
Reevaluating Convolutional Neural Networks for

Spectral Analysis: A Focus on Raman

Spectroscopy

Deniz Soysal,† Xabier Garćıa–Andrade,† Laura E. Rodriguez,‡ Pablo Sobron,¶

Laura M. Barge,§ and Renaud Detry∗,∥,⊥

†KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium
‡Lunar & Planetary Institute, Universities Space Research Association, 3600 Bay Area

Boulevard, Houston, TX 77058, USA
¶Impossible Sensing, 20 South Sarah Street, St. Louis, MO 63108, USA

§Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, La
Cañada Flintridge, CA 91011, USA

∥KU Leuven, Dept. Electrical Engineering, Research Unit Processing Speech and Images
(PSI), Kasteelpark Arenberg 10, 3001 Leuven, Belgium

⊥KU Leuven, Dept. Mechanical Engineering, Research Unit Robotics, Automation and
Mechatronics (RAM), Celestijnenlaan 300, 3001 Leuven, Belgium

E-mail: renaud.detry@kuleuven.be

Abstract

Autonomous Raman instruments deployed on
Mars rovers, deep-sea landers, and mobile field
robots must interpret raw spectra that are dis-
torted by fluorescence baselines, peak shifts,
and limited ground-truth labels. Using rig-
orously documented subsets of the RRUFF
mineral database, we systematically evaluate
one-dimensional convolutional neural networks
(CNNs) and report four practical advances:
(i) Reproducible, baseline-independent clas-

sification: Compact end-to-end CNNs surpass
k-nearest-neighbors and support-vector classi-
fiers built on handcrafted peak features, elimi-
nating background-correction and peak-picking
stages. Unlike earlier work, we isolate the con-
tribution of learned features and ensure full re-
producibility by releasing all data splits and
preprocessing scripts.
(ii) Pooling controlled robustness: By ad-

justing a single pooling parameter, CNNs ac-
commodate Raman shift displacements up to

30 cm−1, enabling a practical trade-off between
translational invariance and class resolution,
aligned with instrument stability and spectral
variability.
(iii) Label-efficient learning: Semi-supervised

generative adversarial networks and contrastive
pretraining improve classification accuracy by
up to 11% when only 10% of labels are avail-
able. While smaller than gains in vision
tasks—due to Raman spectra’s lower complex-
ity—these methods remain valuable for au-
tonomous deployments with limited annota-
tion.
(iv) Constant time adaptation: Freezing the

CNNs backbone and retraining only the soft-
max layer transfers the model to unseen min-
erals at O(1) inference cost, outperforming
Siamese networks on resource-limited robotic
processors.
The resulting workflow—train directly on raw

spectra, tune pooling to instrument tolerance,
add semi-supervision when labels are scarce,
and fine-tune lightly for new targets—offers a

1

renaud.detry@kuleuven.be

practical path toward robust, low-footprint Ra-
man classification in autonomous field settings.

Keywords

Deep learning, science autonomy, minerals,
semi-supervised learning, ocean worlds, astro-
biology, deep-sea exploration

1 Introduction

Raman spectroscopy provides fast, non-
destructive, in situ chemical fingerprints that
enable identification of minerals, organics, and
biomaterials. A Raman spectrum is produced
by measuring the inelastic scattering of light,
where the scattered photons correspond to
molecular vibrations unique to the material’s
chemical structure, producing diagnostic peaks
but often with weak signals and fluorescence
backgrounds that complicate analysis. In the
last decade, machine learning (ML) paired with
spectroscopy—including Raman—has acceler-
ated discoveries across analytical chemistry, bi-
ology, and planetary science by mining large,
nonlinear spectral datasets (1–7). This progress
reflects better computation, accessible ML li-
braries, and instruments that generate high-
dimensional outputs (Raman, NMR, LC–MS).

Machine learning methods Spectral ML
generally falls into supervised and unsupervised
paradigms. Supervised learning relies on la-
beled datasets to train models for classifica-
tion or regression tasks, proving essential for
applications requiring precise predictions such
as early disease diagnosis (8), forensic residue
analysis (9), and microplastics monitoring (10).
On the other hand, unsupervised learning ex-
ploits unlabeled data to reveal latent structure.

ML for autonomous exploration In Earth
and planetary missions, supervised ML under-
pins scientific autonomy on robots operating
from deep-sea vents to extraterrestrial terrains,
where spectrometers guide real-time decisions

on sampling and goal replanning (11–17). Lim-
ited storage and bandwidth force onboard prior-
itization of what to transmit or retain (18, 19).
Emphasis on autonomy spans deep-sea mining
(20), Mars missions (19, 21), and planned ex-
plorations of icy ocean worlds (18, 22).

Challenges in applying machine learn-
ing to spectral data Traditional ML tech-
niques, such as k-nearest neighbors (KNN) and
support vector machines (SVM), typically rely
on heavy preprocessing to manage high di-
mensionality, fluorescence baselines, and noise
(1, 7, 23, 24). Baseline correction is criti-
cal for Raman spectroscopy (23), with analo-
gous handling for the Bremsstrahlung effect in
LIBS (25) and chromatographic drift (26). Yet
expert-driven preprocessing can inject bias, and
heterogeneous pipelines hinder reproducibility.
A second constraint is label scarcity: obtain-
ing mineral ground truth (XRD/chemistry) is
costly and labor-intensive. Ground-truthing
measurements from surface-based techniques
such as Raman, LIBS, and Vis-IR spectroscopy
further complicate the process, as they often
require detailed comparisons between bulk and
surface analyses. Biomedical and field datasets
are further limited by permits, logistics, and
budgets. These realities motivate label-efficient
models and reproducible workflows that lever-
age unlabeled data. Additionally, approaches
tailored to the unique characteristics of spectral
data could help overcome these limitations, en-
abling more efficient and accurate use of both
labeled and unlabeled datasets.

Deep learning methods Deep learning, a
branch of ML, utilizes a series of nonlinear
transformations, often implemented as neural
networks, to extract meaningful insights from
data. Deep learning models learn nonlinear rep-
resentations directly from data and can oper-
ate on raw spectra, reducing reliance on hand-
crafted preprocessing (23). Neural networks
encompass diverse architectures but share a
common structure comprising three key compo-
nents: an input layer for data ingestion, one or
more hidden layers where nonlinear transforma-
tions are applied, and an output layer that gen-

2

erates predictions. Fully connected deep neural
networks (DNNs) interconnect every node be-
tween layers, but they scale poorly as input di-
mensionality grows. Convolutional neural net-
works (CNNs), by contrast, use local kernels
and pooling to extract compact, hierarchical
features and generalize better on images and
spectral signals (1, 4, 7, 23, 27–31). CNNs’
built-in inductive biases (such as locality and
translational invariance) align particularly well
with the characteristics of image data and fa-
cilitate efficient feature extraction.

Challenges for deep learning in spec-
tral data Unlike images, small Raman peak
shifts can be chemically meaningful; indiscrim-
inate translational invariance is harmful (32).
CNNs’ invariance must therefore be controlled
via architectural adjustments and hyperparam-
eter tuning to be robust to instrument drift yet
sensitive to class-defining displacements. Al-
though CNNs need fewer labels than fully con-
nected DNNs, they remain more data-hungry
than KNN or SVM because they learn features
rather than rely on engineered ones. Label-
efficient strategies are thus important: domain-
aware augmentation (23, 33, 34), semi-/self-
supervised learning to exploit unlabeled spec-
tra (35, 36), and transfer learning to adapt
pretrained backbones to new datasets (32, 37).
Although these strategies show promise, their
effectiveness in the context of Raman spec-
troscopy and other spectral data remains an
area requiring further investigation.

Applications of ML in Raman spec-
troscopy Traditional Raman pipelines have
used multivariate discriminant analysis (38),
partial least-squares regression (39), KNN (40),
and SVM (41). More recently, CNNs have
emerged as a more effective approach for an-
alyzing Raman spectra (23, 42). To address
the challenge of limited labeled data, Liu et
al. (24) proposed a representation learning ap-
proach using Siamese networks (43), shifting
from multi-class classification to binary clas-
sification. Despite progress, two gaps remain:
(i) image-centric CNNs inductive biases are not
fully aligned with Raman peak physics, and (ii)

most methods do not fully leverage the abun-
dant unlabeled spectra. Addressing both is es-
sential especially in label-scarce settings.

Scope of This Study We build upon prior
work by focussing on understanding the role
of inductive biases in CNNs’ architectures and
exploring data-efficient strategies such as semi-
supervised learning and transfer learning. Un-
like previous studies that primarily benchmark
models, our work provides an in-depth analy-
sis of CNNs robustness to spectral shifts, in-
vestigates the complexity of low-level spectral
features, and offers practical guidelines for de-
ploying CNNs in data-scarce environments.
Using rigorously documented subsets of the

RRUFF database (44), our objectives are four-
fold:

1. Investigating CNNs Inductive Bi-
ases: Analyze how the inherent inductive
biases of CNNs’ architectures impact Ra-
man spectral classification, and propose
architectural adjustments to enhance per-
formance.

2. Benchmarking Against Traditional
Methods: Compare CNNs with classi-
cal machine learning approaches, includ-
ing SVM and KNN, on both raw and pro-
cessed Raman spectra.

3. Exploring semi-supervised learning:
Evaluate semi-supervised methods such
as semi-supervised generative adversarial
networks (SGANs) and contrastive learn-
ing to improve accuracy by leveraging un-
labeled spectral data.

4. Analyzing low-level spectral fea-
tures: Examine the complexity and
structure of low-level Raman features to
understand their role in model perfor-
mance and guide architecture design.

To keep the narrative clear, we interleave
methodological discussion with results. Sec-
tion 2 introduces our RRUFF subsets; Sec-
tion 3 establishes SVM/KNN baselines; Sec-
tion 4 shows CNNs’ superiority on raw spec-
tra; Section 5 tunes inductive biases for shift

3

robustness; Section 6 develops semi-supervised
approaches; Section 7 investigates feature com-
plexity; and Section 8 demonstrates lightweight
transfer learning for new mineral classes.

2 The Database

Our experiments utilize the RRUFF Database1,
the largest publicly available mineral spectral
database (44). The database currently holds
spectra for 4 216 curated specimens (cover-
ing 2 351 mineral species out of 6 006 IMA-
approved minerals).

RRUFF content and provenance The
RRUFF Project was created to provide “a com-
plete reference set of Raman spectra, X-ray
diffraction patterns and electron-microprobe
analyses for every mineral species” (44). Each
database record corresponds to a single,
archived specimen with a unique RRUFF ID
and includes (i) Raman spectra acquired at 532
nm (often additional wavelengths) in both Raw
and baseline-corrected Processed forms; (ii) a
powder-XRD pattern used to confirm phase pu-
rity; (iii) full chemical analysis and ideal for-
mula; (iv) detailed acquisition metadata (laser
power, spot size, spectrometer, crystal orienta-
tion, temperature); and (v) locality information
and a photomicrograph. Because every spec-
trum is traceable to a specimen whose iden-
tity has been independently validated by XRD
and chemistry, the mineral name supplied by
RRUFF constitutes a ground-truth label for su-
pervised learning.

What a spectrum represents A Raman
entry in RRUFF is a one-dimensional vec-
tor I(ν̃) of photon counts (or arbitrary in-
tensity units) as a function of Raman shift ν̃

(cm−1) measured from a single laser spot on
the specimen. Most specimens are analyzed in
multiple modes: high-resolution scans (narrow
range, ∼ 70–1 400 cm−1) that resolve diagnos-
tic peaks, low-resolution scans (broad range,
70–6 500 cm−1) that capture lattice modes and

1https://rruff.info/

overtones, and optionally oriented measure-
ments with the crystallographic axes aligned to
the laser polarization.

Terminology used in the remainder of
this paper

• Spectrum: a single Raman vector I(ν̃)
as defined above.

• Labeled spectrum: a spectrum whose
mineral species (e.g. “quartz”) is provided
to the model during training or evalua-
tion; in practice this means the species
tag supplied by RRUFF.

• Unlabeled spectrum: a spectrum for
which the species tag is withheld, ei-
ther deliberately (e.g. to create semi-
supervised splits) or because ground-
truth is absent in a field-deployment sce-
nario.

