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Abstract—The Mars 2020 rover mission is intended to collect
samples which will be stored in metal tubes and left on the
surface of Mars, for possible retrieval and return to Earth by
a future mission. In the proposed Mars Sample Return (MSR)
campaign concept, a follow-up mission would collect the sample
tubes and load them into a Mars Ascent Vehicle to be launched
into orbit for subsequent transfer and return to Earth. In this
work, we study the problem of autonomous tube localization
and pickup by a “Fetch” rover during the MSR campaign. This
is a challenging problem as, over time, the sample tubes may
become partially covered by dust and sand, thereby making it
difficult to recover their pose by direct visual observation. We
propose an indirect approach, in which the Fetch rover localizes
itself relative to a map built from Mars 2020 images. The map
encodes the position of rocks that are sufficiently tall not to be
affected by sand drifts. Because we are confident that tubes will
remain immobile until Fetch arrives, their pose within the Mars
2020 map can be used to plan pickup maneuvers without directly
observing the tubes in Fetch images. To support this approach,
we present a dataset composed of 4160 images collected from
two sets of stereo cameras placed at thirteen different view
angles, two different heights from the ground, two distances
from a tube, in five different lighting conditions, and ground-
truthed with a motion capture setup. This dataset allows us to
quantify the sensitivity of terrain-relative tube localization with
respect to lighting conditions and camera pose.
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1. INTRODUCTION
The Mars 2020 rover mission is intended to collect samples
which will be stored in metal tubes and left on the surface
of Mars, for possible retrieval and return to Earth by a
future mission. In the proposed Mars Sample Return (MSR)
campaign concept, a follow-up mission would collect the
sample tubes and load them into a Mars Ascent Vehicle to

Copyright 2019 California Institute of Technology. U.S. Government spon-
sorship acknowledged.
978-1-7281-2734-7/20/$31.00 c©2020 IEEE

be launched into orbit for subsequent transfer and return to
Earth. In this work, we study the problem of autonomous
tube localization and pickup by a “Fetch” rover during the
MSR campaign. This is a challenging problem as, over time,
the sample tubes may become partially covered by dust and
sand, thereby making it difficult to recover their pose by direct
visual observation. We thus propose an indirect approach,
in which the rover localizes itself with respect to landmarks
– tall rocks, mainly – that will not be affected by sand
drifts, and that have previously been mapped by Mars 2020.
Matching the map to the terrain allows us to pick up tubes
without directly observing them. In this paper, we assume
that the map is simply a collection of stereo images wherein
the pose of the tube is manually encoded. The problem of
localizing the Fetch rover with respect to the map simplifies
into computing the relative pose of two stereo pairs: one
belonging to the Fetch rover, the other being the nearest pair
captured by Mars 2020 (see Section 2).

The main contribution of this paper is a novel dataset de-
signed to benchmark the performance of terrain-relative rover
localization on Mars. The dataset comprises over 4000 im-
ages of terrain that resembles the Martian surface, annotated
with ground-truth camera poses obtained through a motion
capture system (MoCap). The dataset also features a sample
tube prototype set at the center of the setup and includes
motion-capture ground truth pose for the tube, to support
follow-on studies on direct tube localization (see Section 3).
The dataset was collected to span multiple parameters rep-
resentative of different capture configurations, i.e., different
Fetch poses relative to the nearest Mars 2020 image-capture
poses, namely, for two different rock densities, camera type,
exposure, stereo baseline, viewpoint angle, distance, height,
and lighting direction (see Section 4).

The second contribution of this paper is a benchmark of a
sparse-feature localizer using this dataset (see Section 6). We
estimate the camera motion between two stereo pairs cap-
tured under different capture configurations by four-way fea-
ture matching and reprojection error minimization between
the resulting correspondences. We perform this calculation
for all possible pairs of capture configurations. By comparing
the transformation estimates from our localizer to ground-
truth transformations from MoCap, we obtain 270,920 pose
estimation errors expressed as translation and rotation errors
for the tube across 6 capture dimensions. We use these
estimates to identify and characterize parameter configura-
tions enabling robust localization, which in turn can be used
to make feasibility assessments and recommendations for
the Mars 2020 and Fetch rover missions (see Section 7).
We further examine the vulnerability of feature matching
to variations in lighting conditions and discuss alternative
localization methods using synthetic relighting and rendering
(see Section 8).
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Surface features emerging from sand patterns may not be
reliable in the current notional mission context, because sand
may be affected by weather. To capture this risk, we restrict
our benchmark to using features that emerge from rocks.
We automate the pruning of features that emerge from sand
by segmenting all images with a neural network that we
specifically trained to discriminate between rocks and sand
(see Section 5).

2. MISSION CONCEPT AND PROBLEM
STATEMENT

The notional MSR campaign [1], [2] is a four-phase cam-
paign that includes three launches, two rovers, one lander,
and a Mars rocket. The first phase is the collection of rock
samples with the Mars 2020 rover, and the release of those
tubes on the ground, at one or multiple sites referred to as
tube depots. Within each depot, tubes would be released 2 to
5 meters apart, along a straight or curved line. Mars 2020’s
control over the layout is limited by the release mechanism,
which consists of dropping the tubes from the rover’s belly
onto the ground.

