detection, recognition and categorization of objects
in natural settings. In this paper, we first analyze the desired
characteristics of an object representation. Based on this
analysis, we propose a 3D representation that encodes global
object structure of local surface properties and can robustly
generalize over different views with incomplete data.

How should objects be represented? The representation
may be application-dependent but there are general charac-
teristics that are desirable. A good representation is sensitive
to inter-class variations allowing discrimination between
instances deemed as different, while being able to generalize
over examples that the task defines as being the same.
Further, it should be robust such that small perturbations
do not significantly affect the interpretation. To facilitate the
above characteristics, a suitable similarity measure needs to
be defined – a good representation maximizes the portion of
relevant variance in the data which, in turn, simplifies the
learning problem. This has not been the dominant strategy
in data-driven learning as a number of methods seek strength
in number of training examples and focus on quantity rather
than quality. As an example, the focus of most approaches for
the Pascal VOC challenge [2] have been to extract as much
of the variance in the images as possible. This approach is
justified, even though rarely explicitly, by the belief that
given enough data, machine learning techniques will be

M. Madry, C. H. Ek, R. Detry, Kaiyu Hang and D. Kragic are with the
Centre for Autonomous Systems and the Computer Vision and Active Per-
ception Lab, CSC, KTH Royal Institute of Technology, Stockholm, Sweden.
Email: {madry,chek,detryr,kaiyuh,danik}@csc.kth.se

This work was supported by the Swedish Foundation for Strategic
Research, the EU projects COGX (FP7-IP-027657) and TOMSY (IST-FP7-
Collaborative Project-270436), and the Belgian National Fund for Scientific
Research (FNRS).

Fig. 1. Solving the classic Rubik’s Cube implies arranging its tiles such
that each face is populated by a single color. Two cubes in different states
are shown: the left one in a unsolved state while the right is solved. What
makes the cubes different? Each contains the same number of tiles and the
same colors. The difference lies on a larger scale in the arrangement of the
individual tiles. For Rubik’s cubes it is not necessary to know the color that
covers a specific face, it sufficient to know that each side is covered with
tiles of only one color. This exemplifies the central motivation in this paper:
by encoding structure we can achieve relevant generalization (in this case
over all solved states) and by having a less detailed local description (no
need for the absolute color of a tile) we can increase robustness.

capable to extract the right discrimination and generalization
characteristics.

The ideal characteristics of a representation is tightly
entwined with application and task as these define the
granularity that provides the means of interpreting variations
in the data. In this paper, our focus is on a 3D object
representation for category recognition. Our motivation for
the work is twofold. First, it is an essential capability for a
robot interacting with the environment. Second, compared to
instance recognition and object pose estimation it requires a
larger degree of generalization making it therefore a much
more challenging problem.

Do we need an alternative feature descriptor? Common
for the state-of-the-art descriptors is that the encoding is done
on local characteristics and first-order statistics of the data.
In this paper, we argue that the information with the right
discrimination and generalization characteristics is related to
the structure on a larger scale. Therefore, we wish to find a
global representation that encodes the structure of the object.
What we mean in formal terms is that: an object is a two
dimensional surface embedded in a three dimensional space
which encapsulates a non-empty volume [40]. We present
a descriptor which is capable of robustly encoding local
statistics of an object in such a manner that it reflects its
global structure. Our idea is motivated in Fig. 1.

The remainder of the paper is structured as follows:
Section II discusses our approach to defining a robust object
representation describing 3D objects. Section III presents
related work and Section IV introduces the details of the
proposed method. Section V presents its comparison in terms
of performance and generalization properties with other
object representations. Section VI concludes the paper.



II. OUR APPROACH

We propose a representation that respects the relevant
structural granularity. We subscribe to the argumentation that,
for most typical robotics tasks, achieving generalization is
more challenging than discrimination when encoding data
[11]. Performing a task such as pose and scale independent
object category classification imposes significant challenges
on the representation in terms of generalization. We argue
that the relevant generalization is contained on a structural
level and not in the local variations. By creating a represen-
tation based on this notion we achieve the following benefits:

1) Generalization: By generalizing over object pose,
scale and instance specific properties, we can reduce the
amount of training data required. This means, as we will
show in Section V, that we can correctly classify objects
seen from a viewpoint not present in the training phase. This
allows for realistic applications as it is not feasible to acquire
training data presenting all possible variations. In previous
work, the problem of limited amount of training data has
been addressed by generating multiple object views from
synthetic data. However, in such case, sensor properties (e.g.
noise) are not modeled and mismatch between ideal and real
data is clearly visible [20], [39].