We will consistently use the terms la-
beled and unlabeled in this sense through-
out the paper. For every Raman mea-
surement, RRUFF stores a text file
whose file name indicate the processing
state—ending in “. . . Raman Data RAW.txt”
or “. . . Raman Data Processed.txt”.
Throughout this paper we refer to these
two sets simply as

• RRUFF-raw: spectra as recorded in the
RAW format, without baseline prepro-
cessing;

• RRUFF-clean: baseline-corrected spec-
tra (processed format, where base-
lines have been removed by Crystal-

Sleuth(44)).

2.1 Subset of the RRUFF
database used in this study

We consider two subsets of the RRUFF
database:

• Low-resolution unoriented sub-
set: Downloaded from https:

//rruff.info/zipped_data_files/

4

https://rruff.info/
https://rruff.info/zipped_data_files/raman/LR-Raman.zip
https://rruff.info/zipped_data_files/raman/LR-Raman.zip

raman/LR-Raman.zip, containing unori-
ented low-resolution samples. Classes
with fewer than eight samples are pruned,
and only the RRUFF-raw spectra are
retained.

• High-resolution oriented sub-
set: Downloaded from https:

//rruff.info/zipped_data_files/

raman/excellent_oriented.zip, con-
taining oriented high-resolution samples.
Same pruning is applied, and only the
RRUFF-clean spectra are retained.

This results in two datasets: one com-
posed of RRUFF-raw spectra and another of
RRUFF-clean spectra. These datasets are
then split into training and test sets. The
specific subsets used in our experiments can
be downloaded from https://github.com/

denizsoysal/Raman_spectra_data.

2.2 Preprocessing

In addition to the baseline correction performed
in the RRUFF-clean spectra by the database
maintainers, we apply our own preprocessing
pipeline systematically to both RRUFF-raw
and RRUFF-clean data. These steps are fully
automated and applied in batch mode across
the entire dataset, without any human inter-
vention at the sample level.

Class Pruning Classes with fewer than
nmin = 8 samples are removed to maintain suf-
ficient training data per category.

Wavelength Range Selection Raman
shifts outside the (200, 1600) cm−1 range are
discarded. This decision is motivated by the
observation that peaks are concentrated in the
lower Raman shift values, whereas higher shifts
provide limited discriminative information.
Additionally, the lowest Raman shift region
corresponds to intermolecular vibrations, which
are not discriminative for mineral classifica-
tion. Based on this observation, the models are
restricted to the ν ∈ (200, 1600) cm−1 domain.

Interpolation and Resampling To stan-
dardize input dimensions and spectral resolu-
tion, each raw spectrum’s shift–intensity pairs
are projected onto a common Raman-shift grid
spanning 200-1600 cm−1 in 1 cm−1 steps. These
bounds and step size are chosen based on sta-
tistical summaries of all spectra, including min-
imum/maximum shift ranges and the average
sampling resolution. This yields 1401 points,
which we then truncate to 1392 points (the
nearest lower multiple of 16) to satisfy GPU
alignment constraints. Projection is performed
via linear interpolation, with any values out-
side a spectrum’s original range set to zero.
No additional smoothing or filtering is ap-
plied, preserving spectral fidelity. The resulting
1392-dimensional intensity vector ensures uni-
form resolution, consistent dimensionality, and
efficient batching for neural network training.

Normalization All spectra are normalized
to ensure consistent intensity scaling, reducing
variability introduced by acquisition conditions.

We emphasize that the preprocessing steps
described above are computationally inexpen-
sive and applied in batch mode across the entire
dataset. No human intervention is required on a
per-sample basis, which ensures reproducibility
and mitigates the risks of manual bias typically
associated with expert-guided preprocessing.

2.3 Final Dataset

After pruning classes with fewer than eight
spectra and applying the pre-processing
pipeline, the corpus splits into two subsets:

• RRUFF-clean: 3 425 spectra, 155 min-
eral classes (mean 22.1 spectra per class).

• RRUFF-raw: 1 311 spectra, 102 min-
eral classes (mean 12.9 spectra per class).

Both subsets are highly imbalanced (Fig-
ure 1), with most species represented by fewer
than 20 spectra. To mitigate this, we apply
class weights in the cross-entropy loss, forcing
the network to pay proportionally more atten-
tion to under-represented classes.

5

https://rruff.info/zipped_data_files/raman/LR-Raman.zip
https://rruff.info/zipped_data_files/raman/excellent_oriented.zip
https://rruff.info/zipped_data_files/raman/excellent_oriented.zip
https://rruff.info/zipped_data_files/raman/excellent_oriented.zip
https://github.com/denizsoysal/Raman_spectra_data
https://github.com/denizsoysal/Raman_spectra_data

(a) Class-size histogram for the RRUFF-raw
subset.

(b) Class-size histogram for the RRUFF-clean
subset.

Figure 1: Number of spectra per mineral class after all pre-processing steps. The imbalanced
distribution motivates the use of class-weighted loss in model training.

2.4 Illustrative spectral variabil-
ity

Figure 2 plots dolomite with four other car-
bonate minerals whose Raman signatures are
almost super-imposable. All five spectra fea-
ture the characteristic carbonate band at ∼
1085 cm−1; the principal peaks differ by less
than 10 cm−1, creating a fine-resolution chal-
lenge for any classifier. Figure 3 instead com-
pares dolomite with four minerals from chem-
ically different groups (arsenates, hydroxides,
silicates). Here, the spectra share no domi-
nant bands, illustrating markedly different vi-
brational chemistries. Taken together, the two
figures span the extremes of our database, from
near-duplicate spectra to entirely distinct sig-
natures.

2.5 Data augmentation strategy

Given the characteristics of Raman spectra,
augmentation techniques must be carefully de-
signed to preserve spectral peaks. We employ
transformations that retain the integrity of Ra-
man features, as detailed in Section 6.1. Data
augmentation is applied in Section 4.2 to eval-
uate the performance of CNNs on augmented
data and in Section 6.1 in the context of semi-
supervised learning.

2.6 Implementation and Train-
ing Environment

All deep-learning models were implemented in
PyTorch. Classical machine-learning baselines
(SVM and KNN) were trained with scikit-learn.
Training was performed on a laptop equipped
with an NVIDIA RTX 3070 GPU. Typical
training time per data split was ∼1–2 hours for
deep-learning experiments.

3 Classification using SVM

and KNN

Before introducing advanced neural network-
based approaches, it is essential to establish a
performance baseline using traditional machine
learning methods for Raman spectral classifica-
tion. Support vector machines (SVM) and k-
nearest neighbors (KNN) are two widely used
techniques. SVM operates by finding an opti-
mal hyperplane that separates data points into
distinct classes while maximizing the margin
between them. KNN, in contrast, is a distance-
based approach that assigns an unknown data
point x to the most common class among its k
nearest neighbors in the dataset X. (Refer to
Supporting Information for further details on
SVM and KNN.)
In this section, we implement both SVM and

KNN classifiers not only to explore their per-
formance but, more importantly, to serve as ex-
plicit baselines for our subsequent experiments

6

(a) RRUFF-raw spectra, showing fluorescence
baseline.

(b) RRUFF-clean spectra, with baseline re-
moved.

Figure 2: RRUFF-raw and RRUFF-clean spectra for dolomite (CaMg(CO
3
)
2
) plotted alongside four

compositionally related carbonate minerals—magnesite (MgCO
3
), rhodochrosite (MnCO

3
), siderite

(FeCO
3
), and strontianite (SrCO

3
). The shared carbonate ν1 symmetric stretch at 1080–1100 cm−1

and lattice modes near 300 cm−1 illustrate the high intra-group spectral similarity, while the
RRUFF-raw scans highlight fluorescence backgrounds removed in the RRUFF-clean scans.

with deep learning models (see Section 4). Es-
tablishing these baselines allows us to rigorously
quantify the improvements introduced by con-
volutional neural networks and to contextualize
our findings within existing machine learning
frameworks for spectral data.
Prior work by Widjaja et al. (41) demon-

strated the application of SVM for Raman
spectral classification, employing preprocessing
techniques such as dimensionality reduction to
mitigate noise and baseline effects from fluores-
cence. In this study, we implement both SVM
and KNN classifiers and evaluate their perfor-
mance using feature extraction techniques tai-
lored for Raman spectra. Our findings indi-
cate that while SVM and KNN achieve satis-
factory results on RRUFF-clean data, their per-
formance degrades significantly when applied to
RRUFF-raw spectral data.

3.1 Methodology

Feature extraction plays a crucial role in de-
termining the effectiveness of machine learning
classifiers. To ensure high classification perfor-
mance, the extracted features must be highly
informative regarding class distributions.
As detailed in the Supporting Information,

the primary features relevant to mineral clas-
sification in Raman spectroscopy are the posi-
tions of spectral peaks. To extract these peaks,

we evaluated two peak detection methods:

1. Wavelet-based peak detection: Uses
a continuous wavelet transform to iden-
tify spectral peaks by matching the sig-
nal shape with a predefined wavelet
function (signal.find peaks cwt from
SciPy (45)).

2. Local maxima detection: Identifies
peaks by comparing each value with its
neighboring points (signal.find peaks

from SciPy).

We performed a grid search to determine the
optimal parameters for each method. Table 1
presents the classification accuracy of KNN us-
ing each peak detection approach. The wavelet-
based method consistently outperformed the lo-
cal maxima approach, leading us to select it as
our primary peak detection technique.

Feature vector construction The wavelet
detector returns a set of Raman–shift posi-
tions at which peaks occur. Because each
spectrum contains a different number of peaks,
we convert that variable-length list into a
fixed-length feature vector by binning the shift
axis and counting how many peaks fall inside
each bin. We adopt a bin width of 12 cm−1,
guided by the typical variability of the carbon-
ate ν1 symmetric-stretch band (centered near

7

(a) RRUFF-raw spectra, showing fluorescence
baseline.

(b) RRUFF-clean spectra, with baseline re-
moved.

Figure 3: RRUFF-raw and RRUFF-clean spectra for dolomite (CaMg(CO
3
)
2
) plotted alongside four

spectrally dissimilar minerals: agardite-(Y) (YCu
6
(AsO

4
)
3
(OH)

6
· 3H

2
O), behoite (Be(OH)

2
), glau-

cophane (Na
2
(Mg

3
Al

2
)Si

8
O

22
(OH)

2
), and magnesio-hastingsite (NaCa

2
(Mg

4
Fe)(Si

6
Al

2
)O

22
(OH)

2
).

The dolomite trace shows the characteristic carbonate ν1 band at 1080–1100 cm−1, whereas the
comparison minerals exhibit dominant arsenate or silicate stretches and entirely different lattice
modes. Together with Figure 2, this panel demonstrates the spectral variability in the dataset,
from very closely related classes that differ by subtle peak shifts to minerals that are spectrally
distant.

Table 1: Comparison of peak detection methods for KNN classification. Wavelet-based detection,
using shape-matching with Ricker wavelets, achieves higher accuracy than local maxima,

demonstrating its robustness to spectral noise and baseline variations.

Method Wavelet-Based Local Maxima-Based

Function find peaks cwt find peaks

Peak detection strategy Shape-matching using Ricker wavelets Intensity-based local maxima

Best Parameters Width: [10, 20] Wavelet: Ricker Width: 10 Prominence: max(intensity)/len(signal)

Top-1 Accuracy (KNN) 70% 59%

1085 cm−1), which shifts by up to ∼ 10 cm−1

between closely related species. This choice is
therefore narrow enough to distinguish those
fine spectral differences yet broad enough to
keep the feature space compact and avoid the
curse of dimensionality associated with very
high-dimensional feature spaces. Given the
input vector of 1392 dimensions, partitioning
it into 12 cm−1 intervals produces exactly 116
bins; each spectrum is therefore encoded as
a 116-dimensional peak-count vector, indepen-
dent of the number of detected peaks. Figure 4
illustrates the procedure; the resulting vectors
serve as inputs to the KNN and SVM classifiers.

3.2 Experiments

To determine optimal hyperparameters, we per-
formed a grid search for both KNN and SVM.
The best-performing configurations were:

• KNN: k = 1, Euclidean distance2

• SVM: Regularization parameter C = 10,
kernel: Radial Basis Function (RBF), ker-
nel coefficient γ = 0.01.

2Using Euclidean distance in the 116-dimensional
peak-count space, the mean intra-/inter-class distances
are 2.2 / 6.1 for RRUFF-clean and 6.5 / 13.1 for
RRUFF-raw. As intra-class variation is low relative to
inter-class variation, consulting more than one neighbor
adds little useful information and can even mix in other
classes; hence k = 1 is optimal.