The next phase would be the recovery of the tubes and launch
to Martian orbit. A lander set to reach the Martian surface in
2027 or 2028 would carry a MER-class tube-fetching rover
and a Mars Ascent Vehicle (MAV). The fetching rover (Fetch)
would collect the tubes and bring them back to the lander,
where all the tubes would be transferred to a single container,
that the MAV would launch to orbit. The launch would
coincide with the arrival of the third phase: a probe designed
to catch the container and bring it back to Earth, with a
ballistic landing at a site to be determined. The fourth phase
would be the Earth-based sample containment and analysis.

Traditionally, Mars rovers that are intended to survive the
Martian winter have used radioisotope heating, via radioiso-
tope heating units (RHU, Mars Exploration Rovers) or a
radioisotope thermoelectric generator (RTG, Mars Science
Laboratory). To limit cost, the baseline Fetch rover would
have neither, and therefore must complete its mission in a
single season, including a 10 km drive to one or multiple de-
pots, picking up tubes, and driving back. As a result, surface
mission planning requires that the rover must notionally pick
up 30 tubes in 20 sols. The minimum time for picking up a
tube with ground in the loop being 3 sols [2], Fetch would
have to recover tubes autonomously. Because of the time
constraint, Fetch would also need to be able to recover tubes
independently of time-of-sol (lighting conditions), from an
arbitrary approach vector, and be robust to the effect Martian
weather may have on tubes and the ground. The localization
software must run on a RAD750 processor accompanied by
an FPGA comparable to the Virtex 5.

Tubes will not be released in areas where sand is abundant,
or on slopes steeper than 25◦. Based on those constraints and
our understanding of Mars weather, geology, and qualitative
observation of lander and rover images, we conservatively
hypothesize that: (a) tubes will not move, (b) sand or dust
may pile up next to tube or rocks, forming drifts, conceivably
burying a tube entirely, (c) sand drifts will not exceed 5 cm
in height, leaving the upper part of rocks taller than 5 cm
unaffected, and (d) dust will deposit everywhere, creating a
dust layer that will not exceed 0.25mm in thickness.

To maximize the probably of successfully recovering all
tubes, we plan to implement two localization solutions char-

acterized by orthogonal constraints. The first is the terrain-
relative localizer discussed in this paper. It is robust to the
accumulation of sand near a tube, but relies on the presence of
landmarks that are not be affected by drifts, and requires that
Fetch approaches each tube along a vector that is close to the
viewpoint of an image captured by Mars 2020. The second
solution is to directly segment tube pixels in Fetch camera
images. It will only work if tubes are unaffected by drifts, but
it does not constrain the approach vector, and does not require
the presence of landmarks near the tube. As mentioned above,
this paper focuses on the terrain-relative solution.

3. PLATFORM AND EXPERIMENTAL SETUP
In this section we describe the setup to collect images mim-
icking the Fetch rover’s navigation and hazard cameras.

Camera Setup

To validate and assess the accuracy of our machine vision
techniques, we collected a large dataset of tube depot images
taken in a large variety of viewpoints and acquisition condi-
tions. Mars rovers, including MER, MSL, Mars 2020, and
the Fetch concept, usually features multiple sets of cameras.
Those that are relevant for tube pickup include the front-
facing hazard stereo camera, typically situated at about 70 cm
off the ground [3], and the navigation stereo camera, attached
to a mast placing them at 1.5 to 2m off the ground. To
conveniently collect our dataset, we constructed a dedicated
camera setup that can be carried, positioned and oriented by
hand. The camera setup consisted of four cameras:

• Two PointGrey Grasshopper GRAS-50S5C-C cameras
(2448 × 2048, color), stereo baseline ≈ 10 cm, 27◦ field of
view
• Two PointGrey Flea2 FL2G-50S5M cameras (2448×2048,
grayscale), stereo baseline ≈ 30 cm, 37◦ field of view

We rigidly mounted the four cameras on an aluminum plate,
linked to a lightweight carbon-fiber frame holding MoCap
markers for pose ground-truthing. The plate and frame were
attached on a tripod of adjustable height and orientation,
which allowed us to simulate the height and orientation of
hazard and navigation cameras. The cameras were calibrated
(intrinsics and stereo extrinsics) using a calibration checker-
board comprising 7×9 squares of individual size 5 cm×5 cm.
We depict the resulting camera setup in Fig. 1a.

The pixel angular resolution of those two setups are slightly
better than Mars 2020’s. We note that the objective of this
paper is not to quantify our ability to complete Fetch’s task
with Mars 2020 cameras, but instead to assess conceptual
feasibility and sensitivity to environmental conditions.

Testbed

We performed our experiments in the sandy area of the
testbed, as depicted in Fig. 1b. The sand and rocks are
representative of different terrain conditions that could be en-
countered on Mars. We operated within a 4m× 6m area and
consecutively assessed two types of rock distribution: dense
or sparse. In terrains with dense distribution, approximately
4 to 10 rocks of diameter 10 cm or above were visible from
each viewpoint, in contrast to only 1 to 4 rocks per viewpoint
for terrains with sparse rock distribution. We placed a sample
tube, equipped with MoCap markers on rods extending from
both ends, centered in each depot. To capture the tube pose
as well as the camera bar pose, we placed 10 MoCap cameras
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(a) Camera acquisition setup. (b) Testbed.