2) Robustness: The feature we present encodes the struc-
tural relationship between local characteristics in the data.
We argue that the relevant information is contained in the
variations of the relationships and not in the local variations.
Therefore a coarse local representation is sufficient. This will
improve robustness as there is less information that needs to
be “removed” at the modeling stage. In case of a statistical
model (such as in this paper), we need less training data in
order to sample the domain well.

III. RELATED WORK

Object modeling for recognition and categorization is
often approached by extracting a set of local object features,
from one or multiple views of an object, then defining
a model in terms of feature occurrence statistics. In 2D,
features encode for instance corners [14], blobs [30], or more
general photometric variations [21].

In the field of object modeling from imaging sensors, it
has been shown that encoding object structure above the
local properties significantly improves robustness. Usually,
representations of global structure are done by defining a set
of object parts and then encoding the geometrical relation-
ships between them. Part-based representations can capture
different amounts of information about object structure. Ob-
ject parts can, for example, be treated as geometrically inde-
pendent (Bag-of-Words BOW model [8]). Another approach
may be to store only a coarse global spatial information
(spatial pyramids [19]) or more explicit spatial information
(constellation models [38], [12]) including methods based on
probabilistic modeling [34].

A serious issue that limits use of 2D models is that
variations introduced by projective geometry (geometrical
transformations, self-occlusions) have to be robustly cap-
tured and handled by the model. These problems can be

alleviated by learning models from multiple views [20],
[29], [33]. However, this approach leads to very complex
object representations that require enormous amounts of
data to estimate a large number of model parameters. In
consequence, the performance of the method depends on the
amount of training data and its ability to scale over a large
number of classes is limited.

In response to the shortcomings of 2D models discussed
above, modeling the 3D shape of objects has become in-
creasingly popular. Moreover, the emergence of cheap 3D
sensors has renewed the interest for purely 3D approaches
[17], [23], [26], [32], [36], [39]. Depth data are characterized
by lower pose variations than images, since they do not
suffer from projective transformations. However, a single
3D view is still affected by self-occlusions, which makes
holistic 3D descriptors [16], [35] difficult to apply to real-
life robotics scenarios. Likewise, histogram and transform-
based approaches [37] rely on the precise definition of the
center of mass of an object, which is difficult to obtain from
a partial view. To the end of improving robustness to (self-
)occlusions, several authors have developed models which
encode 3D local shape in a close neighborhood of a point.
Popular options are the Spin Images [17], Fast Point Feature
Histograms (FPFH) [26], or Radius-based Surface Descriptor
(RSD) [23], and many more [15], [32], [36]. Another group
constitutes complex parametric shape descriptors such as
superquadrics [4], [31] or local edge descriptors [10]. It is
important to mention, several approaches that represent the
spatial relation between the local 3D features were proposed
[23], [27]. These models are suggested to be invariant
with respect to translation and scale changes, and partial
occlusions.

In this paper, we present a unified and flexible 3D object
representation, called Global Structure Histogram, that can
be learned using complete or incomplete information about
an object, and instantiated in partial object views.

IV. GLOBAL STRUCTURE HISTOGRAM

For tasks such as object categorization it is important
to look beyond local statistics and encode the global and
structural information in the data. In this section we provide
details of the proposed Global Structure Histogram, or GSH
for short. The aim of GSH is to represent objects in a manner
such that it can robustly generalize over different poses and
views, and cope with incomplete data.