8

Figure 4: Feature extraction process for traditional ML methods. The Raman spectrum is seg-
mented into intervals and peaks are counted within each interval.

Table 2: Performance of KNN and SVM on
RRUFF-raw and RRUFF-clean Raman
spectra. Both models show accuracy
improvements on RRUFF-clean data.

Dataset RRUFF-raw RRUFF-clean

Top-1 Accuracy of SVM (%) 49 72

Top-1 Accuracy of KNN (%) 51 70

Considering the class imbalance in the
dataset, we employed stratified five-fold cross-
validation and reported the Top-1 accuracy
(fraction of spectra whose highest-probability
predicted class matches the ground-truth la-
bel). Table 2 summarizes the results.
Both models exhibit significantly lower ac-

curacy on RRUFF-raw spectra compared to
RRUFF-clean spectra. Our findings highlight
the critical role of feature extraction in tra-
ditional ML-based Raman spectral classifica-
tion. When applied to RRUFF-clean spectra,
where preprocessing steps have mitigated base-
line effects and noise, both KNN and SVM
achieve relatively high accuracy (around 70%).
However, for RRUFF-raw spectra, these clas-
sifiers struggle due to the reliance on explicit
peak detection, which becomes unreliable under
noise and baseline distortions. Figure 5 illus-
trates this: the fluorescence baseline hides sev-
eral diagnostic peaks in the RRUFF-raw spec-
trum (upper panel) that are recovered in the
RRUFF-clean spectrum (lower panel).

An open question remains as to whether the
observed performance drop is primarily due to
the limitations of feature extraction or the clas-
sifiers’ decision strategies within the feature
space. We address this question in Section 4.2,
where we explore whether deep learning models
can overcome these challenges by learning more
robust features directly from the raw spectral
data.

4 Classification using

CNNs

As discussed in Section 3, traditional ma-
chine learning methods struggle to classify
raw Raman spectra effectively. To overcome
these limitations, we explore deep learning-
based approaches. Specifically, we investigate
whether convolutional neural networks (CNNs)
can overcome the bottlenecks identified with
classical classifiers—namely, the reliance on ex-
plicit feature extraction and potential limita-
tions in decision strategies within the feature
space. CNNs are a class of deep learning mod-
els primarily used for image processing but have
also been successfully applied to spectral data.
CNNs extract features by convolving a learn-
able filter (or kernel) with the input signal.
Unlike classical convolutional operations, where
the filter is predefined, CNNs learn these filters
autonomously during training (refer to Sup-
porting Information for more details on CNNs).
Although CNNs are typically designed for 2-

9

Figure 5: Wavelet peak detection on Andalusite. Upper: RRUFF-raw spectrum—several diagnostic
peaks are missed due to fluorescence baseline. Lower: RRUFF-clean spectrum—more peaks are
detected, illustrating why peak-based feature extraction works better on the cleaned data.

D image data, in this work, we employ 1-D
CNNs, which is well suited for 1-D data, includ-
ing spectral data. Unlike 2-D CNNs that oper-
ate across two spatial dimensions, 1-D CNNs
perform convolutions along a single axis.
CNNs, by learning local patterns and compo-

sitional hierarchies, offer a natural advantage
in processing the structured but noisy signals
of Raman spectra. Liu et al. (23) demonstrated
the effectiveness of deep CNNs for Raman spec-
tral classification, showing that CNNs-based
models can learn automatic baseline corrections
that are more robust than traditional manual
preprocessing. Moreover, the hierarchical na-
ture of CNNs enables them to learn intermedi-
ate feature representations, leading to superior
classification performance compared to SVMs,
particularly for datasets with a large number of
classes. The CNNs’ architecture used by Liu et
al., inspired by the LeNet model (46), is illus-
trated in Figure 6.
Their study, conducted on the RRUFF

database, reported that CNNs outperform con-
ventional classifiers. However, the paper lacks
details regarding the specific subsets of the
dataset and the preprocessing techniques ap-
plied. To provide a reproducible baseline for fu-
ture research, we replicate their approach while
explicitly documenting the dataset partitions
and preprocessing steps in Section 2. Our ob-
jective is to enhance reproducibility and enable
fairer performance comparisons.

4.1 Methodology

We adopt the CNNs’ architecture proposed by
Liu et al., depicted in Figure 6, with one key
modification: the removal of Batch Normal-
ization layers, as preliminary experiments indi-
cated improved performance without them. To
assess the effectiveness of CNNs, we compare
their performance against a Multilayer Percep-
tron (MLP) and KNN classifiers. The MLP
model shares the same final two layers as the
CNNs, but its first three convolutional layers
are replaced with fully connected layers; we
evaluate three capacities: MLP-small (16, 32,
64 neurons), MLP-mid (32, 64, 128 neurons),
and MLP-large (64, 128, 256 neurons).
We evaluate classification performance using

the following approaches:

1. CNNs for end-to-end classification.

2. CNNs for feature extraction, followed by
KNN for classification.

3. MLP for classification.

4. KNN for classification using handcrafted
features.

To transition from approach (1) to approach
(2), we remove the final classification layer from
the CNNs and use the extracted features as
input for a KNN classifier. This setup allows
us to further analyze insights from Section 3.2

10

Figure 6: Architecture of the 1-D CNNs model used for Raman spectral classification. The input
consists of raw Raman spectra, which pass through three convolutional layers (16, 32, and 64 filters,
with kernel sizes of 21, 11, and 5, respectively). Each convolutional layer is followed by Batch
Normalization (BN), LeakyReLU activation, and max pooling (2×2). The extracted features are
concatenated and processed through a dense layer (2048 neurons) with hyperbolic tangent (Tanh)
activation, dropout (0.5), and additional pooling. The final classification layer applies a softmax
function to assign the spectrum to one of the mineral classes. This architecture is based on the
design proposed by Liu et al. (23).

and determine whether KNN’s limitations re-
sult from its inability to extract meaningful fea-
tures or from intrinsic weaknesses in the classi-
fication algorithm itself.

4.2 Experiments

To evaluate the performance of CNNs for Ra-
man spectral classification, we conducted ex-
periments using a stratified five-fold cross-
validation strategy, ensuring balanced class dis-
tributions across training and validation sets, as
done in Section 3.2.
The CNNs model was trained with an initial

learning rate of 0.001, which was dynamically
adjusted based on validation performance. If
the validation loss did not improve for three
consecutive epochs, the learning rate was re-
duced by a factor of 0.7. Additionally, early

stopping was applied to prevent overfitting, ter-
minating training if no improvement was ob-
served for five consecutive epochs.
Figure 7 presents the Top-1 classification ac-

curacy for each method. We observed that:

• CNNs outperform all other approaches,
achieving the highest accuracy on both
RRUFF-raw and RRUFF-clean datasets.

• CNNs perform better on RRUFF-raw
data than on RRUFF-clean data, likely
due to their ability to learn robust repre-
sentations and correct baseline variations
automatically (23).

• Data augmentation improves perfor-
mance, as indicated by increased accu-
racy across all methods when augmenta-
tion was applied (see Section 2.5).

11

CNN CNN + KNN KNN MLP-large MLP-mid MLP-small
Techniques

0

20

40

60

80
To

p-
1

Ac
cu

ra
cy

 (%
)

83

65

51

67
74

61

91

67

54

70
76

65

79

68 70 71
77

64

87

71 72 73
79

67

RRUFF-raw, no aug
RRUFF-raw, aug

RRUFF-clean, no aug
RRUFF-clean, aug

Figure 7: Top-1 accuracy on the test set for CNNs, CNNs+KNN (feature extraction with CNNs
followed by KNN classification), MLP, and KNN classifiers. Results are shown for both RRUFF-
raw and RRUFF-clean Raman datasets, with and without data augmentation. CNNs achieve the
highest performance across all settings, especially with data augmentation.

• CNNs-extracted features improve KNN
classification, but CNNs+KNN still un-
derperforms compared to the fully end-
to-end CNNs.

This suggests that:

(a) CNNs demonstrate superior feature ex-
traction capabilities compared to tradi-
tional approaches such as wavelet-based
peak detection and peak counting. This
is evident from the improved classification
performance when using CNNs as a fea-
ture extractor, indicating that CNNs can
learn more complex and relevant spectral
representations. The ability of CNNs to
learn hierarchical features directly from
raw spectra also explains the poor per-
formance of KNN and SVM, which rely
on manually engineered features.

(b) The lower classification performance of
KNN compared to CNNs and MLP sug-
gests that KNN struggles with high-
dimensional feature spaces where dis-

tance metrics become less discrimina-
tive. CNNs and MLPs, on the other
hand, leverage learned feature representa-
tions to improve class separability. Fur-
thermore, the performance gap between
methods (2) and (4) indicates that us-
ing CNNs for feature extraction provides
a more informative representation than
handcrafted features, but KNN remains
inherently limited in classification capa-
bility.

Learning curves(training and validation
loss) We examined the training and valida-
tion loss curves (Supporting Information, Fig-
ures S9–S16) to assess the learning behavior of
the deep learning models. On both datasets,
MLP-small shows persistently high training and
validation losses with slow decrease (under-
fitting; Figures S9,S10), whereas MLP-large
exhibits a rapid drop in training loss and a
widening train–validation gap (overfitting; Fig-
ures S13,S14). Across MLP settings, MLP-mid
provides the most stable behavior, with con-

12

vergent losses and a small training/validation
loss gap (Figures S11,S12). CNNs achieve the
lowest validation loss and fastest convergence
on both RRUFF-raw and RRUFF-clean (Fig-
ures S15,S16).

Confidence and Calibration For CNNs,
we quantified decision certainty via the confi-
dence gap (top–1 minus top–2 softmax prob-
ability per spectrum). CNNs exhibit well-
calibrated margins, with mean confidence gaps
of 0.46 on RRUFF-raw and 0.38 on RRUFF-
clean. These values reflect the inherent diffi-
culty of the task: the dataset contains spec-
trally similar minerals, such as those in Fig-
ure 2. The model’s measured uncertainty on a
dataset containing such closely related species
is scientifically appropriate, as excessively large
confidence would suggest overfitting to train-
ing artifacts rather than genuine discriminative
learning. The slightly higher gap for raw spec-
tra (0.46 vs. 0.38) parallels their superior classi-
fication accuracy, consistent with the idea that
retaining full spectral information enables more
decisive yet still properly calibrated predictions.

4.2.1 Interpreting CNNs decisions with
Grad-CAM

To probe where CNNs find evidence for each
mineral, we visualized their internal activation
maps with Gradient-weighted Class Activation
Mapping (Grad-CAM) (47). For any input
spectrum, Grad-CAM back-propagates the pre-
diction score to the last convolutional layer,
weights the resulting feature maps by the class-
specific gradients, and collapses them to a one-
dimensional importance curve. We plot that
curve as a semi-transparent color bar: warm
hues highlight Raman shifts that increase the
class score, cool tones those that contribute lit-
tle.
Across the examples below the warmest re-

gions tend to coincide with well-known diag-
nostic peaks (e.g. the carbonate ν1 stretch at
∼ 1085 cm−1) rather than with noise or baseline
structure. This pattern indicates that CNNs
focus on spectral features that are chemically
meaningful. We observe that:

Figure 8: Grad-CAM activation maps for two
carbonates. Top: Dolomite (CaMg(CO

3
)
2
),

correctly classified. Bottom: Rhodochrosite
(MnCO

3
), correctly classified.

Figure 9: Grad-CAM activation maps for two
pyroxenes. Top: Diopside (CaMgSi

2
O

6
), mis-

classified as Hedenbergite. Bottom: Hedenber-
gite (CaFeSi

2
O

6
), correctly classified.

Figure 10: Grad-CAM activation map.
Conichalcite (CaCu(AsO

4
)(OH)), correctly

classified.

Figure 11: Grad-CAM activation map. Vana-
dinite (Pb

5
(VO

4
)
3
Cl), correctly classified.