Figure 1. (a): camera setup (red) with MoCap markers on
rigid frame (blue). (b): data acquisition testbed with

North/East/West/South lights (red) and MoCap cameras (7
depicted - blue).

(Vicon T-160) around the workspace for our test setup (6
cameras mounted high on the walls, 4 on tripods), which is
a half-circle area of radius 2m centered on the sample tube.
Finally, we equipped the testbed with four groups of ceiling
lights that were placed at the four cardinal directions and can
be switched on and off separately, enabling us to assess the
effect of different illumination conditions on tube localization
algorithms.

4. DATASET
Reference Frames

We use the notations from [4]. Given two coordinate frames
{A} and {B}, we denote by ATB the pose of {B} relative
to the frame defined by {A}, or the transformation from {A}
to {B}. A point P can thus be expressed in either coordinate
frame as Ap and Bp following

Ap = ATB · Bp. (1)

We denote by {O} the world coordinate frame used by the
MoCap motion capture system. The MoCap system outputs
the 6D pose of groups (or constellations) of markers, ex-
pressed in frame {O}. Expressing the pose of a constellation
requires the definition of a reference frame (origin and 3D
orientation) for the constellation. We denote the frame of the
camera bar’s constellation by {CV }. The MoCap system out-
puts the pose of this constellation relative to the MoCap’s ori-
gin, OTCV . Denoting the cameras’ optical frames by: {CF }
(left Flea camera) and {CG} (left Grasshopper camera), we
computed the rigid transformation CV

TCF (resp. CV

TCG )
between the MoCap marker constellation and the Flea (resp.
Grasshopper) optical frames by simultaneously recording the
3D position of MoCap markers pi tracked individually in the
constellation frame CV

pi directly from the MoCap system
and in the optical frame CF

pi (resp. CG

pi ) from stereo
and aligning the correspondences

{
(C

V

pi ,
CF

pi)i

}
(resp.{

(C
V

pi ,
CG

pi)i

}
) using Eq. (1). Combining this with the

constellation pose measured by MoCap OTCV thus allowed
us to obtain the optical frame {CF } and {CG} poses with
respect to the world frame {O}:

OTCF = OTCV
CV

TCF , (2)
OTCG = OTCV

CV

TCG . (3)

(a) Sparse rock distribution.

(b) Dense rock distribution.

Figure 2. Images captured by the left Grasshopper camera
on (a) sparse and (b) dense rock distributions. For (a) and
(b), from top to bottom: viewpoints from (0.8m high, 1m

away), (0.8m high, 2m away), (1.6m high, 1m away),
(1.6m high, 2m away); from left to right: same viewpoint

with all lights on, or only East, South, North, West.

For rest of the paper, we no longer consider camera marker
constellation poses, only those of the optical frames. For the
tube, a similar procedure could be taken for the tube to align
marker positions from the tube MoCap constellation frame
{TV } to an arbitrary tube frame {T} (e.g., defined by CAD)
through a transformation TV

TT . In the following, we simply
set TV

TT = I4 the 4 × 4 identity matrix such that OTT =
OTTV .

Data Collection

We collected a large dataset of rock-sand-tube images by
exhaustive exploration of the following capture configuration
space C:

• 2 rock distributions: sparse or dense
• 52 viewpoints for each rock distribution as follows:
– 2 distances from the tube to the camera tripod: 1m or 2m
– For each such distance d, place the tripod at 13 angles

along a half-circle of radius d centered on the tube: 0◦, 20◦,
40◦, 60◦, 70◦, 80◦, 90◦, 100◦, 110◦, 120◦, 140◦, 160◦, 180◦
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– 2 camera heights: 0.8m or 1.6m
• 5 illumination settings for each viewpoint: all lights on or
only North, East, South, West
• 2 stereo pairs: Grasshopper (baseline ≈ 10 cm) or Flea
(baseline ≈ 30 cm)
• 2 camera exposure settings: tuned to maximize the pixel
intensity range while avoiding saturation for either the tube or
the rocks. We used the latter for terrain-relative localization
and reserve the former for a separate study on direct tube
localization (out of scope of this paper).

In the rest of this paper, we refer to capture configuration
as a combination of rock distribution, viewpoint, illumina-
tion, stereo pair and exposure. We thus collected a dataset
of left and right stereo images over |C| = 2080 capture
configurations, totalling 4160 images annotated with ground-
truth camera (left optical frame) and tube poses. In practice,
8 images were corrupted during our experiments, such that
4152 images remained usable for further analysis.

Averaging Tube Poses

We recorded the pose of all MoCap constellations (i.e., cam-
era setup and tube) every time we captured camera images.
However, we did not physically move the tube every time we
moved the cameras. Instead, the tube stayed at one location
for all data captured under the sparse rock settings, and at
a second location for all data captured under the dense rock
settings. Thus, within each setting, we could refine the tube
pose by computing an average OTT as follows. For the
translation component of OTT , we simply took the arithmetic
average of the translation component of the tube poses OTTi

recorded over all the configurations i under a given rock
distribution setting. However, the orientation component of
OTT could not be computed by direct arithmetic averaging
of the rotation components of the corresponding OTTi

. In-
stead, we computed an average rotation as the eigenvector
corresponding to the largest eigenvalue of the 4 × 4 matrix
M =

∑
qiq

T
i , with qi the rotation component of oTTi

as quaternion, following [5] (see [6] for a more extended
overview on rotation averaging).