The GSH descriptor is computed from an object’s point-
cloud reconstruction, in a three-stage process. First, we
compute local surface-shape characteristics from the object
(Fig. 2 left). Then, based on local descriptor, point labels are
generated by performing a vector quantization into nC clus-
ters using the k-means algorithm with the partial histogram
metric based on the Jaccard similarity coefficient [7], [3]:

d(D,C) =
∑N

i=1 |max(Di,Ci)|−
∑N

i=1 |min(Di,Ci)|∑N
i=1 |max(Di,Ci)|+offset

(1)

where D is a vector with the surface descriptor and C is
a cluster centroid. This metric was chosen as a superior



Fig. 2. The figure illustrates schematically the proposed GSH object descriptor. The first and the second row depict two different instances of objects that
we wish to encode. In the leftmost column a local descriptor has been used to associate each point as belonging to one of three classes, here represented by
color. The discriminating information is contained in the relationship between the different points which would not be captured by a simple Bag-of-Words
representation. The middle column describes the second step in the GSH descriptor where an approximation of the object surface has been computed.
Based on it, we can compute the relationship between the local point classes as defined by this surface. The right column shows the distribution of paths
of different length for the two objects. These distributions clearly separate the two objects.

to other preliminary tested distances, such as City-block,
Euclidean, or Hamming. The Jaccard distance limits the
influence of isolated changes in a histogram originating in
noise and enhances the importance of the repeating changes
resulting from the object structure. At this stage, the Bag-
of-Words (BOW) model can be obtained by estimating a
distribution of the points over the nC clusters. An example
of dividing object points into different clusters based on the
local surface descriptor is presented in Fig. 3, where each
cluster is specified by a different color.

The abstraction from points to class labels “grounds” each
part of the object and translates it to a common frame such
they can be related to each other. An object can be defined as
a two-dimensional surface embedded in a three dimensional
space which encapsulate a non-empty volume [40]. This
implies that given a point on the object, one can travel
to any other point belonging to the object by traversing
this enclosing surface. We wish the GSH descriptor to be
sensitive to the structure of this encapsulating surface. To that
end we use this path and encode the object using the structure
of local characteristics when traversing along its surface
(Fig 2, left). Being represented using a point cloud we first
perform fast triangulation of unordered points to approximate
the encapsulating surface. The chosen method [24] offers
an adequate balance between computational efficiency and
quality of a reconstruction. Once triangulation has been
performed we can traverse the surface between two points
by computing the shortest path using the Floyd-Warshall
algorithm [13]. However, it is possible to use a method with
a lower computational complexity [25].

Once we can compute the ordering of points with respect

to the surface of the object the third and final stage is
how to encode this structure in a robust manner. This
structure or ordering is a combinatorial characteristic of the
object. Encoding such information in a robust manner is
often very challenging. To that end, instead of encoding the
exact ordering we represent the object as the distribution
of distances along the surface between each combination
of two point classes. For each of such combinations, the
distribution of distances is modeled as a histogram with
B bins. This means that using nC classes will result in
a descriptor with nC×(nC+1)

2 × B elements (Fig 3, right).
Experimentally estimated computational complexity of the
algorithm that computes the GSH representation is equal to
O(log(nC)).

To obtain the final form of the GSH, we normalize: (1)
each distance histogram for a combination of two point
classes with an amount of point pairs in that histogram,
and (2) the distance distribution matrix with respect to
the maximum distance between points in the graph (it is
equal to a total number of object points). An example of
the GSH representation for several objects is presented in
Fig. 3, where each row of the matrix represents distribution
of a geodesic distance between two points in a graph that
belongs to two different clusters.

In summary, the GSH descriptor is a global descriptor
for encoding 3D data. Given a point cloud of an object,
it is applicable to extend any local feature descriptor to
include information which encodes the surface structure of
the object. The descriptor is computed using following three
steps:



Fig. 3. Example partial views of glass with stem (top row) and chair (bottom row) objects represented by seven types of surfaces (nC = 7) estimated
using FPFH local descriptor [26]. For both objects, the Bag-of-Words (BOW) representation is difficult to differentiate even for a large number of clusters
(nC = 30). Adding the structure information, even for a small number of clusters (nC = 7), leads to the easily distinguishable Global Structure Histogram
(GSH) representation. The resultant GSH Global Structure Histogram is illustrated as a matrix where each row represents a histogram of distances between
all points belonging to the surface type j and surface type k, i.e., the first row is the distance histogram between points of type 1 and 1 (marked as 1-1),
the second row is the distance histogram between points of type 1 and 2 (marked as 1-2) etc. The images are best viewed in color.