13

The network correctly distinguishes sim-
ilar carbonates Figure 8 contrasts two car-
bonate end-members. For both dolomite and
rhodochrosite, the hottest bars coincide with
the dominant ν1 C–O stretch (48) at 1097 and
1085 cm−1 respectively, plus the weaker lattice
ν4 band near 300 cm−1. Those two regions alone
suffice for the model to distinguish Mg from Mn
carbonates despite their otherwise similar spec-
tra.
We observe that CNNs do not merely count

peaks but encodes where, to the nearest Raman
shift, those peaks reside. Thus even a mod-
est 10 cm−1 displacement of the strong ν1 line
provides enough evidence for the network to de-
cide between dolomite or rhodochrosite, exactly
the fine-grained reasoning that a human analyst
would employ.
It is worth noting that the network used here

employed a pooling size of 2, which preserves
sensitivity to such fine spectral displacements.
In Section 5, we explicitly vary the pooling size
(2 vs. 64) and show that larger pooling con-
fers robustness to instrumental drift by intro-
ducing translational invariance, while smaller
pooling retains sensitivity to chemically mean-
ingful shifts. The two results are therefore con-
sistent: depending on the pooling hyperparam-
eter, CNNs can be tuned either for discrimina-
tion of closely related spectra or for robustness
to noise.

Using peak absence as evidence The
Grad-CAM maps reveal that CNNs do not
merely identify single diagnostic peaks but
learn combinations of peaks and their relative
intensities, effectively capturing fundamental
vibrational coupling patterns rather than mem-
orizing isolated peak positions.
For conichalcite (Figure 10), the network

highlights the main AsO3−

4
ν1 stretch at

834 cm−1, alongside smaller lattice modes at
470, 330, and 200 cm−1 corresponding to Cu–O
and O–As–O vibrations (49).
For vanadinite (Figure 11), the net-

work focuses on the primary VO3−

4
ν1

stretch at 848 cm−1 and the peaks around
290–370 cm−1. Interestingly, it also attends
to the 400–650 cm−1 region—the domain of

conichalcite’s Cu/As bands—and uses the
absence of peaks there to rule out conichalcite
in favor of vanadinite.

A failure case: Diopside vs. Hedenber-
gite Figure 9 shows a typical error when the
model is asked to distinguish Mg rich diop-
side (CaMgSi

2
O

6
) from Fe rich hedenbergite

(CaFeSi
2
O

6
). The two Raman spectra dis-

play an almost identical three–peak motif at
300–400 cm−1 and very similar band shapes
elsewhere, so the Grad-CAM heat maps illu-
minate the same features in both spectra. The
subtle shift of the 660 cm−1 band is not cap-
tured by the model. A larger and more compo-
sitionally diverse training set could help CNNs
learn to discriminate between these closely re-
lated minerals.

5 Understanding CNNs in-

ductive biases for Raman

spectra classification

While CNNs show strong empirical perfor-
mance on Raman spectra, an important ques-
tion remains: what mechanisms enable these
models to effectively process spectroscopic
data, which differs fundamentally from im-
age data for which CNNs were originally de-
signed (46)? Convolution operations introduce
properties such as translational equivariance,
and pooling layers confer a degree of invari-
ance — inductive biases well-suited to images
but whose relevance to Raman spectra must be
carefully examined.
In this section, we analyze the specific fea-

tures present in Raman data and explore how
the inductive bias of CNNs’ architectures can
be adapted to better capture the hierarchi-
cal and local patterns within spectral signals.
This investigation provides deeper insights into
the model’s decision-making process and guides
the design of architectures tailored for spectro-
scopic analysis.

14

5.1 Methodology: Linking Ra-
man Characteristics with
CNNs Behavior

A key component of the underlying physical
mechanism that generates the data must be
considered. Raman spectroscopy, as mentioned
in the Supporting Information, measures the
vibrational modes of a sample. However, the
vibrations are susceptible to the experimental
conditions. Factors such as temperature, sam-
ple impurities or pressure can significantly dis-
tort the obtained signal (see Ferraro et al. (50)
for more details). In addition to alterations
in the sample, the experimental equipment can
also contribute to spectral distortions. The use
of different lasers for the excitation of the sam-
ple and spectrometers for processing the sig-
nal can also serve as an additional noise source.
These distortions in the data manifest primarily
as scaling, baseline variation and peak shifts.

• Scaling: CNNs inherently handle am-
plitude scaling through learned filters
and, when included, normalization layers.
While not inherently part of CNNs, nor-
malization layers are commonly used to
stabilize training. For SVM and KNN,
the feature extraction method is also scale
invariant (we only consider position of the
peaks).

• Baseline variation: CNNs, unlike tradi-
tional models, can learn to internally cor-
rect for baseline drift via convolutional fil-
ters. This eliminates the need for manual
or rule-based preprocessing.

• Peak shifts: These represent the most
challenging distortion. Slight shifts in
Raman peak positions may result from
changes in temperature, impurities, pres-
sure, or instrument calibration. As peaks
move, their associated representations
change — possibly leading to misclassi-
fication. The feature extraction meth-
ods we presented in Section 2.2 for tra-
ditional ML classifiers are not invariant
to shifts in peak positions. If a peak

shifts enough to fall into a different in-
terval, the features for that spectrum
would change, impacting the classifier’s
performance. Convolutional-based mod-
els can account for translational invari-
ance through the combination of convo-
lutional and pooling layers. However, ex-
cessive invariance to translations can be
detrimental. While smaller translations
may be attributed to noise, higher trans-
lations may correspond to a different min-
eral. Hence, the classifier should be ro-
bust to minor translations but remain
sensitive to significant ones. It is imper-
ative to adjust the inductive bias of the
CNNs to meet this requirement.

To better understand the behavior of CNNs
in this context, we recall the concepts of equiv-
ariance and invariance:

Equivariance A transformation f is equiv-
ariant with respect to a group of action g if, for
any g, the following relation holds:

f(g(x)) = g(f(x)). (1)

In other words, if the input features are trans-
lated by a function g, then the output would
also be translated by the same function. In
the case of the convolution operation, defined
as shown in equation 2, where x is the input
signal and w is the convolution kernel, it is clear
that a shift on x would lead to the same shift
in S(t).

S(t) = (x ∗ w)(t) =
∑

n

x(n)w(t− n). (2)

Invariance In the case of an invariant trans-
formation, the formulation would be:

f(g(x)) = f(x), (3)

which means that a translation of the input fea-
tures does not alter the output.
For our application, a fully equivariant re-

sponse—exhibiting zero invariance—is not de-
sirable. When a peak appears at a slightly

15

higher Raman shift, a purely equivariant sys-
tem would produce a different representation,
despite the underlying molecular identity re-
maining unchanged. In practice, such small
variations often result from experimental noise
or instrument calibration differences. Ideally,
the model should learn representations that are
invariant to these minor shifts. In convolutional
neural networks, this invariance is introduced
primarily through pooling layers. Specifically,
max pooling is frequently used as a downsam-
pling operation, which computes the maximum
value over a window of size m applied to the
output of the convolutional layer. This oper-
ation, illustrated in Figure 12, reduces the di-
mensionality of the feature maps while intro-
ducing local translational invariance. For Ra-
man spectra, achieving an appropriate degree of
translational invariance is essential: the model
must be robust to small shifts caused by noise,
yet still sensitive to larger shifts that may re-
flect different mineral species. Therefore, care-
fully tuning the pooling parameters is critical
for adapting CNNs to Raman data classifica-
tion.
To explore this, we conduct experiments with

artificially shifted Raman spectra, using con-
trolled displacements of ±15 and ±30 cm−1.
Based on a manual inspection of the RRUFF
dataset and reports that under harsh condi-
tions, Raman spectra can exhibit shifts of up
to 30 cm−1 (51), we adopt this value as a con-
servative upper bound on natural variation. An
example of such a shifted sample is presented in
Figure 13.

5.2 Experiments: Tuning CNNs
for Partial Translational In-
variance

We examine how CNNs behave under spectral
shifts by varying two key architectural param-
eters:

• The pooling size m, which controls how
much each pooling layer downscales the
feature map.

• The number of pooling layers n, which af-

fects how much invariance is accumulated
across the network.

Larger m or higher n increases translational
invariance — making the network more robust
to shifts, but also potentially less discrimina-
tive.
We compare CNNs with low pooling size

(m = 2) and high pooling size (m = 64),
as well as networks with a shallow depth
(n = 1) and a deeper configuration (n =
10). We report the Top-1 accuracy (fraction
of spectra whose highest-probability prediction
matches the label) and the Top-3 accuracy
(fraction where the true class is among the three
highest-probability predictions) for m = 2 and
m = 64 in Table 3, and the Top-1 and the Top-3
accuracy for n = 1 and n = 5 in Table 4.

• CNNs with small pooling (lowm or low n)
perform well on clean data but are highly
sensitive to shifts (Top-3 accuracy drops
from 91% to 16%).

• CNNs with high pooling parameters show
significantly better robustness (Top-3 ac-
curacy of 57% under 30 cm−1 shift), albeit
at a small cost in unshifted accuracy.

We further examine Top-3 predictions in Ta-
bles 5 and 6. CNNs with higher pooling cor-
rectly retain the true class (PyrosmaliteFe)
among the Top-3 predictions for shifted inputs,
while models with low pooling completely fail.
Table 5 represents the Top-3 predictions made

by a model consisting of 1 and 10 convolutional
blocks, both for the original sample and the
shifted one. The model with only 1 block pre-
dicts completely different minerals in the case
of the shifted sample, while the model with 10
blocks is able to account for the shift and the
Top-3 predictions are the same. Table 6 repre-
sent the predictions for a model where them pa-
rameter takes values m = 2 and m = 64 respec-
tively. The results obtained are consistent with
the previous experiments, demonstrating that
tuning m can be considered as a hyperparame-
ter that controls the degree of translational in-
variance. In particular, it can be tuned consid-
ering the particular instrument that is going to

16

Figure 12: Schematic of the max-pooling operation in a CNNs for Raman spectral analysis. The
convolutional layers extract hierarchical features from the input Raman spectrum, while max pool-
ing reduces the spatial dimensions of the feature maps, introducing local translational invariance
and enhancing robustness to spectral shifts.

Figure 13: Comparison of the original and shifted Raman spectra. The top panel shows the original
spectrum, while the bottom panel displays the spectrum shifted by 30 cm−1.

be used, knowing the amount of shift that can
be attributed to the experimental conditions.
Nonetheless, excessive pooling results in a loss
of spatial information, limiting the model’s ca-
pacity to differentiate between closely related
spectra.
These experiments confirm that CNNs pool-

ing parameters (m, n) act as knobs for con-
trolling translational invariance, allowing prac-
titioners to tailor CNNs behavior to the known
variance of their spectroscopic instrumentation.
This finding has direct implications for prac-
titioners: pooling parameters can be adjusted
based on the expected instrumental variance,
allowing models to be tailored for specific ex-
perimental setups.

6 Classification using semi-

supervised methods

CNNs typically require large amounts of la-
beled data, which is often expensive and
time-consuming to obtain for Raman spec-
troscopy. In this section, we investigate two
semi-supervised learning strategies to address
this limitation: semi-supervised generative ad-
versarial networks (SGAN) (52) (53) and con-
trastive learning (54). Both methods aim to
improve classification performance by leverag-
ing unlabeled data.

6.1 Methodology

Semi-supervised generative adversarial
networks (SGAN) Semi-supervised gen-

17

Table 3: Top-1 and Top-3 accuracy on unshifted and shifted samples, using m = 2 and m = 64.
Larger pooling sizes (m = 64) show improved robustness to spectral shifts but slightly reduced

accuracy on unshifted samples, reflecting a trade-off between translational invariance and
resolution.

Pooling parameter m = 2 m = 64

Accuracy (%) Top-1 Top-3 Top-1 Top-3

No shift 83 91 62 82

Shifted by 15 cm−1 29 51 47 65

Shifted by 30 cm−1 8 16 39 57

Table 4: Top-1 and Top-3 accuracy on unshifted and shifted samples, using n = 1 and n = 10
pooling layers. Increasing the number of pooling layers (n = 10) shows improved robustness to

spectral shifts but slightly reduced accuracy on unshifted samples, emphasizing the importance of
tuning inductive bias.

