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Abstract—Mars Sample Return (MSR) was identified by the
2011 planetary science decadal survey as a high priority long-
term goal for NASA. A three-mission campaign concept is cur-
rently being investigated. The Mars 2020 rover mission is in-
tended to core and collect samples. These samples will be sealed
in tubes and left on the surface for potential return to Earth.
In the current MSR campaign concept, a Sample Retrieval and
Launch (SRL) mission would collect the sample tubes left by
the Mars 2020 rover and load them into a Mars Ascent Vehicle
(MAV) to be launched into orbit. The third mission concept
involves a spacecraft capturing the samples in Martian orbit and
returning them to Earth. This paper focuses on the SRL mission
concept to collect the sample tubes, addressing the problem of
autonomously detecting, localizing, and grasping sample tubes
deposited on the Martian surface. We employ two approaches:
The first one is context-based. It would use a high precision map
computed from images captured during tube release, to locate
the tubes without directly observing them. The second approach
directly detects the sample tubes visually and estimates their 6-
DoF pose onboard from dense stereo data.
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1. INTRODUCTION

Mars Sample Return (MSR) was identified by the 2011
planetary science decadal survey as a high priority long-
term goal for NASA. The Jet Propulsion Laboratory (JPL)
is currently investigating a three-mission concept for an MSR
campaign. As a first step in this campaign, the Mars 2020
rover, will core and collect about 31 samples. These samples
will be sealed in sample-tubes and deposited on the Martian
surface for potential return to Earth. Later, a second mission,
currently known as the Sample Retrieval and Launch (SRL)
mission concept, would collect the sample tubes left by the
Mars 2020 rover (or another rover) and load them into an
Orbiting Sample (OS) payload in a Mars Ascent Vehicle
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(MAYV). The MAV would then release the OS into Martian
orbit. The OS could then be collected by a third mission,
a Sample Return Orbiter (SRO), which would capture the
OS in Martian orbit before returning it to Earth. Once on
Earth, these samples would enable the scientific community
to use all of the resources present in sophisticated terrestrial
laboratories to answer fundamental questions concerning the
history and current state of Mars. In particular, returning
pristine samples of Martian soil and rock to Earth will allow
investigation into the past or present existence of life on Mars
that would not be possible otherwise.

In this paper, we describe work towards the first step of the
SRL mission concept, specifically, the task of finding and
retrieving the sample-tubes deposited on the Martian surface
by the first mission. The work presented is a continuation
of the efforts to robustly and repeatably localize and acquire
a sample tube from a Mars-like environment for the MSR
mission [1]. While that work served as an initial overall
proof-of-concept, here we focus on the challenges particular
to the task of finding the sample-tubes deposited on Mars.
In particular, during their stay on the Martian surface, high
winds and the fine-granularity of surface particles mean that
sample tubes may become buried under dust. To address this,
we have developed a sparse feature matching approach to
localize the SRL rover with respect to images taken by the
Mars 2020 rover. This gives us a pose in our 3D map, which
contains a precomputed (i.e., on Earth) pose for the sample
tube, allowing us to execute a ’blind” grasp of the sample
tube. While this permits grasping without having to actually
find the sample-tube itself, it assumes that the sample-tube
has not moved (e.g., from wind, or interaction with a rover).

To address this, alongside the ”blind” approach, we have
developed a method for localizing the tubes by direct observa-
tion. To do this, we employ a deep fully-convolutional neural
network trained to detect and segment the sample tubes as
well as their constituent parts (shank, bearing race, and body).
This network was first trained on thousands of synthetically
generated training images of dust-covered tubes, and then
subsequently fine-tuned on a relatively small amount of hand-
annotated real training data. In both approaches, the end
result is a 6-DoF pose of the sample-tube, which we use for
grasping, and ultimately, caching.

2. MISSION PROFILE

The current mission profile contains two competing concepts:
the first one is a mobile MAV concept which consists of a
single, mobile Mars Science Laboratory (MSL) sized rover
topped with the MAV, and the second one is a fetch-rover
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Figure 1. Mars Sample Transfer Testbed (MSTT) Infrastructure Layout.

concept which consists of a stationary MAV lander and a
smaller MER-class “fetch” rover for retrieving sample tubes.
This paper studies elements of both approaches via a testbed
called the Mars Sample Transfer Testbed (MSTT), shown in
Figure 1. The larger “SRL” testbed serves to test both the
stationary MAV lander and the mobile MAV rover concepts
and is based on MSL heritage. A mobility system was not
developed for this testbed since mobility of this class of rover
has already been demonstrated on MSL. Instead, a Gough-
Stewart platform is used to simulate mobility. This testbed
is an evolution of the 5 DoF brassboard arm testbed used for
initial assessment of autonomous sample tube acquisition [2].