1) Estimate local feature descriptor and approximate type
of an object surface for all points

2) Determine ordering of points along the surface
3) Represent object as distribution of paths along a surface
In the next section, we analyze the performance of the

proposed representation by applying it to benchmarks of 3D
object databases.

V. EXPERIMENTAL EVALUATION

In this section, we present an evaluation of the GSH for
object categorization. We systematically and exhaustively
compare its performance and generalization properties with
other local and global object representations on databases
that differ in quality and amount of available training exam-
ples.

A. Databases

Let us first present two databases on which the experi-
mental evaluation was performed:

1) Princeton Shape Benchmark: We collected com-
plete object models from the Princeton Shape Benchmark
(PSB) [1] for seven object categories of complex shapes:
bottle, car, chair, glass with stem, handgun, ice cream, vase,
each with 8 different object instances per category. Further,
incomplete/partial point clouds were acquired as a subset
of points of the complete model that are visible from a
given viewpoint. We selected 8 different camera positions in
two elevations α = {30◦, 60◦} and four horizontal direction
separated by 90◦. The visibility of each point was determined
using the Hidden Point Removal (HPR) operator [18].

2) Stereo Object Category Database: The Stereo Object
Category (SOC) database [22] contains RGB-D data col-
lected using the 7-joint Armar III robotic head equipped
with two foveal and peripheral cameras. To differentiate an
object and background, an active segmentation method was
used [5]. The database includes 14 object categories, each
with 10 different object instances per category. For each
object, both 2D (RGB image) and 3D (point cloud) data
were collected from 16 different views around the object
(separated by 22.5◦), see Fig. 4(a). In this paper, we use
only the 3D portion of the database.

Additionally, there is a choice of data collected in the
realistic scenarios. A few subjects were asked to randomly
place between 10 to 15 objects from 14 different categories
on a table. As a result, objects poses, scale and degree of
occlusion vary significantly. In this way, data for 10 natural
scenes (235 object point clouds) were obtained, see Fig. 4(b).

B. Experimental Setup

For each experiment, we performed cross-validation with
data divided into a training and test set with ratio 50:50%
of models per category per set for PSB and 60:40% for
SOC database. To average the results, each experiment was
repeated three times for randomly chosen object instances.
Due to the fact that the aim was to test the performance of
the system for object categorization and not object instance
recognition, an object used for the training phase was never
again used for an evaluation.

1) Classification: Descriptors evaluated in this paper,
model the distribution of different features. Several works
have shown that χ2 kernels are good representations for



(a) An experimental protocol where a rotation of ob-
jects differs, i.e. 8 views per object are selected to train
an object model (top row) and other 8 views for its
evaluation (bottom row).

(b) An experimental protocol for testing object representations in real conditions. Models
trained on the data from the previous protocol are tested on examples from 10 natural scenes
where an object pose and scale vary significantly.

Fig. 4. Experimental protocols and examples of objects from the Stereo Object Category database. Object representations are evaluated only on 3D
portion of the database. We use here images of the objects for better visualization. Data for all objects and natural scenes can be viewed at our web site
http://www.csc.kth.se/˜madry/research/stereo_database/index.php.

such data [9]. To that end, we employ the same strategy
and perform object classification by applying an SVM in the
space induced by the χ2 kernel [6].

C. Experimental Results

We performed a thorough experimental evaluation compar-
ing several state-of-the-art local and global representations
for a number of parameters. Here, we present selected results
highlighting the most significant and relevant properties of
these representations for the use under challenging real
word conditions. For each experiment, we report the average
categorization rate and standard deviation (σ).

1) Selection of a Local Representation: GSH can be used
in combination with any local surface descriptor, for example
the Radius-based Surface Descriptor (RSD) [23] or Fast
Point Feature Histograms (FPFH) [26]. Our representation
requires object points to be divided into several groups (clus-
ters) depending on surface properties in a close neighborhood
of a point. Examples of assignment of points to different
groups are shown in Fig. 3 and 7 where each of the clusters
is marked by a different color.