Number of pooling layers n=1 n=10

Accuracy (%) Top-1 Top-3 Top-1 Top-3

No shift 83 91 63 80

Shifted by 15 cm−1 29 51 42 70

Shifted by 30 cm−1 6 15 46 63

erative adversarial networks (SGAN) build
upon the generative adversarial network
(GAN) framework, which involves two neural
networks—a generator and a discrimina-
tor—trained in an adversarial setting. In the
GAN framework, the generator synthesizes
data that mimics the real distribution, while
the discriminator learns to distinguish between
real and synthetic samples. SGANs extend
this framework by modifying the discriminator
to output a probability distribution over
N + 1 classes—one for each of the N real
classes, plus an additional class corresponding
to generated (synthetic) data. This allows
the discriminator to simultaneously perform
classification and real/synthetic discrimination.
As a result, SGANs can leverage both labeled
and unlabeled data during training, improving
classification performance in low-supervision
settings (see Supporting Information for

details).
In our implementation, both generator and

discriminator use 1-D CNNs suited for spectral
data. The generator starts from a latent vector
of dimension 128 and upscales it using trans-
posed convolutions to match the spectral shape.
The discriminator uses the same base CNNs as
our earlier supervised classifier (Figure 6), with
an additional output head for binary discrimi-
nation (Figure 14).

Contrastive learning Contrastive learning
trains models to distinguish between similar
and dissimilar data points by bringing similar
pairs closer together in the representation space
while pushing dissimilar pairs further apart.
This is achieved by maximizing the agreement
between augmented views of the same sam-
ple. We adapt the SimCLR framework (54) for
Raman spectra using 1-D CNNs (Figure 15).

18

Table 5: Top-3 predicted mineral classes for a PyrosmaliteFe sample under non-shifted and
shifted conditions (30 cm−1) with n = 1 and n = 10 pooling layers. Higher pooling depth

preserves correct predictions under spectral shifts.

of pooling layers n = 1 n = 10

Predicted class Top-1 Top-2 Top-3 Top-1 Top-2 Top-3

No shift PyrosmaliteFe Rutile Diopside PyrosmaliteFe Magnetite Grunerite

Shifted by 30 cm−1 Augelite Pectolite Lazulite PyrosmaliteFe Grunerite Magnetite

Table 6: Top-3 predicted mineral classes for a PyrosmaliteFe sample under non-shifted and
shifted conditions (30 cm−1) with pooling sizes m = 2 and m = 64. Larger pooling improves
robustness to spectral shifts, maintaining the correct class among the Top-3 predictions.

Pooling parameter m = 2 m = 64

Predicted class Top-1 Top-2 Top-3 Top-1 Top-2 Top-3

No shift PyrosmaliteFe Orthoserpierite Paravauxite PyrosmaliteFe Orthoserpierite Paravauxite

Shifted by 30 cm−1 Grunerite Clintonite Beryl PyrosmaliteFe Paravauxite Beryl

Given a raw spectrum, we generate two stochas-
tic augmentations using domain-specific trans-
formations that preserve peak positions. The
most general transformation we use is adding a
function, such as tanh(·) or a cos(·) functions,
with the magnitude scaled by the mean value
of the spectrum. Adding a cos(·) function, de-
spite potentially introducing a new peak, can
mimic the noise induced by fluorescence. An-
other transformation is the addition of Gaus-
sian noise, simulating measurements from dif-
ferent instruments. Lastly, down-sampling and
interpolating the signal, with a random selec-
tion of points in the spectrum, is used. The in-
terpolation parameters increase the stochastic-
ity of the method, resulting in a higher variance
in the augmented spectrum. A higher weight is
used for this method (that is, interpolation is
used more frequently). As noted by Cheng et
al.(54), unsupervised contrastive learning ben-
efits more from data augmentation than super-
vised approaches, but it is crucial to ensure that
the transformations cover the intra-class vari-
ance for each mineral. The encoder f(·) maps
augmented spectra to latent features, followed
by a projection head g(·). After unsupervised

pre-training, g(·) is discarded, and a classifier
is trained on top of frozen f(·) using the la-
beled samples (see Supporting Information for
details).

6.2 Experiments

To simulate low-resource settings, we artificially
mask the labels of a portion of the dataset, cre-
ating supervised subsets with 10% to 50% la-
beled samples. We evaluate SGAN and Con-
trastive learning on the raw Raman spectra and
compare them to a baseline CNNs trained solely
on the labeled subset.

SGAN: Qualitative Evaluation Figure 16
compares a real Perovskite spectrum with a
synthetic one generated by the SGAN. While
both spectra exhibit a similar overall shape,
there are noticeable differences, particularly in
the noise pattern. For instance, although both
spectra show a prominent peak, the peak in
the generated spectrum is shifted and exhibits
a distinct noise pattern compared to the real
one. The primary goal is not to generate per-
fectly realistic samples but to enhance the per-

19

Figure 14: The architecture of the SGAN applied to Raman data, featuring a 1-D CNNs-based
generator that upscales latent space representations to match real spectrum dimensions, and a
discriminator with an additional binary classification output to distinguish real from synthetic
spectra.

formance of the discriminator/classifier through
semi-supervised learning. If the generator pro-
duces samples that perfectly match the real
data distribution p(X), the decision boundaries
of the discriminator remain unchanged. On the
other hand, if the generated samples are com-
plementary to p(X) in the feature space, this
will help to obtain better decision boundaries
(55). Therefore, having generated samples that
do not look exactly like the real ones is desirable
in the case of SGAN, unlike traditional GAN
where the principal purpose is to generate real-
istic samples.
The generator’s task is not just to mimic

real data but to create variations in the data
that contribute to a richer representation of
the feature space, which aids in better decision-
making by the discriminator. This process can
be thought of as generating additional, diverse
data that helps the classifier learn more discrim-
inative features, similar to how data augmen-
tation methods like adding Gaussian noise can
introduce variability. In both cases, the goal is
to increase the robustness of the model by forc-
ing it to adapt to these new, challenging data

points.

SGAN: Quantitative Results Table 7
shows classification accuracy on the test set
using SGAN vs. a purely supervised CNNs.
SGAN consistently outperforms the supervised
baseline, especially when only 10%–30% of the
data is labeled. For instance, at 10% labeled
data, SGAN improves accuracy from 42% to
53%. The gain diminishes as more labels be-
come available.
However, the improvement is less than antic-

ipated. Despite using 90% unlabeled samples
in addition to 10% labeled ones, the expected
increase in accuracy is not as substantial. This
behavior can be explained by the nature of Ra-
man spectra. Most of the literature has fo-
cused on using semi-supervised approaches like
SGAN to benefit the classification problem on
images. In contrast, Raman spectra exhibit dif-
ferent characteristics compared to image data,
with low-level features having limited complex-
ity as discussed in Section 7. This can explain
why using semi-supervised approaches in Ra-
man spectra, although increasing the classifica-

20

Figure 15: Unsupervised contrastive learning framework applied to Raman data. The raw Raman
spectrum is transformed through data augmentation functions T (·) and T ′(·), which generate two
different augmented views of the same sample. These augmented spectra are encoded into feature
representations by the 1-D CNNs encoder f(·). The encoded features are then passed through a
projection head g(·) to produce latent vectors z and z′. Finally, the similarity sim(z, z′) between
the two latent representations is computed, encouraging the model to maximize agreement between
augmented views of the same spectrum.

tion accuracy, has limited benefit compared to
the computer-vision literature.

Contrastive learning: Quantitative Re-
sults Contrastive learning yields similar
trends (Table 8). With only 10% labeled data,
accuracy improves from 42% (supervised) to
51% (semi-supervised). Gains diminish with
more labeled data, converging to the supervised
baseline. Notably, pre-training provides robust
representations even when labeled examples
are scarce.
In the contrastive learning framework, the

pre-training phase is effective for representa-
tion learning due to the inherent characteris-
tics of the data. Raman spectra exhibit uni-
versal features that are independent of specific
classes. For instance, the fluorescence baseline
is a common element in nearly all raw sample,
thus a model can learn an embedding of the

spectrum that accounts for this phenomenon.
More broadly, similarities across all Raman
spectra arise from underlying physical phenom-
ena. This process is analogous to how Language
Models learn underlying syntactic and seman-
tic rules or patterns when pretrained with an
unsupervised task (56).

7 Assessing the learnabil-

ity and representational

efficiency of low-level fea-

tures in Raman Spectra

In this section, we investigate the nature and
complexity of low-level features in Raman spec-
tra. In image classification, convolutional neu-
ral networks (CNNs) extract hierarchical rep-
resentations, where early layers capture simple

21

(a) The real Perovskite Raman spectrum,
showing characteristic peaks corresponding to
the material’s unique vibrational modes.

(b) The synthetic Raman spectrum generated
by the SGAN’s generator, mimicking the gen-
eral structure and noise profile of the real spec-
trum while preserving key spectral features.

Figure 16: Comparison of real and synthetic Perovskite Raman spectra.

Table 7: Performance of fully supervised CNNs and SGAN approaches on the test set across
varying proportions of labeled samples. The results show that the SGAN outperforms the fully

supervised CNNs, particularly in scenarios with fewer labeled samples, highlighting the advantage
of semi-supervised learning in leveraging unlabeled data.

Proportion of labeled samples (%) 10 20 30 40 50

Accuracy with only Supervised training (%) 42 58 65 69 76

Accuracy with Semi-Supervised training (%) 53 66 67 71 77

features like edges, and deeper layers learn in-
creasingly abstract patterns (27). While this
hierarchical structure has proven effective in
computer vision, it is not clear whether Raman
spectra exhibit similarly complex low-level pat-
terns.
We hypothesize that the low-level structure

of Raman data enables efficient learning, such
that meaningful features can be extracted from
a limited number of examples. This could
explain the limited gains observed with semi-
supervised learning in Section 6. To test this
hypothesis, we designed two complementary
experiments: first, we assess the sample effi-
ciency of low-level feature learning using partial
layer freezing in a CNNs; second, we examine
the general compressibility of Raman spectra
by learning sparse latent representations in an
unsupervised setting. Together, these experi-
ments allow us to evaluate both the complexity

and the learnability of low-level spectral fea-
tures, from both supervised and unsupervised
perspectives.

7.1 Methodology

We structured our investigation into two tar-
geted experiments:

1. Experiment 1: Layer Freezing We
first focus on assessing how many labeled
examples are required to learn meaningful
low-level features in a supervised setting.
Specifically, we train the early layers of a
CNNs (first two layers) using small sub-
sets of the data, freeze them — meaning
we stop updating their weights during fur-
ther training — and subsequently train
the remaining layers on the full dataset.
Comparing this approach to an end-to-

22

Table 8: Performance of contrastive semi-supervised learning and fully supervised CNNs
approaches on the test set across different proportions of labeled samples. The semi-supervised
contrastive learning approach consistently improves classification accuracy, demonstrating its

ability to effectively utilize unlabeled data to enhance performance.

Proportion of labeled samples (%) 10 20 30 40 50

Accuracy with only Supervised training (%) 42 58 65 69 76

Accuracy with Semi-Supervised training (%) 51 65 69 75 76

end trained CNNs helps us quantify the
sample efficiency of early feature learning.

2. Experiment 2: Sparse Autoencoder
To complement the supervised perspec-
tive of Experiment 1, we explore whether
Raman spectra can be effectively com-
pressed into sparse latent representations
in an unsupervised way. Here, we train
a fully connected autoencoder to min-
imize reconstruction error, encouraging
the model to capture the overall struc-
ture of the spectra without supervision or
convolutional priors. The learned latent
representation is then used as input to a
downstream classifier, allowing us to eval-
uate how well the unsupervised features
transfer to the classification task.

7.2 Experiments

Experiment 1: Layer Freezing This ex-
periment evaluates whether low-level features
can be learned effectively from a limited subset
of labeled data. We train the first two layers of a
CNNs using subsets of increasing size (80, 200,
and 848 samples), freeze them, and then train
the remaining layers on the full dataset. As
shown in Table 9, performance remains stable
between 200 and 848 samples, but drops from
83 % to 76 % with only 80 samples. These re-
sults indicate that low-level features in Raman
spectra can be reliably learned from relatively
few examples, highlighting the favorable sample
efficiency of the data.