In both mission concepts, the goal for our purposes is the
same — to locate sample tubes deposited on the surface,
estimate their 6-DoF pose, grasp them using a robotic arm,
and deposit them in a cache contained on the Mobile MAV
or Fetch rover decks. While this could, in principle, be
accomplished with a human-in-the-loop, doing so would add
considerable length to the duration of the mission.

To illustrate this point, we can use the current MSL drilling
procedure as an example. This consists of several steps: 1.
Capturing Navcam images to select a drill site, 2. Selecting
a drill target and perform triage observations 3. Drilling, and
4. Verifying and retrieving sample. Since each of these steps
requires human verification and intervention, the operation
requires a minimum of 5 Martian Sols to execute (commands
to the rover are only sent once per Sol).

If one assumes that retrieving a sample tube requires at least
as much intervention as a drilling campaign, the current
mission profile of retrieving 31 sample-tubes will require
nearly half a year. When considering the additional time
required for driving between the samples, a human-in-the-
loop acquisition system greatly limits the amount of time that
could be spent on other science. With this in mind, the objec-

tive of this work and of the MSTT is to demonstrate that tube
retrieval can be performed autonomously. If the human-in-
the-loop requirement can be removed, then sample-tubes can
potentially be recovered in a single Sol, greatly accelerating
the SRL mission timeline.

3. PLATFORM DESCRIPTION

While both the Mobile-MAV and the Fetch-rover concepts
share the same general software architecture, there are nec-
essarily some differences in hardware and scale. For the pur-
poses of completeness, in this Section we will briefly describe
the two platforms, highlighting the differences between them
relevant to the task of sample-tube retrieval.

Mobile-MAV

The Mobile-MAV architecture we have explored would be
an MSL-sized rover carrying a MAV in a horizontal or near-
horizontal position. It would pick up sample tubes using
a gripper on the end of a 2-to-3 meter long robotic arm
with between 5 and 7 degrees-of-freedom. The current SRL
testbed uses a 6 DoF arm with a 1-DoF parallel jaw gripper
for sample tube acquisition. The same arm would reorient the
tubes (if necessary), load the individual tubes into a sample
canister, and ultimately load the sample canister into the
MAV. The rover would have several cameras which could be
used to identify and locate the tubes, including a Navcam (a
stereo-pair mounted on a 2-meter tall pan/tilt mast), Hazcams
(a fixed stereo-pair mounted on the front of the rover at
approximately 1.0m above the surface), and a Toolcam (a
single camera at the end of the arm).

Fetch Rover

The Fetch-rover we used was developed at JPL 18 years ago
as a prototype for the Mars Exploration Rovers mission. This



Figure 2. Images captured by the left mast camera.
From left to right, top to bottom: board configurations 1,
5,11 and 16.

battery-powered, untethered, Mars Exploration Rover (MER)
sized rover was successfully used for coring and sample
caching experiments in Mono Lake in 2010, in support of the
future Mars 2020 mission. The rover avionics and software
were updated to support the MSTT task. The mobility system
uses a rocker-bogie suspension with six wheels, each with
drive and steering actuators. The avionics of the Fetch-rover
include a tethered or battery powered power system, control
and perception computers, hardware drivers and a camera
suite. Finally there is a 6-DoF arm at the front of the rover
with a 6-axis force sensor and a 1-DoF three fingered gripper
on the end. The Fetch-rover has a Navcam and a Hazcam like
the Mobile-MAY, but does not currently have a Toolcam, due
to space and weight constraints of the arm and end-effector.

4. VISUAL LOCALIZATION APPROACH

In its current form, the MSR campaign anticipates a delay of
several years between releasing the tubes with the Mars 2020
rover and recovering them with the SRL rover. The Martian
atmosphere is meager by comparison to Earth’s — its average
atmospheric pressure at ground level is only 0.6% of Earth’s
mean sea level pressure. Mars’ geology is also much less ac-
tive than Earth’s. Mars landers and rovers have accumulated
evidence showing that under those conditions rocks larger
than a few centimeters are unaffected by weather: winds are
not strong enough to move those rocks, and although a small
dune is likely occasionally build up at their base, the rocks are
unlikely to become covered in sand. From those observations,
we hypothesize that (1) sample tubes will not move between
release and recovery, but that (2) there is a substantial risk of
a dune building up on the sides of the tubes, and of the tubes
becoming covered with a thin layer of dust. Under the second
hypothesis, detecting the tubes via direct observation may not
be possible.