To cluster the data, we use the k-means algorithm with nC
centers. Once each point is assigned with a cluster label, we
compute the BOW representation by estimating a distribution
of local descriptors over the nC clusters. An optimal number
of clusters needs to be selected in order to preserve a
balance between discrimination and generalization properties
of the representation; using few clusters compresses the data
reducing the discrimination power of the representation, and
many clusters decreases generalization within the clusters
resulting in high sensitivity to small variations in the data.
Not surprisingly, in Fig. 5 the classification rate increases
together with the number of clusters until the point where it
saturates and adding more clusters reduces the performance.
We selected the optimal number of clusters for a BOW
representation experimentally using cross-validation. Note,
that an optimal nC for other representations may differ from
the one for BOW.

Fig. 5 shows that BOWFPFH achieved a significantly
higher categorization rate than BOWRSD. We note that

Fig. 5. Comparison of RSD and FPFH local features encoded using the
Bag-of-Words representation: BOWRSD and BOWFPFH for a different
number of cluster nC = {7, 30, 100, 300} (using a higher number of nC

does not improve the results) on the Stereo Object Category database. As
a result of a lower dimension of feature space for RSD than FPFH the
optimal nCRSD

< nCFPFH
.

FPFH outperforms RSD for all datasets irrespective of the
use of BOW or GSH encoding. Thus, for the sake of
clarity, we present only the results using FPFH as the local
descriptor in the following sections. The categorization rate
of BOWFPFH constitutes a baseline for further evaluation
of different global descriptors.

2) Encoding 3D Object Structure: The motivation behind
the GSH is to construct a representation that encodes the
global structure of an object. This notation has been previ-
ously exploited for a 3D object representation by the Global
Fast Point Feature Histogram (GFPFH) descriptor [28]. This
descriptor encodes the relation between local patches along
rays. In Figures 6(a) and 6(b), we see that the GSH outper-
forms GFPFH for both synthetic and real stereo data. This
may seem surprising given that the local feature (FPFH) is
the same in both cases. However, there is a fundamental
difference between the two approaches in the way they
interpret structure of an object, and in consequence, encode
the relationship between local patches. We base our approach
on a standard definition, recapitulating from Section I that:
an object is a 2D surface embedded in a 3D space which
encapsulates a non-empty volume [40]. When the geodesic
structure of local information in the GSH respects the above
definition, the rays inducing the structure underpinning GF-
PFH are independent of the surface, i.e. 3D curvature of an
object.

http://www.csc.kth.se/~madry/research/stereo_database/index.php


(a) Results for synthetic incomplete object models collected form PSB
database where training and test data match in terms of an object
pose and scale.

(b) Results for single objects from SOC database (real stereo data)
where training and test data differ in an object rotation. Experimental
data protocol is illustrated in Fig. 4(a).

(c) Results for objects from 10 natural scenes in SOC database (real
stereo data). Training and test data differ significantly in object an
pose and scale. Experimental data protocol is illustrated in Fig. 4(b).

(d) Results for synthetic models collected form PSB database where
only a single example per object instance is used for training (complete
models) and multiple examples of objects in various poses are used
for testing (incomplete models).

Fig. 6. Comparison of several state-of-the-art local and global representations in terms of average categorization rate performed on data that differ in
quality and amount of available training examples. Abbreviations used for representations: BOWFPFH - Fast Point Feature Histograms [26] encoded
using the Bag-of-Words; GFPFH- Global Fast Point Feature Histogram [28]; VFH - Viewpoint Feature Histogram [27]; GSHFPFH - our Global Structure
Histogram representation based on the FPFH local features.

An altogether different approach is the one taken in [27],
where the presented Viewpoint Feature Histogram (VFH)
descriptor directly encodes information about both object
shape and a camera viewpoint in the feature vector. We
will present comparison of the VFH and our descriptor on
data that differ in quality and amount of available training
examples in the next section.

3) Four Scenarios – Towards Real Word Conditions: The
choice of an object representation is crucial for achieving
a robust categorization system. Ideally, the object represen-
tation should have high discrimination and generalization
power, be invariant to object pose and scale variations, sensor
noise as well as occlusions and partial visibility of an object
(incomplete views). Another important aspect is the ability
of the algorithm to learn a 3D object model from a small
number of examples.