5. ROCK-SAND-TUBE SEGMENTATION
Since there is a period of 6 to 8 years between Mars 2020
dropping the tubes and the Fetch rover retrieving them, we
anticipate the possibility that sand may move during that time,
possibly covering certain tubes (partially or fully) while also
making sand patterns unusable for localization. However,
rock surfaces that are 5 cm above the ground or higher are
likely to remain unaffected by drifts. We partially captured
this constraint in our localization benchmarks, by denying
the use of visual features issued from image pixels that
correspond to sand. We limited our localizer to using rock
features. Thus, we preprocessed our dataset to mask tube
and sand areas from every image, keeping only the rocks.
In preliminary experiments, we measured that it took about
30min on average to mask out a single image. Instead,
we trained a deep neural network to perform rock segmen-
tation, specifically a Fully-Convolutional Neural Network
(FCNN) [7] that takes as input a full-size 2448× 2048 image
from the dataset and directly produces an image of the same
size where every output pixel models the probability of being
part of a rock, tube or sand, which in turn can be thresholded
to mask out sand and tube.

Layer Kernel size Strides Filters
Convolution 1 24× 24 4× 6 256
Convolution 2 8× 8 1× 1 196
Convolution 3 4× 4 1× 1 128
Deconvolution 1 2× 2 2× 2 196
Deconvolution 2 4× 6 4× 6 256
Deconvolution 3 4× 4 4× 4 3

Table 1. Neural network layer parameters.

Segmentation: Training Dataset

We constructed a training dataset starting from a set of 16
images chosen across various capture configurations (rock
density, camera viewpoint, stereo pair, illumination). We
hand-labeled each of these 16 images at the pixel level,
by drawing masks indicating what parts of the image are
rocks, sand or tube, respectively depicted in blue, green and
red in Fig. 3a. We further extended by mirroring (vertical,
horizontal, and both), yielding 64 training annotated images
in total. In order to be able to use a single network for
both Flea and Grasshopper camera images, we trained it on
grayscale images only (i.e., direct Flea images or converted
Grasshopper images).

Neural Network

We built our FCNN with three convolutional layers, each
followed by a maxpool layer of size 2 × 2 and stride 2 × 2,
and three deconvolutional layers [7], of size summarized in
Table 1. Passing as input a 2448× 2048× 1 grayscale image
of the scene, the neural network thus outputs a 2448×2048×3
tensor where each element of coordinates (i, j) is a 3-element
vector of the probabilities that pixel (i, j) in the input image
belongs to the sample tube, sand or rocks. We then trained
the neural network using a weighted cross-entropy loss over
the pixels I = [1, 2048] × [1, 2448] and available classes
C = {rock, sand, tube} :

L =
∑

(i,j)∈I

{
−
∑
k∈C

1

Nk
p
(i,j)
k log q

(i,j)
k

}
, (4)

with p
(i,j)
k and q

(i,j)
k the respective ground-truth and predicted

probabilities that pixel (i, j) is of class k, and Nk the number
of pixels of class k in the training set. The 1

Nk
weighting

factor helped with the dataset being highly unbalanced, e.g.,
containing many more sand than tube pixels. We trained the
neural network with 8-fold validation by minimizing the loss
of Eq. (4) with the Adam stochastic optimization method [8]
and a 10−4 initial learning rate.

During training, we monitored the following three metrics (a)
the training (and validation) loss, (b) the confusion matrix
for per-pixel labelling, i.e., how many pixels were predicted
to be a certain class versus their ground-truth class, and (c)
the percentage of true/false positives/negatives for each class.
While (a) was the loss function to be optimized, it was really
a proxy for (c), the quantity we are interested in for image
segmentation. We experimentally observed that extended
training could lead to lower values for the loss function but
worse classification accuracy. Thus, we interrupted training
if the classification accuracy, here chosen as the average
percentage of true positives and true negatives across all
classes, stopped improving. We depict these three training
metrics in Fig. 3b over 217 epochs, with the maximum
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(a) Training image with ground-truth labels.

(b) From left to right: training and validation losses over 217 epochs,
confusion matrix, percentage of true/false positives/negatives per class.

(c) Rock-sand-tube segmentation pipeline at inference time.

Figure 3. Neural network for image segmentation.

accuracy network being obtained at epoch 197. At inference
time, we simply passed a given image through the neural
network to obtain a per-pixel label mask and only kept the
pixels corresponding to the class we were interested in, here
the rocks, see Fig. 3c. We executed this procedure on the
entirety of the dataset described in Section 4 in order to
evaluate the accuracy of terrain-relative localization using
rock features only. Note that when deploying terrain-relative
localization on the actual Fetch rover, it sufficed to compare
newly acquired images by Fetch (including sand) to images
captured by the Mars 2020 rover and manually segmented on
Earth between the two rover missions.

6. TERRAIN-RELATIVE LOCALIZATION
In this section we describe our proposed indirect localization
method. At the mission level, this involves three steps: First,
the Mars 2020 rover regularly collects images along its path
within each tube depot, and several images of tubes and
surrounding rocks after each tube release. Second, ground
operators build a sparse feature map of each depot, containing
the pose OTT of each tube {T} with respect to rock features
in the environment {O}, together with the pose OTCM2020
from which each image was taken by the Mars 2020 camera
{CM2020}. Finally, the Fetch rover launches, and the map is
copied to its onboard computer. Upon reaching a depot, Fetch
leverages the map to navigate the depot and pick up tubes.