This section addresses the case of recovering tubes that are
partly covered in sand and that cannot be detected by direct
observation. Instead, we propose to use images taken by
the Mars 2020 rover to build a sparse feature map encoding
a tube’s location relative to nearby landmarks and ground

Figure 3. Features matched between configuration 4
(left) and configuration 14 (right).

topology, and let the SRL rover localize the tube by regis-
tering the map to the terrain.

We assume that the Mars 2020 rover selects release locations
that contain several visual landmarks, such as larger rocks
or hard terrain features. We also assume that when the
SRL rover can be driven to within a meter of the tube’s
location via global positioning. We address the problem as
follows: Upon releasing a tube, the Mars 2020 rover captures
a stereo image showing the tube and its direct surroundings.
An operator subsequently annotates those images, labeling
areas that are unlikely to change over the next ten years,
large rocks for instance. The operator then runs a feature
detector in the labeled areas, and pairs features that are similar
in appearance and that respect epipolar constraints. The
operator also computes by inspection the pose of the tube
in the camera frame. Upon reaching the same site some
years later, the SRL rover extracts a set of features from a
stereo view of the site, and searches for four-way feature
correspondences, i.e., quadruples of features SRL-left, SRL-
right, Mars-2020-left, Mars-2020-right. Quadruples that do
not respect SRL’s epipolar constraints are pruned, and the
rover computes the Mars-2020-to-SRL transformation that
minimizes the reprojection error of all features.

The remainder of this section presents a proof-of-concept
experiment that quantifies the accuracy of visual pose esti-
mation in a Mars-like environment, with cameras that are
representative of upcoming Mars missions. The conclusion
of this experiment (detailed below) is that the Mars 2020
camera hardware allowed us to register pairs of stereo images
captured from viewpoints that are up to 1m apart, with up to
25° orientation differential, with a 1.5% mean relative error
in translation and a 3.1% mean relative error in rotation.

The testbed stereo camera (Figure 1) is attached to a fixed
base. To simulate different robot poses, we arranged ten
rocks on a 1.15x1.15m board covered with sand, and moved
the board to 16 different configurations within the field of
view of the camera, capturing a stereo image pair in each
configuration (Figure 2). We extracted ground-truth poses
with a VICON motion-capture system, via four IR markers
attached to the sides of the board. We then applied a pose
estimation algorithm (described below) to the 256 different
pairings of the 16 board poses.

Our pose estimation algorithm follows the approach of Geiger
et al. [3] and relies on the LIBVISO2 codebase.>? The
algorithm takes as input two pairs of rectified stereo images,
and the camera’s intrinsic and extrinsic parameters. It works
by extracting features from the images, matching the features,

2nttp://www.cvlibs.net/software/libviso/
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Figure 5. Translation and rotation errors as a function of translation and rotation offsets between Mars 2020 and SRL
camera viewpoints. As one would expect, increasing the rotation and translation offset between the two viewpoints
results in increasing amounts of error.

and finally computing the transformation that minimizes the
feature reprojection error. We compute features by filtering
the input images with a 5 x 5 corner mask and with a blob
mask of the same size, followed by non-maximum- and non-
minimum-suppression. We then compute four-way feature
correspondences, and prune those that do not respect the
epipolar constraints of either stereo pair. As the moving board
only covers a fraction of the field of view of the cameras,
we filter out features coming from the scene background,
using a mask drawn by hand for each image. We note
that this artifact puts our experiment at a slight disadvantage
compared to the mission scenario, as only a fraction of the
field of view is exploited for motion estimation. To compute
the transformation between the two board configurations,
we minimize the reprojection error of all features, first via
RANSAC, then with Gauss-Newton on the RANSAC inliers.
Figure 3 shows matching features across the left images of
board configurations 4 and 14.