We address these problems one at a time by gradually
increasing the complexity of the experimental data. We start
with a relatively simple scenario where object representations
are tested on synthetic partial models. For this scenario, a
comparably large amount of data is available for training.
Then, we increase the difficulty of the problem by performing
experiments for single objects from SOC database (real
stereo data) in which object segmentation is imperfect and
sensor noise is present. We also vary a rotation of object
examples used for training and testing, as presented in
Fig. 4(a). Next, in order to evaluate object representations
in realistic conditions, models trained on data from the
previous protocol are tested against objects from 10 natural

scenes (SOC database) where an object pose and scale differ
significantly, see Fig. 4(b). In the end, the representations
are evaluated in the scenario where only a single example
per object instance is used for training (complete models
from PSB database) and multiple examples of objects in
various poses are used for the evaluation (incomplete models
from PSB database). It is the toughest scenario in which
generalization properties of the representations can be well
reflected. It is due to the fact that: (a) a small amount of data
is used for training, and (b) the test data (incomplete models)
contain a highly limited amount of information compared to
the training data (complete models).

Hereafter, we present a final comparison of the local
and global representations such as the BOWFPFH , GSH
and VFH, for the four described scenarios and present the
most important conclusions in terms of usability in real
applications.

(1) As presented in Fig. 3, adding structure information
leads to a significantly more descriptive GSH representation
than BOW. This observation is confirmed by the higher
performance of the GSH for all four scenarios as it is
shown in Fig. 6. Additionally, when comparing a number
of clusters required to obtain an optimal categorization rate
for the FPFH and GSH, we can see that a higher number of
clusters is needed for local features. This is consistent with
our expectations that a simpler local representation can be
used when global information is encoded.
(2) In the top row of Fig. 6, we can see that the VFH feature
is the best performing representation. However, for these



data all object poses used at test time were also available
at training. This means that for these data the representation
does not need to generalize over different views. Generating
datasets containing every possible view is not realistic and
will not scale when the number of objects increases.
To that end a more realistic experiment are the ones depicted
in Fig. 6(c) where an object pose and scale vary across data
used for training and testing. Further, in Fig. 6(d) we can
see the results when training on a complete 3D model of an
object and testing on partial views. In both these experiments
the GSH feature outperforms the VFH indicating that the
latter does not generalize over views to the same extent as the
proposed representation. We showed that the GSH requires
less training data to model the object without the need of
generating a large number of redundant partial views for
training.

In addition, please note that although a chosen mesh
reconstruction method [24] does not provide an optimal
solution and suffers from the quality of the data, the GSH
descriptor is capable of handling resultant distance length
variations and provides a stable representation. Using of a
more accurate reconstruction method may open perspectives
for the further improvement of a categorization rate.

Finally, the GSH representation allows for using a single
framework to represent complete and incomplete views of an
object, as shown for synthetic models in Fig 7. On the right
side of each object, the resultant Global Shape Descriptor for
nC = 7 is illustrated as a matrix where each row represents
a histogram of distances between points belonging to two
clusters (description of a matrix can be found in the caption
of Fig. 3). In Fig. 8 we can observe that for real noisy
data, objects with similar types of surfaces such as a bottle
and toilet paper can be discriminated thanks to encoding of
global structure.

VI. CONCLUSIONS

We have presented the Global Structure Histogram (GSH)
descriptor for object representations using 3D sensory data.
It is used to represent both complete and incomplete (partial)
point cloud information. We have shown that the descriptor
significantly improves object category classification com-
pared to the state-of-the-art in realistic scenarios. Exploiting
object structure allows us to achieve significantly better
results from a less discriminative local features. This is
beneficial as it makes object recognition less sensitive to
small differences in the local appearance.

Simultaneous encoding of an object category and pose,
such as in [27], [39], suffers from the problem of scaling
over increasing number of object poses and classes. Our
representation is capable to improve generalization over
various object poses and scales in relation to object category.
This is essential for large scale object categorization in real
world applications. Moreover, the GSH opens the possibility
for modeling object properties based on a small amount of
training examples. This is currently under investigation in
our work.
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