We assumed that the Fetch rover is able reach the entry point
of each depot with a 1m accuracy using ground-in-the-loop
localization [9], which allows it to localize itself with respect
to the first M2020 image taken at the entrance of the depot.
Fetch follows M2020’s path until the first tube, and finally
localizes itself with respect to a M2020 image of the tube

site. Matching features between a M2020 image and a Fetch
image yields CFetchTCM2020 , the spatial transformation between
the Mars 2020 {CM2020} and Fetch {CFetch} rover cameras.
We finally obtain the transformation from Fetch to the tube
CFetchTT by transiting through the tube OTT and Mars 2020
camera OTCM2020 poses obtained previously:

CFetchTT = CFetchTCM2020︸ ︷︷ ︸
feature matching

CM2020TO︸ ︷︷ ︸
known

OTT︸ ︷︷ ︸
known

. (5)

The problem of terrain-relative tube localization thus boils
down to that of estimating the relative transform between two
camera viewpoints. In the following, we evaluate it over
the multiple capture variations of the dataset described in
Section 4.

Pose Estimation

We estimated transformations between stereo pairs by feature
matching using the approach of [10] and the associated LIB-
VISO2 library2 modified to use SIFT [11] as feature detector
and descriptor, as well as “deep descriptors” [12] predicted
by a convolutional neural network from image patches around
SIFT keypoints. The algorithm works as follows. Consider
two left and right rectified image pairs (ILi , I

R
i ) and (ILj , I

R
j )

taken under different but compatible capture configurations i
and j (that is, two different combinations of camera view-
point, stereo pair and lighting condition, but on the same
depot, i.e., rock distribution). We computed four-way feature
correspondences, using SIFT as keypoint detector, together
with either SIFT or deep feature descriptors. We performed
this correspondence search in a “circular” manner:

ILi ↔ IRi

l l
ILj ↔ IRj

, (6)

and only kept matches such that starting from one image fea-
ture and following the circle led back to that same feature. To
accelerate the correspondence search, we required matches
between left and right images within the same stereo pair to
be within 1 pixel of one another along the vertical axis (epipo-
lar constraint). We depict the resulting matches between left
images taken from two different viewpoints in Fig. 4, after
rock segmentation. We denote by {Ci} and {Cj} the optical
frames at capture configurations i and j, respectively. The
transformation CiTCj between the two camera poses was
computed by minimizing the reprojection error of all features
via Gauss-Newton optimization on inliers estimated within a
RANSAC scheme (20,000 iterations) when at least 6 circular
matches were available.

Localization Accuracy Metrics

Let us denote by CiTCj
the ground-truth (i.e., motion-

capture) transformation between Ci and Cj and by CiTĈj

the corresponding transformation estimated through feature
matching by considering Ci as the reference viewpoint (e.g.,
captured by Mars 2020 and for which operators annotated
camera and tube poses). The notation Ĉj indicates that the
viewpoint estimated from feature matching could differ from

2http://www.cvlibs.net/software/libviso/
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Figure 4. Matching features between segmented rocks.
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Figure 5. Composing the transformation from feature
matching CiTĈj

with the ground-truth camera-to-tube
transformation CjTT results in an error transformation for

the tube TTT̂ .

the real one. The transformation error is given by:

CjTĈj
= CjTCi︸ ︷︷ ︸

ground truth

CiTĈj︸ ︷︷ ︸
feature matching

. (7)

The optical frame transformation error was however not
an adequate metric for the problem of picking up a tube:
intuitively, a null camera translation error with an orientation
error of a few degrees could lead to a large position error
for the tube. To satisfactorily evaluate applicability to tube
pick-up, we defined our metric as the position-orientation
distance between (a) the pose of the tube in Fetch frame,
assuming a ground-truth M2020-Fetch transformation, and
(b) the pose of the tube in Fetch frame computed via visual
localization. Instead of evaluating camera localization errors
alone, we evaluated their effect on tube localization. To do
so, we first decomposed the relative transformation between
a camera frame {Ci} and the tube frame {T} by transiting
through another camera frame {Cj}:

CiTT = CiTCj

CjTT . (8)

We then defined a “virtual tube” T̂ as that obtained by blindly
following the ground-truth transformation between the real
viewpoint and the real tube CjTT , but starting from Ĉj the
viewpoint obtained from rock feature matching. That is, we

set:
ĈjTT̂

:= CjTT . (9)

We depict the corresponding frames and transformations in
Fig. 5. Compared to Eq. (8), instead of transiting through
the ground-truth transformation CiTCj

, we computed the
virtual tube pose by composing the transformation between
cameras from terrain-relative localization with the ground-
truth camera-to-tube transformation:

CiTT̂ = CiTĈj

ĈjTT̂ = CiTĈj

CjTT . (10)

The resulting error transformation at the level at the tube was
then expressed using Eq. (10) as:

TTT̂ = TTCi

CiTT̂ (11)

= (TTCj

CjTCi)(
CiTĈj︸ ︷︷ ︸CjTT ) (12)

=
(
CjTT

)−1 CjTĈj

CjTT . (13)

The tube error transformation TTT̂ was thus solely expressed
as function of the camera error transformation CjTĈj

and a
ground-truth camera-to-tube transformation CjTT . In prac-
tice, we could use Eq. (13) to estimate the effect of camera
error CjTĈj

for any object P placed at CjTP with respect to
the camera. In the rest of the paper, we estimated errors at the
level of the ground-truth tube pose measured by the motion
capture system but could also repeat our methodology for
other locations in the depot and refine workspace constraints
thusly. Finally, let us decompose the transformation error
TTT̂ into a translation vector T tT̂ and a rotation matrix TRT̂ .
We defined the tube translation error as the L2 norm of T tT̂ ,
and the tube orientation error as the absolute angle in the axis-
angle representation of TRT̂ .