To quantify the reliability of pose estimation, we compared

the vision-based relative transformations to those acquired
with the motion-capture system. Figures 4 and 5 show the
translation and rotation errors between estimates and ground
truth. Figure 4 shows the translation (left) and rotation (right)
errors for all pairs of board configurations. Red squares
correspond to cases for which the algorithm could not find
a convincing solution. The rightmost graph of Figure 4
shows larger errors for cases involving configurations 14,
15 and 16. Those errors are explained by the fact that the
corresponding images only show a part of the board, as it
is sliding out of the field of view. Case 2-12 is a border
case, with only 15 challenging four-way correspondences.
Figure 5 shows the same errors, as a function of the camera
translation/rotation that would have occurred if the board had
been fixed — instead of showing errors as functions of the
board’s translation/rotation in the camera frame. We opted
for these plots because they are representative of the scenario
we are characterizing and can be interpreted as the pose
differential between Mars 2020 and SRL. The mean position
error is 1.5% (relative to hypothetical camera translation) and



Figure 6. Examples of synthetic (left) and real (right) training data and labels generated to train the deep FCNN.
Synthetic data was generated using the Blender and physics simulator. Real data was captured in our lab and in the
Mars Yard at JPL.

the mean orientation error is 3.1% (relative to hypothetical
camera rotation).

5. DIRECT OBSERVATION APPROACH

As an alternative to the ”blind” grasping approach described
above, we also developed a direct observation procedure
which aims to localize sample tubes using only the current
stereo-camera observations. This procedure is considerably
more difficult than the blind approach, as it can only use the
features on the tube itself for detection and pose estimation -
features which are likely to be occluded by dust and other
debris. Furthermore, the tube itself has a high degree of
symmetry, meaning that even when properly detected, there
are often multiple possible poses which fit the observations
equally well.

Our direct observation approach consists of two primary
steps: detection and pose estimation. The first step aims to
detect the sample tubes in either Navcam or Hazcam imagery
and then extract the pixels belonging to them. The second
uses the extracted pixels in order to estimate the 6-DoF pose
of the sample tube in the rover’s reference frame so that a
proper grasp approach trajectory can be determined.

For sample tube detection and segmentation, we employ a
type of deep Convolutional Neural Network (CNN) known
as a Fully-Convolutional Network (FCNN) [4]. FCNN’s do
away with the fully-connected layers typically used in the
later stages, and instead only use convolutional layers, allow-
ing end-to-end training from RGB-image directly to semantic

label space. In our case, we use a novel residual-dilate-skip
architecture 7 to provide an accurate per-pixel label in a single
forward pass. This network architecture takes advantage of
recent work in residual connections [5] and dilated layers [6]
to increase understanding of the relationships between parts.
Additionally, we use a skip-network architecture to provide
sharp object boundaries and avoid the over-smoothing effects
commonly seen in simpler upsampling schemes. Our network
is trained to localize the sample tubes as well as their con-
stituent parts (shank, bearing race, and body). Localization
of parts is especially helpful in disambiguating symmetries in
pose.

As this is a highly specialized application, an annotated
dataset was not readily available for training. As such, we
decided to use simulation to create an initial training set, as
proposed in [7]. The choice to use simulated data was based
on three factors: First, there exist no examples of what a
sample tube that has been Mars for several years will look
like. Second, the design of the sample tube has not been
finalized, and it is relatively inexpensive to regenerate our
synthetic training data when the design changes. Finally, the
amount of data required to train a deep network is significant,
and we simply did not have the resources to collect and hand-
annotate the amount of data necessary to train a network from
scratch.

For generation of simulated data we used the open-source
Blender [8] API, allowing us to generate random scenes
programmatically. Our data set consists of 50,000 randomly
generated scenes in which sample tubes were dropped from a
height of two meters, allowed to settle, and then subsequently
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coated with a simulated layer of dust. Additionally, location
and intensity of illumination and surface conditions were
varied for each render. Examples of our synthetic training
data can be seen in Figure 6.

Once the network was trained on the synthetic data, it was
subsequently fine-tuned on a relatively small (150 images)
amount of hand-annotated real training data collected in our
indoor lab and in the outdoors Mars Yard at JPL. Examples
of these images, as well as the hand-annotated labels can be
seen in Figure 6. While the real data looks somewhat different
than our synthetic scenes, especially in the sand and rocks,
the synthetic data is probably sufficient to begin learning the
overall shape and relative positioning of parts of the sample-
tubes.

The output of our fully convolutional network is a per-pixel
labeling of ground, rocks, and sample-tube, split into three
parts - bearing-race, shank, and body. Examples of this clas-
sification output are shown in Figure 8. The sample tube was
split into three parts in order to prevent pose estimation errors
arising from 180-degree flips in yaw. For pose-estimation,
the pixels classified as sample-tube are extracted and mapped
into the 3D pointcloud reconstructed from either the Navcam
or Hazcam stereo disparity. The 3D points corresponding to
sample tubes are then partitioned using Euclidean Clustering

[9].