Experiment 2: Sparse Autoencoder
While Experiment 1 demonstrates the sample

efficiency of supervised learning, it does not
address whether Raman spectra are inherently
compressible in an unsupervised context. To
investigate this, we train a fully connected au-
toencoder using a reconstruction loss (Equa-
tion 4). The choice of reconstruction loss is
critical, as it enforces the learning of a com-
prehensive representation of the input spectra,
capturing both class-relevant and class-agnostic
features. Unlike classification loss, which prior-
itizes discriminative characteristics, reconstruc-
tion loss ensures that the latent space encodes
the full spectral information, independently of
the class labels.
In addition, by employing fully connected lay-

ers, we deliberately avoid convolutional induc-
tive biases, allowing us to evaluate the capac-
ity of dense architectures to model the under-
lying structure of Raman spectra. Following
the unsupervised pretraining phase, the autoen-
coder layers are frozen, and the latent repre-
sentations h are used as input features for a
downstream classifier. This approach enables
us to assess whether the unsupervised represen-
tations preserve sufficient discriminative infor-
mation for accurate classification. To ensure
methodological rigor, the dataset used for au-
toencoder pretraining was excluded from the
subsequent classifier training. The complete ex-
perimental workflow is depicted in Figure 17,
illustrating the process of unsupervised autoen-
coder pretraining, extraction of latent spectral
features, and their utilization in downstream
classification.

23

Table 9: CNNs accuracy when pretraining the first two layers on subsets of increasing size.
Results indicate that meaningful low-level features in Raman spectra can be learned efficiently

from limited labeled data, highlighting favorable sample efficiency.

Training Samples for Layers 1-2 80 200 848

Test Accuracy (%) 76 82 83

L(y,x) =
N∑

i=1

(y
i
− ŷ

i
(x))2 = (y

i
−MLP(xi))

2
.

(4)
The results of the autoencoder experiment are

presented in Table 10. Despite the absence of
convolutional structures and supervised train-
ing signals, the autoencoder successfully learns
sparse latent representations that enable the
downstream classifier to reach competitive per-
formance. This finding complements our ob-
servations from Experiment 1: while early
CNNs layers require only limited data to ex-
tract meaningful features, the autoencoder fur-
ther demonstrates that Raman spectra possess
an intrinsic structure that can be captured in
an unsupervised and non-convolutional frame-
work.
Notably, these results are in agreement with

our previous feature engineering approach,
where manually identified peak positions pro-
vided valuable classification cues (Section 3).
Here, the autoencoder extracts comparable low-
level information directly from raw spectral in-
puts, without explicit peak detection or prior
assumptions about spectral features. These
findings reinforce the notion that the low-level
representations in Raman spectra are both
compact and discriminative, and they further
support the development of efficient modeling
strategies leveraging sparse representations for
downstream tasks.

8 Classification using

transfer learning

Building on the insights gained from semi-
supervised learning and sparse autoencoder ex-
periments, we now explore whether representa-

tions learned by neural networks can generalize
to previously unseen classes. The earlier sec-
tions demonstrated that CNNs are capable of
learning robust, low-level features directly from
raw Raman spectra, and that these features are
sufficiently simple to be captured from a lim-
ited number of samples. These findings natu-
rally raise the following question: can we reuse
these learned features to recognize new min-
eral classes, without retraining the entire model
from scratch?
In previous work, Liu et al. (24) identified

a limitation of CNNs-based models for Raman
classification: the need to fully retrain the net-
work when new classes are introduced. To ad-
dress this, they proposed a Siamese network
architecture, which compares input spectra to
reference samples. However, Siamese networks
suffer from increasing inference time and stor-
age requirements as the number of reference
classes grows, since each new sample must be
compared to all stored references.
As an alternative, we investigate transfer

learning, which allows a pretrained model to
be adapted to new classes with minimal re-
training. This approach promises constant in-
ference time, as new classes can be accommo-
dated simply by retraining the final classifica-
tion layer, while keeping the feature extractor
frozen. Given the favorable sample efficiency of
Raman spectral features and their consistency
across mineral families (as shown in Section 7),
we hypothesize that transfer learning can effi-
ciently extend the model to new classes. Com-
pared to Siamese networks, which require O(k)
comparisons to reference classes at inference
time, transfer learning reduces the complexity
to O(1), enabling constant inference time re-
gardless of the number of known classes.

24

ŶY

h
C

onv

C
onv

M
ax-P

ool

M
ax-P

ool

FC

S
oftm

ax

FC

 Autoencoder

Figure 17: Autoencoder experiment pipeline. The autoencoder is pretrained on a sparse recon-
struction task to minimize the reconstruction error L(y, ŷ), where y is the original spectrum and
ŷ is the reconstructed output. This unsupervised step encourages the model to capture the full
underlying structure of the spectra, independently of class labels. Low-level features are encoded
in the latent representation h (dim(h) = 256). After freezing the autoencoder, h is used as input
to train a classifier for the classification task, with the subset of data used for pretraining excluded
from fine-tuning.

Table 10: Comparison of fully supervised training and autoencoder-based feature extraction
across varying proportions of labeled samples. The autoencoder captures informative

representations of Raman spectra in an unsupervised manner, enabling competitive classification
accuracy despite limited supervision.

Proportion of labeled samples (%) 10 20 30 40 50

Accuracy with fully supervised CNNs (%) 42 58 65 69 76

Accuracy using CNNs with autoencoder features (%) 43 53 58 66 67

8.1 Methodology

To evaluate the potential of transfer learning
for Raman spectral classification, we design the
following experiment:

• Split the full dataset of n classes into two
subsets: n − c classes for initial training
and c classes reserved for fine-tuning.

• Train a CNNs-based model on the n − c

classes, and freeze all layers of the net-
work — that is, we stop updating their
weights — except for the classification
head.

• Replace the classification layer to accom-
modate the c new classes, and fine-tune
only this layer for a small number of
epochs.

This protocol tests whether the features
learned during initial training are sufficiently
general to transfer effectively to new mineral
classes, without retraining the convolutional
backbone.

8.2 Experiments

The results of this experiment are summarized
in Table 11. When the number of new classes c

25

Table 11: Transfer learning results for Raman spectral classification across increasing numbers of
new classes (c). High performance is maintained for small c, but declines as c increases, reflecting
the combined effects of reduced feature extractor diversity and increased classification complexity.

c = 5 c = 10 c = 15 c = 20

Accuracy on n− c classes (pretraining) (%) 85 80 84 80

Accuracy on c classes (fine-tuning) (%) 89 78 63 43

is small relative to the total number of classes
n, transfer learning achieves classification accu-
racy comparable to models trained from scratch
on these new classes. However, as c increases,
we simultaneously reduce the number of pre-
training classes n − c, which limits the diver-
sity of the feature extractor, and increase the
number of target classes, which makes the clas-
sification task inherently more complex. This
combined effect leads to a degradation in per-
formance, as shown in Table 11.
The training and validation curves during the

fine-tuning phase for different values of c are
shown in Supporting Information, Figures S17-
S20. Despite using a conservative learning rate
of η = 10−5 to mitigate catastrophic forgetting,
the fine-tuning process quickly converges. For
small c, convergence is fast and performance
remains high, consistent with our findings in
Section 7 that the learned feature space is gen-
eralizable. However, as c increases, the reduced
expressiveness of the frozen feature space be-
comes a limiting factor, and the classifier strug-
gles to accommodate the higher number of tar-
get classes.
These results suggest that the success of

transfer learning for Raman data is under-
pinned by the shared structural and compo-
sitional characteristics of minerals within the
same family (in this context family can be sub-
stituted by another concept in the taxonomic
hierarchy). Even if the model has not seen a
specific mineral class during training, it can still
classify it correctly if it has been exposed to re-
lated classes. This observation is coherent with
our findings from the autoencoder experiment
(Section 7), which demonstrated that low-level
features generalize well across the dataset.

9 Conclusion

Raman spectroscopy is now deployed from plan-
etary missions on Mars (57, 58) to the investiga-
tion of hydrothermal vents on Earth (59, 60),
and is even envisioned to facilitate the search
for life on other worlds (61). Across all of these
settings, spectral interpretation faces the same
core challenges: limited bandwidth, variable en-
vironmental conditions, and the need for reli-
able onboard autonomy. To address these chal-
lenges, we present a deployable, data-efficient
deep learning framework that enables four key
capabilities:

1. Baseline-free accuracy 1-D CNNs
surpass k-nearest-neighbors and
support-vector classifiers built on
handcrafted peak features, eliminating
background correction and peak picking.
We also introduce physically plausible
data augmentation strategies—such as
controlled noise and amplitude scal-
ing—that preserve Raman peak positions
while improving generalization. All splits
and preprocessing scripts are released to
ensure full reproducibility.

2. A one-knob robustness dial Tuning a
single pooling parameter allows CNNs to
absorb Raman shift displacements up to
30 cm−1 without degrading class resolu-
tion—providing a principled way to align
model behavior with instrument stability
and expected variability.

3. Learning from unsupervised data
Semi-supervised GANs and contrastive
pretraining raise accuracy by up to 11%
with only 10% of labels. Gains are mod-
est—yet operationally crucial—due to the

26

intrinsic information density of Raman
spectra, as confirmed by inductive-bias
experiments.

4. Constant-time transfer Freezing the
CNNs backbone and re-training a softmax
head adapts the model to unseen miner-
als at O(1) inference cost, outperforming
Siamese and reference-matching designs
on embedded systems.

Reproducibility. All dataset splits are
publicly archived at https://github.com/

denizsoysal/Raman_spectra_data to serve as
a benchmark for future studies.
Outlook. As open spectral libraries ex-

pand and instrument-specific distortions be-
come better characterized, the proposed frame-
work—training directly on raw spectra, tun-
ing pooling to match hardware drift, leverag-
ing semi-supervised learning, and fine-tuning
lightly for new targets—offers a scalable foun-
dation for general-purpose Raman classifiers
across minerals, organics, and biomaterials.
These tools can help unlock the full potential
of autonomous chemistry missions across plan-
etary and oceanographic frontiers.

Supporting Information

Introduction to Raman spectroscopy, detailed
descriptions of the machine learning models
used in this study including support vector ma-
chines, k-nearest neighbors, and convolutional
neural networks, training curves and additional
information on the semi-supervised and con-
trastive learning methods (.PDF format).

Acknowledgements

Deniz Soysal and Xabier Garćıa–Andrade con-
ducted this research as part of their gradu-
ate research at KU Leuven. Renaud Detry
was supported by Interne Fondsen KU Leu-
ven/Internal Funds KU Leuven. Laura E.
Rodriguez was supported by the Lunar and
Planetary Institute operated by the Universi-
ties Space Research Association (LPI contri-
bution XXXX). Pablo Sobron was supported

by the SETI Institute and Impossible Sensing.
Work by Laura M. Barge was carried out at
the Jet Propulsion Laboratory, California In-
stitute of Technology, under a contract with
NASA (80NM0018D004). Government spon-
sorship acknowledged. © 2025. All rights re-
served.

References

(1) Long, T.; Zhou, Z.; Hancke, G.; Bai, Y.;
Gao, Q. A Review of Artificial Intelli-
gence Technologies in Mineral Identifica-
tion: Classification and Visualization. J.
Sens. Actuat. Netw. 2022, 11, 50.

(2) Pomyen, Y.; Wanichthanarak, K.; Poung-
sombat, P.; Fahrmann, J.; Grapov, D.;
Khoomrung, S. Deep Metabolome: Appli-
cations of Deep Learning in Metabolomics.
Comput. Struct. Biotechnol. J. 2020, 18,
2818–2825.

(3) Signoroni, A.; Savardi, M.; Baronio, A.;
Benini, S. Deep Learning Meets Hyper-
spectral Image Analysis: A Multidisci-
plinary Review. J. Imaging 2019, 5, 52.

(4) Chen, D.; Wang, Z.; Guo, D.; Orekhov, V.;
Qu, X. Review and Prospect: Deep Learn-
ing in Nuclear Magnetic Resonance Spec-
troscopy. Chem. Eur. J. 2020, 26, 10391–
10401.

(5) Mamede, R.; Pereira, F.; Aires-de
Sousa, J. Machine Learning Prediction of
UV–Vis Spectra Features of Organic Com-
pounds Related to Photoreactive Poten-
tial. Sci. Rep. 2021, 11, 23720.

(6) Sadaiappan, B.; Balakrishnan, P.;
C.R., V.; Vijayan, N. T.; Subrama-
nian, M.; Gauns, M. U. Applications
of Machine Learning in Chemical and
Biological Oceanography. ACS Omega
2023, 8, 15831–15853.

(7) Debus, B.; Parastar, H.; Harrington, P.;
Kirsanov, D. Deep Learning in Analyti-
cal Chemistry. TrAC Trends Anal. Chem.
2021, 145, 116459.