7. EXPERIMENTS
We now apply our terrain-relative localization pipeline (see
Section 6) to estimate transformations between all possible
capture configurations within our dataset (see Section 4), i.e.,
270,920 pair-to-pair transformations. In the following, we
report resulting translation and rotation errors at the level of
the tube when varying capture configuration. Note that as we
require at least 6 matches to estimate camera transformations
from correspondences in our current implementation, if only
5 matches or less are available, then we mark the transforma-
tion calculation as unsuccessful and depict it on gray back-
ground in the error tables reported next. In our experiments,
successful transformation estimates only yielded angular er-
rors below 2◦ (most of them being below 1◦), thus we focus
on translation errors as success criterion for tube pickup. For
every error table, we thus depict the viewpoint comparison
producing the worst-case (largest) translation error among the
successful transformation calculations, which we require to
be below 5mm for tube pickup based on the current Fetch
rover concept being equipped with a 1 cm-wide parallel jaw
gripper. For the sake of readability, we depict the left image
from both stereo pairs before image segmentation but we run
our experiments using rock features only.

Preliminary Experiments: Descriptors and Rock Density

First, we report the tube estimation errors using both CNN-
based (see Fig. 6a) and SIFT (see Fig. 6b) descriptors, when
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(a) Deep descriptors, dense rock distribution
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(b) SIFT descriptors, dense rock distribution.
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(c) SIFT descriptors, sparse rock distribution.

Figure 6. Tube localization results when varying one parameter at a time between feature descriptors and rock density. Top:
translation and rotation errors. Bottom: viewpoints producing worst-case translation errors over successful transformations,

(a) 13.2mm, (b) 20.1mm, (c) 10.1mm. Unsuccessful transformations are on gray background.
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Figure 7. Top: translational and angular errors when
viewing the scene from different angles. Bottom: left camera

images for worst-case translation error (4.0mm).

comparing stereo taken from two different viewpoint angles
between 0◦ and 180◦ on the dense rock distribution, all other
parameters being equal. We observe from Figs. 6a and 6b that
transformations obtained from each are of comparable accu-
racy, but SIFT descriptors are able to yield transformations on
a wider range of viewpoint changes. We also depict in Fig. 6c
the accuracy results when using SIFT features on the sparse
rock distribution and observe (as it can be expected) that
the more rocks being available facilitates feature matching
across larger viewpoint variations. As we observe that these
two trends is consistent over different capture configurations,
we choose for the rest of this study to present our results
using SIFT features (i.e., the better method we can choose)
on the sparse rock distribution (i.e., the more challenging
distribution, which we may not be able to effect on Mars).

View Angle

We observe from Figs. 6b and 6c that pose estimation con-
sistently works for up to 60◦ angle differences on the dense

rock distribution and 40◦ on the sparse rock distribution. With
these images captured from 2m away from the tube, these
angle differences correspond to, respectively, 2m and 1.37m
distances between viewpoints. As the Fetch rover is able
to position itself globally within 1m of a chosen location,
it is thus not a problem if tube localization using only rock
features fails beyond that. Furthermore, while the 10.1mm
worst-case translation error for Fig. 6c is insufficient for blind
grasping, it can be used to drive the rover closer to the tube,
capture new images, then perform a new round of feature
matching in preparation for grasping. We depict in Fig. 7
the tube localization errors for view angles between 60◦ and
120◦. Captured 1m away from the tube, this 60◦ maximum
angle difference also corresponds to a 1m maximum distance
between viewpoints. We observe that all viewpoint transfor-
mations can be calculated under these capture configurations,
with a worst-case translation error at the tube level of 4.0mm,
which is sufficient for tube pickup. Note that, as described
previously, it is always possible to iteratively drive the Fetch
rover closer to the Mars 2020 reference viewpoint, until
achieving sub-millimeter tube localization accuracy.

Distance to Tube

In the previous experiment, we assessed the effects of view-
point variations while keeping the camera setup 1m away
from the tube. In this experiment, we compare viewpoints
taken from the same view angle but either 1m or 2m away
from the tube, i.e., both viewpoints are on the same radial
line with the tube but at different distances. We represent the
resulting transformation errors in Fig. 8, illustrating also the
scale difference between how rocks appear, and how many
can be seen. We report a worst-case translation error of
8.1mm, which is slightly too large for grasping but we can,
similarly to the previous case, use to navigate closer to the
tube before recalculating our pose.