Once we have a number of candidate clusters of 3D points,
we then attempt to fit the sample tube model to each cluster
using Generalized Iterative Closest Point [10], providing a 6-
DoF pose in the camera reference frame. The cluster with the
best fit (in terms of point-to-point distance) is then selected
for grasping.
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Figure 9. Confusion Matrix of per-pixel labeling
accuracy for the five classes.

6. CAMERA-TO-ARM CALIBRATION AND
GRASPING

Once the pose of the tube has been determined using either
the blind or the direct approach, we must transform the pose
from the camera reference frame to the arm gripper tool
frame. As any error in the initial grasp will propagate through
the rest of the manipulation chain, possibly causing errors
later on, we must grasp the tube as near to our goal position
as possible. With this in mind, we adopt a two-step camera-
to-arm calibration procedure: First, we move the arm to a
standard starting position above the workspace, and capture
an image of a fiducial marker (an April tag [11]) on the end-
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effector - see Figure10 - allowing us to calculate a camera-to-
arm transformation. Next, the manipulation software moves
the end-effector to a standoff pose a small distance above
the detected sample tube. This standoff position must be
sufficiently close to the tube to take advantage of relative
accuracy instead of global accuracy, but far enough to prevent
the end-effector from hitting the tube or the ground if the tube
position or the camera-to-arm calibration is inaccuracy. Once
the end-effector has reached the standoff position, we capture
another image of the fiducial marker, and re-estimate the
camera-to-arm transformation. This allows us to correct for
arm deflection as well as pointing error in the Navcam pan/tilt
unit. We found that this second step was essential, sometimes
resulting in a correction of over lcm in grasp position.

Finally, using our corrected camera-to-arm transformation,
we select a grasp approach orthogonal to both the tube’s
principal axis and the horizontal axis. This ensures that the
gripper can grab the tube in an orthogonal (‘body’) grip, and
generally prevents end-effector collisions with the terrain.
Assuming the tube location is within the workspace of the
robotic arm, we move the gripper in a straight-line trajectory
from its original standoff position to a much smaller standoff
position ( lcm) above the refined tube position. Finally,
we use force sensing to contact the tube, and then drive the
gripper to stall around the tube. These last two steps are able
to accommodate a small amount of position error along the
axes orthogonal to the tube. While this is only the beginning
of the sequence needed to retrieve and cache the sample-
tubes, the rest of the chain does not yet use computer vision,
and is beyond the scope of this paper.

7. SUMMARY AND CONCLUSION

Autonomously recovering sample tubes dropped on the Mar-
tian surface is a difficult task, but one that is necessary for
recovering a large number of samples within a reasonable
amount of time. In this work, we have presented two
solutions to the problem; one that uses localization and pre-

computed sample-tube poses, and another that attempts to
detect and estimate the pose of the sample-tubes directly on
the rover. While we have shown that both of these methods
are effective for sample-tube recovery, each is suited to a
slightly different application.

The blind recovery method is well suited to recovering
sample-tubes which are either partially or fully buried, as
it does not require any actual observation of the sample-
tube itself. Unfortunately, this relies on the fact that the
sample-tube has not been displaced from the position it was
in immediately after it was dropped. Should the recovery
rover happen to move the sample-tube accidentally (e.g. due
to a failed grasp attempt, or during driving), the pre-computed
tube pose will no longer be valid, and the method will fail.

Conversely, the direct-observation method has no hard as-
sumptions about the position of the tube. This means that
recovery from failed grasping is possible; in fact, one could
even envision a system which uses an air-gun or a brush to
clean the sample-tube of dust before grasping it. Of course,
this method relies on the neural-network’s ability to detect
the tube autonomously. While this is achievable if the tube is
readily visible, it might not be possible under significant dust
accumulation.

In the end, it is likely that in practice a combination of both
methodologies will be necessary for robust localization and
grasping of sample-tubes. Indeed, the safest route is likely
to use both methods, and only attempt an autonomous grasp
when they agree closely, falling back to human-in-the-loop
control when they do not. In fact, this may allow for the
strengths of each method to be leveraged to help the other
- the blind method can be used to greatly constrain the search
space for the direct approach, while the direct approach can
be used to correct small displacements of the tube.



Eaf N

Figure 10. Both platforms have April-tag fiducial
markers mounted on the last joint. This permits online
refinement of the camera-to-arm calibration, greatly
improving grasp accuracy.
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