27

https://github.com/denizsoysal/Raman_spectra_data
https://github.com/denizsoysal/Raman_spectra_data

(8) Ryzhikova, E.; Ralbovsky, N. M.;
Sikirzhytski, V.; Kazakov, O.; Ha-
lamkova, L.; Quinn, J.; Zimmer-
man, E. A.; Lednev, I. K. Raman
Spectroscopy and Machine Learning for
Biomedical Applications: Alzheimer’s
Disease Diagnosis Based on the Analysis
of Cerebrospinal Fluid. Spectrochim. Acta
Part A 2021, 248, 119188.

(9) Banas, A. M.; Banas, K.; Breese, M. B. H.
Classification of the Residues after High
and Low Order Explosions Using Machine
Learning Techniques on Fourier Trans-
form Infrared (FTIR) Spectra. Molecules
2023, 28, 2233.

(10) Lei, B.; Bissonnette, J. R.; Hogan, U. E.;
Bec, A. E.; Feng, X.; Smith, R. D. L. Cus-
tomizable Machine-Learning Models for
Rapid Microplastic Identification Using
Raman Microscopy. Anal. Chem. 2022,
94, 17011–17019.

(11) Barker, L. D. L.; Jakuba, M. V.;
Bowen, A. D.; German, C. R.;
Maksym, T.; Mayer, L.; Boetius, A.;
Dutrieux, P.; Whitcomb, L. L. Scientific
Challenges and Present Capabilities in
Underwater Robotic Vehicle Design and
Navigation for Oceanographic Explo-
ration Under-Ice. Remote Sensing 2020,
12, 2588.

(12) Lawrence, J. D. et al. Crevasse Refreez-
ing and Signatures of Retreat Observed at
Kamb Ice Stream Grounding Zone. Nat.
Geosci. 2023, 16, 238–243.

(13) Liu, Q.; Guo, J.; Lu, Y.; Wei, Z.; Liu, S.;
Wu, L.; Ye, W.; Zheng, R.; Zhang, X. Un-
derwater Raman Microscopy—A Novel in
Situ Tool for Deep-Sea Microscale Target
Studies. Front. Mar. Sci. 2022,

(14) White, S.; Dunk, R.; Peltzer, E.; Free-
man, J.; Brewer, P. In Situ Raman
Analyses of Deep-Sea Hydrothermal and
Cold Seep Systems. Geochem. Geophys.
Geosyst. 2006, 7 .

(15) Takahashi, T.; Yoshino, S.; Takaya, Y.;
Nozaki, T.; Ohki, K.; Ohki, T.; Sakka, T.;
Thornton, B. Quantitative in Situ Map-
ping of Elements in Deep-Sea Hy-
drothermal Vents Using Laser-Induced
Breakdown Spectroscopy and Multivari-
ate Analysis. Deep Sea Res. Part I 2020,
158, 103232.

(16) McMutrtry, G. M.; Wiltshire, J. C.;
Bossuyt, A. Europe Oceans 2005 ; 2005;
Vol. 1; pp 395–400.

(17) Zhang, Y.; Ryan, J. P.; Kieft, B.; Hob-
son, B. W.; McEwen, R. S.; Godin, M. A.;
Harvey, J. B.; Barone, B.; Belling-
ham, J. G.; Birch, J. M.; Scholin, C. A.;
Chavez, F. P. Targeted Sampling by
Autonomous Underwater Vehicles. Front.
Mar. Sci. 2019,

(18) Theiling, B. P.; Chou, L.; Poian, V.; Bat-
tler, M.; Raimalwala, K.; Arevalo, R.;
Neveu, M.; Ni, Z.; Graham, H.; El-
sila, J.; Thompson, B. Science Autonomy
for Ocean Worlds Astrobiology: A Per-
spective. Astrobiology 2022, 22, 901–913.

(19) Poian, V.; Lyness, E.; Danell, R.; Li, X.;
Theiling, B.; Trainer, M.; Kaplan, D.;
Brinckerhoff, W. Science Autonomy and
Space Science: Application to the Exo-
Mars Mission. Front. Astron. Space Sci.
2022,

(20) Sartore, C.; Simetti, E.; Wanderlingh, F.;
Casalino, G. Autonomous Deep Sea Min-
ing Exploration: The EU ROBUST
Project Control Framework. OCEANS
2019. 2019; pp 1–8.

(21) Wettergreen, D.; Foil, G.; Furlong, M.;
Thompson, D. R. Science Autonomy for
Rover Subsurface Exploration of the Ata-
cama Desert. AI Mag. 2014, 35, 47–60.

(22) Hand, K. P.; German, C. R. Exploring
Ocean Worlds on Earth and Beyond. Nat.
Geosci. 2018, 11, 2–4.

(23) Liu, J.; Osadchy, M.; Ashton, L.; Fos-
ter, M.; Solomon, C. J.; Gibson, S. J.

28

Deep Convolutional Neural Networks for
Raman Spectrum Recognition: A Unified
Solution. Analyst 2017, 142, 4067–4074.

(24) Liu, J.; Gibson, S. J.; Mills, J.; Osad-
chy, M. Dynamic Spectrum Matching with
One-Shot Learning. Chemom. Intell. Lab.
Syst. 2019, 184, 175–181.

(25) Wiens, R. C. et al. Pre-Flight Cali-
bration and Initial Data Processing for
the ChemCam Laser-Induced Breakdown
Spectroscopy Instrument on the Mars Sci-
ence Laboratory Rover. Spectrochim. Acta
Part B 2013, 82, 1–27.

(26) Kensert, A.; Collaerts, G.; Efthymi-
adis, K.; Broeck, P.; Desmet, G.; Ca-
booter, D. Deep Convolutional Autoen-
coder for the Simultaneous Removal of
Baseline Noise and Baseline Drift in
Chromatograms. J. Chromatogr. A 2021,
462093.

(27) LeCun, Y.; Bengio, Y.; Hinton, G. Deep
Learning. Nature 2015, 521, 436.

(28) Berlanga, G.; Williams, Q.; Temiquel, N.
Convolutional Neural Networks as a Tool
for Raman Spectral Mineral Classifica-
tion Under Low Signal, Dusty Mars
Conditions. Earth Space Sci. 2022, 9,
e2021EA002125.

(29) Xu, X.; Ma, F.; Zhou, J.; Du, C.
Applying Convolutional Neural Networks
for End-to-End Soil Analysis Based on
Laser-Induced Breakdown Spectroscopy
with Less Spectral Preprocessing. Com-
put. Electron. Agric. 2022, 199, 107171.

(30) Hou, X.; Wang, G.; Wang, X.; Ge, X.;
Fan, Y.; Nie, S. Convolutional Neural
Network-Based Approach for Classifica-
tion of Edible Oils Using Low-Field Nu-
clear Magnetic Resonance. J. Food Com-
pos. Anal. 2020, 92, 103566.

(31) Shariat, K.; Kirsanov, D.; Olivieri, A. C.;
Parastar, H. Sensitivity and General-
ized Analytical Sensitivity Expressions

for Quantitative Analysis Using Convolu-
tional Neural Networks. Anal. Chim. Acta
2022, 1192, 338697.

(32) Zhang, R.; Xie, H.; Cai, S.; Hu, Y.;
Liu, G.-K.; Hong, W.; Tian, Z.-q.
Transfer-Learning-Based Raman Spectra
Identification. J. Raman Spectrosc. 2019,
51, 176–186.

(33) Blazhko, U.; Shapaval, V.; Kovalev, V.;
Kohler, A. Comparison of Augmentation
and Pre-Processing for Deep Learning and
Chemometric Classification of Infrared
Spectra. Chemom. Intell. Lab. Syst. 2021,
215, 104367.

(34) Wang, W.; Liu, X.; Mou, X. Data Aug-
mentation and Spectral Structure Fea-
tures for Limited Samples Hyperspectral
Classification. Remote Sensing 2021, 13,
547.

(35) van Engelen, J. E.; Hoos, H. H. A Sur-
vey on Semi-Supervised Learning. Mach.
Learn. 2020, 109, 373–440.

(36) Wu, H.; Prasad, S. Semi-Supervised Deep
Learning Using Pseudo Labels for Hy-
perspectral Image Classification. IEEE
Trans. Image Process. 2018, 27, 1259–
1270.

(37) Han, H.; Choi, S. Transfer Learning
from Simulation to Experimental Data:
NMR Chemical Shift Predictions. J. Phys.
Chem. Lett. 2021, 12, 3662–3668.

(38) Ryder, A.; O’Connor, G.; Glynn, T.
Quantitative Analysis of Cocaine in Solid
Mixtures Using Raman Spectroscopy and
Chemometric Methods. J. Raman Spec-
trosc. 2000, 31, 221–227.

(39) Li, S.; Gao, J.; Nyagilo, J. O.; Dave, D. P.
Probabilistic Partial Least Square Regres-
sion: A Robust Model for Quantitative
Analysis of Raman Spectroscopy Data.
2011 IEEE Int. Conf. Bioinform. Biomed.
2011; pp 526–531.

29

(40) Li, X.; Yang, T.; Li, S.; Wang, D.;
Song, Y.; Zhang, S. Raman Spectroscopy
Combined with Principal Component
Analysis and k Nearest Neighbour Anal-
ysis for Non-Invasive Detection of Colon
Cancer. Laser Phys. 2016, 26, 035702.

(41) Widjaja, E.; Zheng, W.; Huang, Z. Clas-
sification of Colonic Tissues Using Near-
Infrared Raman Spectroscopy and Sup-
port Vector Machines. Int. J. Oncol.
2008, 32, 653–662.

(42) Madden, M. G.; Ryder, A. G. Machine
Learning Methods for Quantitative Anal-
ysis of Raman Spectroscopy Data. Opto-
Ireland 2002: Optics and Photonics Tech-
nologies and Applications. 2003; pp 1130–
1139.

(43) Koch, G.; Zemel, R.; Salakhutdinov, R.
Siamese Neural Networks for One-Shot
Image Recognition. Proc. Representation
Learning Workshop at ICML. 2015.

(44) Lafuente, B.; Downs, R. T.; Yang, H.;
Stone, N. The Power of Databases: The
RRUFF Project ; 2015; pp 1–30.

(45) Virtanen, P. et al. SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in
Python. Nat. Methods 2020, 17, 261–272.

(46) LeCun, Y.; Bottou, L.; Bengio, Y.;
Haffner, P. Gradient-Based Learning Ap-
plied to Document Recognition. Proc.
IEEE 1998, 86, 2278–2324.

(47) Selvaraju, R. R.; Cogswell, M.; Das, A.;
Vedantam, R.; Parikh, D.; Batra, D.
Grad-CAM: Visual Explanations from
Deep Networks via Gradient-Based Local-
ization. 2017 IEEE International Confer-
ence on Computer Vision (ICCV). 2017.

(48) Alves, J. F.; Edwards, H. G. M.; Kor-
sakov, A.; de Oliveira, L. F. C. Revisiting
the Raman Spectra of Carbonate Miner-
als. Minerals 2023, 13 .

(49) Reddy, B. J.; Frost, R. L.; Martens, W. N.
Characterization of conichalcite by SEM,

FTIR, Raman and electronic reflectance
spectroscopy. Mineralogical Magazine
2005,

(50) Ferraro, J. R., Nakamoto, K.,
Brown, C. W., Eds. Introductory Ra-
man Spectroscopy, 2nd ed.; Academic
Press, 2003; p iii.

(51) Liu, H.; Cong, X.; Lin, M.-L.; Tan, P.-
H. The Intrinsic Temperature-Dependent
Raman Spectra of Graphite in the Tem-
perature Range from 4 K to 1000 K. Car-
bon 2019, 152, 231–239.

(52) Odena, A. Semi-Supervised Learning with
Generative Adversarial Networks. 2016;
arXiv preprint arXiv:1606.01583.

(53) Salimans, T.; Goodfellow, I.;
Zaremba, W.; Cheung, V.; Radford, A.;
Chen, X. Improved Techniques for Train-
ing GANs. Adv. Neural Inf. Process. Syst.
2016.

(54) Chen, T.; Kornblith, S.; Norouzi, M.; Hin-
ton, G. A Simple Framework for Con-
trastive Learning of Visual Representa-
tions. Proc. Int. Conf. Mach. Learn. 2020;
pp 1597–1607.

(55) Dai, Z.; Yang, Z.; Yang, F.; Co-
hen, W. W.; Salakhutdinov, R. R. Good
Semi-Supervised Learning That Requires
a Bad GAN. Adv. Neural Inf. Process.
Syst. 2017, 30 .