Camera Height

Having assessed the effect of transformations on the horizon-
tal plane, we now assess the effect of transformations along
the vertical axis. For different view angles 1m away from the
tube, we compare stereo pairs captured when the tripod was
lowered to 0.80m above the ground and when it was raised to
1.6m, all other capture parameters being the same. We report
a worst-case translation error of 3.3mm, which is sufficient
for tube pickup.
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Figure 8. Top: translational and angular errors for 1m vs.
2m distance to the tube over different view angles, all other
parameters being constant. Bottom: left camera images for

worst-case translation error (8.1mm).
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Figure 9. Top: translational and angular errors for low
(0.8m) vs. high (1.6m) camera heights over different view

angles, all other parameters being constant. Bottom: left
camera images for worst-case translation error (3.3mm).

Camera Variation

We now assess the effect of capturing images using two
different sets of stereo cameras on tube localization. To do
so, we take images captured by the Flea cameras as the first
set of stereo pairs, and as images captured by the Grasshopper
cameras as the second set. Both stereo pairs are captured at
the same instant, such that the transformation between the
two is constant, determined by how they were mounted onto
the aluminium camera plate and calibrated, as described in
Section 3. We estimate this transformation by rock feature
matching, and repeat this experiment for different view angles
1m away from the tube. Note that both stereo pairs are still
captured at the same time, just from different test locations
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Figure 10. Top: translational and angular errors for Flea vs.
Grasshopper cameras over different view angles, all other

parameters being constant. Bottom: left camera images for
worst-case translation error (2.8mm).
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Figure 11. Top: translational and angular errors for varying
lighting conditions (all lights on, or only North, East, South,
West), but same viewpoint. Bottom: left camera images for

worst-case translation error (4.0mm).

(i.e., their global poses change but their relative pose is
constant). We report in Fig. 10 a worst-case translation error
of 2.8mm, which is sufficient for tube pickup. Together with
our previous results on camera height variations, this suggests
that it is possible to leverage both types of cameras together
(namely, hazcams and navcams) on the Mars 2020 and Fetch
rovers, even if their parameters differ across missions.

Lighting Variations

All the results presented so far were obtained between stereo
pairs captured under the same lighting conditions. This is
not an assumption that can be easily enforced in practice.
Instead, it is necessary that the Fetch rover can operate at
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Figure 12. Top: translational and angular errors for varying
lighting conditions and varying viewpoints. Bottom: left

camera images for worst-case translation error (16.2mm).

different times of the day and of the year, that may not
overlap with the times Mars 2020 captured depot images. In
order to evaluate the accuracy of terrain-relative localization
under changing light conditions, we captured images from
one single viewpoint under five settings. With independently
controlled lights at the cardinal points (North, East, South,
West), we either turned all four of them on together, or only
one at a time. As all images are captured under the same
viewpoint, we should ideally estimate a zero transformation
when comparing stereo pairs. Instead, we obtained con-
figurations where transformation estimation failed (i.e., less
than 6 matches were found between the two stereo pairs),
which we did not observe previously, even in cases with
1m actual motion. We depict these results in Fig. 11. We
also report a worst-case translation error of 4.0mm, which
is comparable to the errors obtained when the viewpoints
actually changed. While this level of error still permits tube
pickup when sufficient matches are found, we experimentally
observe that feature matching fails when comparing opposing
lighting directions.

View Angle and Lighting Variations

From Fig. 11, feature matching seemed to only fail under
opposing lighting conditions, i.e., between South/North and
East/West. As the Fetch rover will only be expected to
function over part of the day, this challenge could be partially
mitigated by choosing a time range to minimize the lighting
difference. However, performing terrain-relative localization
on both varying lighting and varying viewpoints show that
the problem is not simply solved by avoiding extreme light
changes. We indeed observe in Fig. 12 that transformation
estimation can fail between adjacent lighting conditions even
within a 10◦ angle difference (i.e., a 0.17m distance between
viewpoints), e.g., 100◦ view angle, North light vs. 90◦

view angle, East light. We thus identify that changes in
lighting conditions are a major challenge for terrain-relative
localization.

8. CONCLUSION
The autonomous recovery of sample tubes, occurring years
later after having been dropped, is a challenging problem
due to the uncertainty from both how the environment might
change over time and the sparsity of terrain features we can
rely on for localization. In this paper, we have presented
a complete localization and testing pipeline including: a
new image dataset spanning multiple capture modalities with
ground-truth poses from a motion capture system; a data-
driven model for rock-sand-tube segmentation to enforce
the consequences of time over the usable image features
(namely, sand moving and covering the tube); and a terrain-
relative localization algorithm leveraging ground-truth pose
annotations from Mars 2020 operators with feature matching
with respect to Fetch images using only rocks.

Our experiments showed that our approach is then robust to
varying camera viewpoints (namely: view angle, distance
to tube and height) as well as camera type (different base-
lines and fields of view, representative of different camera
setups between Mars 2020 and Fetch hazcams/navcams),
enabling tube localization within 5mm directly in most cases
(sufficient for tube pickup). We also showed that when
tube localization accuracy is insufficient for direct pickup, it
remains in the cm-scale, which lets us leverage the imperfect
transformation estimate for precision re-positioning before
performing a new iteration of terrain-relative localization.

However, we determined that changes in lighting conditions
were a considerable challenge in terrain-relative localization.
We indeed observed that transformation estimation could
fail under large changes of light direction, even when the
camera viewpoint did not change at all. Furthermore, we
observed it failing under small lighting changes combined
with small viewpoint changes. As it is not reasonable to
constrain the Fetch rover to only operate when its lighting
conditions perfectly match that of Mars 2020 many years
earlier, it is critical to develop new localization methods that
are robust to lighting changes specifically. To this end, we are
currently evaluating the use of shadow removal and synthetic
relighting techniques [13]. This would enable, for example,
the generation of a new appearance model of the depot
captured by Mars 2020, but under Fetch lighting conditions.
The generated model could then be used in combination with
localization methods that compare synthetic renderings of a
textured mesh to the current view [14], [15].

Some uncertainties remain beyond the sensitivity of our tech-
niques to lighting variations. First, terrain-relative localiza-
tion is ultimately contingent on the possibility of having an
accurate map of the depot from Mars 2020 images. Thus, as
future work, we would like to assess the effect of pose annota-
tion uncertainties in terrain-relative localization, and possibly
other sources such as camera calibration errors, noise in the
MoCap system, stochasticity in the localization algorithms,
etc. While we were able to extract feasibility assessments
from select slices of a 6D configuration space (rock density,
view angle, distance to tube, camera height, camera type,
lighting direction), we would also like to develop a systematic
way to explore the space and, e.g., automatically extract con-
figuration sets satisfying chosen accuracy requirements. We
are currently constructing an outdoor dataset to demonstrate
robustness to natural lighting conditions. We are also defining
an end-to-end test campaign that uses a rover prototype to
show hardware tube pickup. Finally, we are constructing
failure recovery procedures that address failed terrain-relative
grasps, with either ground-in-the-loop input or, in cases
where the failed grasp freed the tube from occluding sand,
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by directly segmenting the tube in Fetch’s camera images.

ACKNOWLEDGMENTS

The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space
Administration. The information presented about potential
Mars Sample Return architectures is provided for planning
and discussion purposes only. NASA has made no official
decision to implement Mars Sample Return.

REFERENCES
[1] R. Mattingly and L. May, “Mars sample return as a

campaign,” in 2011 Aerospace Conference. IEEE,
2011, pp. 1–13.

[2] J. Papon, R. Detry, P. Vieira, S. Brooks, T. Srinivasan,
A. Peterson, and E. Kulczycki, “Martian fetch: Finding
and retrieving sample-tubes on the surface of mars,” in
2017 IEEE Aerospace Conference. IEEE, 2017, pp.
1–9.

[3] J. Maki, C. McKinney, R. Sellar, D. Copley-Woods,
D. Gruel, D. Nuding, M. Valvo, T. Goodsall,
J. McGuire, and T. Litwin, “Enhanced engineering
cameras (eecams) for the mars 2020 rover,” in 3rd In-
ternational Workshop on Instrumentation for Planetary
Mission, vol. 1980, 2016.

[4] P. Corke, Robotics, Vision and Control: Fundamental
Algorithms In MATLAB R© Second, Completely Revised.
Springer, 2017, vol. 118.

[5] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman,
“Averaging quaternions,” Journal of Guidance, Control,
and Dynamics, vol. 30, no. 4, pp. 1193–1197, 2007.

[6] R. Hartley, J. Trumpf, Y. Dai, and H. Li, “Rotation
averaging,” International journal of computer vision,
vol. 103, no. 3, pp. 267–305, 2013.

[7] J. Long, E. Shelhamer, and T. Darrell, “Fully convo-
lutional networks for semantic segmentation,” in Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 3431–3440.

[8] D. P. Kingma and J. Ba, “Adam: A method for stochas-
tic optimization,” arXiv preprint arXiv:1412.6980,
2014.

[9] T. Parker, M. Malin, F. Calef, R. Deen, H. Gengl,
M. Golombek, J. Hall, O. Pariser, M. Powell, R. Sletten
et al., “Localization and’contextualization’of curiosity
in gale crater, and other landed mars missions,” in Lunar
and Planetary Science Conference, vol. 44, 2013, p.
2534.

[10] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense
3d reconstruction in real-time,” in 2011 IEEE Intelligent
Vehicles Symposium (IV). Ieee, 2011, pp. 963–968.

[11] D. G. Lowe, “Distinctive image features from scale-
invariant keypoints,” International journal of computer
vision, vol. 60, no. 2, pp. 91–110, 2004.

[12] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua,
and F. Moreno-Noguer, “Discriminative learning of
deep convolutional feature point descriptors,” in Pro-
ceedings of the IEEE International Conference on Com-
puter Vision, 2015, pp. 118–126.

[13] J. Philip, M. Gharbi, T. Zhou, A. A. Efros, and G. Dret-
takis, “Multi-view relighting using a geometry-aware
network,” ACM Transactions on Graphics (TOG),
vol. 38, no. 4, p. 78, 2019.

[14] G. Pascoe, W. Maddern, A. D. Stewart, and P. New-
man, “Farlap: Fast robust localisation using appear-
ance priors,” in 2015 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2015, pp.
6366–6373.

[15] K. Ok, W. N. Greene, and N. Roy, “Simultaneous track-
ing and rendering: Real-time monocular localization
for mavs,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2016, pp.
4522–4529.

BIOGRAPHY[

Tu-Hoa Pham is a Robotics Technol-
ogist at the NASA Jet Propulsion Lab-
oratory, Caltech Institute of Technol-
ogy, currently working on machine vi-
sion for Mars Sample Return. He holds
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