(56) Xiong, W.; Du, J.; Wang, W. Y.;
Stoyanov, V. Pretrained Encyclopedia:
Weakly Supervised Knowledge-Pretrained
Language Model. 2019; arXiv preprint
arXiv:1912.09637.

(57) Corpolongo, A. et al. SHERLOC Raman
Mineral Class Detections of the Mars 2020
Crater Floor Campaign. J. Geophys. Res.
Planets 2023, 128, e2022JE007455.

(58) Maurice, S. et al. The SuperCam Instru-
ment Suite on the Mars 2020 Rover: Sci-
ence Objectives and Mast-Unit Descrip-
tion. Space Sci. Rev. 2021, 217 .

30

(59) Yanchilina, A.; Rodriguez, L. E.;
Price, R.; Barge, L.; Sobron, P. Sensing
Remote Realms of the Deep Ocean on
Earth—and Beyond. Eos 2024, 105 .

(60) Takahashi, T.; Takahagi, W.; Tasumi, E.;
Makabe, A.; Taguchi, K.; Thornton, B.;
Takai, K. In Situ Measurement of Liq-
uid and Gas CO2 with High Purity at
Deep-Sea Hydrothermal Vents in the Mar-
iana Arc Using Raman Spectroscopy. ACS
Earth Space Chem. 2023, 7, 2489–2497.

(61) Vitkova, A.; Vu, T. H.; Lambert, J. Ex-
tended Longevity Photoactivated Surface-
Enhanced Raman Spectroscopy for the
Detection of Biosignatures on Icy Worlds
and Martian Polar Caps. J. Raman Spec-
trosc. 2024,

31

TOC Graphic

32

Supporting Information:

Reevaluating Convolutional Neural Networks for

Spectral Analysis: A Focus on Raman

Spectroscopy

Deniz Soysal,† Xabier Garćıa–Andrade,† Laura E. Rodriguez,‡ Pablo Sobron,¶

Laura M. Barge,§ and Renaud Detry∗,∥,⊥

†KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium

‡Lunar & Planetary Institute, Universities Space Research Association, 3600 Bay Area

Boulevard, Houston, TX 77058, USA

¶Impossible Sensing, 20 South Sarah Street, St. Louis, MO 63108, USA

§Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, La

Cañada Flintridge, CA 91011, USA

∥KU Leuven, Dept. Electrical Engineering, Research Unit Processing Speech and Images

(PSI), Kasteelpark Arenberg 10, 3001 Leuven, Belgium

⊥KU Leuven, Dept. Mechanical Engineering, Research Unit Robotics, Automation and

Mechatronics (RAM), Celestijnenlaan 300, 3001 Leuven, Belgium

E-mail: renaud.detry@kuleuven.be

This Supporting Information provides a high-level overview of Raman spectroscopy and

machine learning methodologies, aiming to bridge the knowledge gap between spectroscopy

experts and machine learning practitioners. It consists of 29 pages and 20 figures.

S-1

Raman Spectroscopy

Raman spectroscopy relies on the principle of inelastic scattering1 of photons by a ma-

terial. This scattering process is governed by the vibrational modes of molecules, which

depend on both chemical bonding and structural symmetry. Consequently, a Raman spec-

trum serves as a molecular fingerprint, enabling the identification and structural analysis

of chemical compounds.

Figure S1 illustrates the typical workflow of Raman spectroscopy. A laser illuminates the

sample, causing the molecules to scatter light. The frequency shift between the incident and

scattered photons corresponds to molecular vibrations and encodes information about the

sample’s chemical structure. The scattered light is collected by a lens and directed through

a monochromator to produce a spectrum.

The resulting raw spectrum plots signal intensity as a function of Raman shift (in cm−1).

To enhance interpretability, this signal is typically preprocessed. Standard preprocessing

steps include baseline correction, spectral truncation to focus on informative regions, and

normalization. From the processed spectrum, scientists identify peak positions and intensi-

ties to determine the molecular composition of the sample.

Data-Driven Signal Interpretation

Machine learning (ML) provides effective tools for interpreting complex signals, including

Raman spectra. A central goal in ML is to learn a function that maps inputs to outputs using

a dataset of observed examples. In this context, the input is typically a Raman spectrum,

and the output is a corresponding mineral class.

Formally, a classification dataset consists of M samples {(xi, yi)}
M
i=1, where xi ∈ X repre-

sents an input instance (e.g., a spectrum), and yi ∈ Y is the associated label. The input space

1In inelastic scattering, the incident photon interacts with a molecule, resulting in a gain or loss of energy.

In contrast, elastic scattering conserves energy. Raman spectroscopy exploits inelastic scattering to probe

molecular vibrations.

S-2

Figure S1: Schematic representation of Raman spectroscopy for mineral identification. A
monochromatic laser source excites molecular vibrations within the sample, resulting in
inelastic scattering. The spectrum consists of Rayleigh (elastic), Stokes, and anti-Stokes
(inelastic) components, depending on the vibrational frequency νvib. The raw spectrum
is then preprocessed to remove baseline drift and enhance resolution, enabling accurate
identification of the mineral species—in this case, Pectolite.

X is often multidimensional. In Raman spectroscopy, xi is usually a vector in R
S, where S

denotes the number of sampled Raman shift positions. Additional contextual features, such

as the laser excitation wavelength, can be included, in which case xi ∈ R
S × R

+.

The label space Y consists of discrete values representing the possible classes, so that

yi ∈ {1, 2, . . . , N}, where N is the number of mineral types. The goal is to approximate a

mapping function fθ : X → Y , parameterized by θ, that predicts the correct label yi given

an input xi.

To train this model, a loss function L(yi, f(xi)) quantifies the error between the predicted

and actual labels. A widely used loss for multi-class classification is the categorical cross-

S-3

entropy:

L(yi, f(xi)) = −

N
∑

k=1

yik log ŷik, (1)

where ŷik = f(xi) is the predicted probability of class k, and yik is a one-hot encoded

ground truth label. The model is trained by minimizing the total loss over the dataset:

θ∗ = argmin
θ

M
∑

i=1

L(yi, fθ(xi)). (2)

The discussion thus far assumes a supervised learning setting, where each spectrum xi has

an associated ground-truth label yi. In contrast, unsupervised learning methods operate on

unlabeled data and aim to uncover structure within the input space—for instance, clustering

spectra that likely belong to the same mineral class. Techniques such as k-means clustering,S1

principal component analysis (PCA),S2,S3 and generative modelingS4 are commonly applied.

Adopting ML for spectral classification arises from the intrinsic difficulty of writing ex-

plicit rules to differentiate mineral classes based solely on Raman features. Spectral variabil-

ity, peak overlaps, and noise make manual rule-based approaches impractical. In contrast,

ML models trained on labeled examples can automatically learn discriminative patterns in

the data, without requiring hand-crafted rules or domain-specific heuristics.

Having introduced the fundamental concepts and terminology, the remainder of this

section focuses on several representative ML methods applied in the classification of Raman

spectra: Support Vector Machines (SVMs), k-Nearest Neighbors (KNN), and deep learning

techniques such as Convolutional Neural Networks (CNNs).

Support Vector Machines (SVM)

Support Vector Machines (SVMs), introduced by Vapnik et al.,S5 are methods used for

classification and function estimation tasks. Their core principle is margin maximization:

identifying a hyperplane that separates data from different classes with the largest possible

S-4

margin. This margin corresponds to the distance between the hyperplane and the closest

samples from each class, known as support vectors. These critical data points determine the

orientation and position of the decision boundary.

Linear Case Consider a binary classification dataset {(xk, yk)}
N
k=1, where xk ∈ R

S are

input features and yk ∈ {−1,+1} are class labels. A linear SVM seeks a weight vector W

and bias b such that the decision function

ŷ = sign(W⊤x+ b) (3)

correctly classifies the training data. To ensure correct classification, the model must

satisfy:

W⊤xk + b ≥ 1 if yk = +1,

W⊤xk + b ≤ −1 if yk = −1.

(4)

These constraints can be unified as:

yk(W
⊤xk + b) ≥ 1 ∀k. (5)

The optimal hyperplane is obtained by solving the following convex optimization problem:

min
W,b

1

2
∥W∥2

subject to yk(W
⊤xk + b) ≥ 1, ∀k.

(6)

This formulation maximizes the margin 2/∥W∥ between the two classes. However, real-

world data often contain noise or overlapping classes, which make the data not perfectly

separable. To accommodate misclassifications, slack variables ξk ≥ 0 are introduced, yielding

the soft-margin SVM:

S-5

min
W,b,ξ

1

2
∥W∥2 + C

N
∑

k=1

ξk

subject to yk(W
⊤xk + b) ≥ 1− ξk, ξk ≥ 0,

(7)

where C > 0 is a regularization parameter controlling the trade-off between maximizing

the margin and minimizing classification errors.

Nonlinear Case When the data are not linearly separable, SVMs can still be applied

by transforming the input into a higher-dimensional space using a mapping Φ(x). In this

transformed space, a linear hyperplane may be sufficient for separation:

ŷ = sign(W⊤Φ(x) + b). (8)

Direct computation in high-dimensional feature spaces can be computationally expensive.

To address this, the kernel trick is used: inner products Φ(x)⊤Φ(y) are replaced by a kernel

function K(x, y), allowing the SVM to operate implicitly in the high-dimensional space:

K(x, y) = Φ(x)⊤Φ(y). (9)

Popular kernel functions include the polynomial kernel, the radial basis function (RBF)

kernel, and the sigmoid kernel. The choice of kernel significantly impacts the model’s ex-

pressiveness and generalization.

Key Hyperparameters The performance of an SVM depends on proper tuning of the

following hyperparameters:

• Kernel function K(x, y): Defines the nature of the non-linear transformation applied

to the data. The choice of kernel affects the flexibility of the decision boundary

• Regularization parameter C: Balances margin maximization with classification

error. A smaller C allows for a wider margin but may increase misclassifications (un-

S-6

derfitting), while a larger C aims to classify all training examples correctly but may

lead to a smaller margin and overfitting.

• Kernel coefficient γ: Defines the distance of influence of a data point. For a radial

basis function kernel, it is inversely proportional to the variance of the Gaussian dis-

tribution. For low values of γ, further data points are considered as belonging to the

same class. For high values of γ, the data points need to be closer to be considered as

belonging to the same class.

Practical Considerations Several practical aspects must be addressed when applying

SVMs:

• Feature scaling is essential to prevent features with larger magnitudes from domi-

nating the optimization. Standardization or normalization is recommended.

• Computational cost can be significant for large datasets, as SVMs solve a quadratic

programming problem. Efficient solvers and approximations may be needed for scala-

bility.

• Memory usage can be high, especially when many support vectors are retained. This

also affects prediction speed.

• Model selection requires careful cross-validation to choose appropriate values for C,

γ, and the kernel type.

• Class imbalance can bias the model toward majority classes. Techniques such as

class weighting or resampling are often necessary.

• Outlier sensitivity can degrade performance, as outliers may become support vectors.

Preprocessing to detect and remove such points improves robustness.

S-7

k-Nearest Neighbors (KNN)

The k-nearest neighbors (KNN) algorithm, introduced by Cover et al.,S6 is a non-parametric

method used for classification and regression. In classification tasks, KNN assigns a label to

an unlabeled data point x̂ based on the majority class among its k closest neighbors in the

training set. Unlike model-based methods such as SVM, KNN is an instance-based approach.

It does not build an explicit model during training but instead retains the entire dataset and

performs classification at inference time.

To classify a new point x̂, the algorithm computes its distance to each sample xi in

the training set X = {x1, x2, . . . , xM} using a specified distance metric D(xi, x̂). Common

choices include the Euclidean, Manhattan, and Mahalanobis distances. After ranking the

distances, the k closest samples are selected, and the most frequent class among them is

assigned to x̂.

Key Parameters Two primary parameters influence KNN performance:

• Distance metric: Determines how similarity is measured between samples. The

choice of metric affects how neighborhoods are formed in the feature space.

• Number of neighbors k: Controls the smoothness of the decision boundary. A

small k (e.g., k = 1) makes the algorithm highly sensitive to noise (overfitting), while a

larger k smooths out decision boundaries but may reduce sensitivity to local patterns

(underfitting).

Practical Considerations Several factors should be considered when applying KNN in

practice:

• Feature scaling is essential, as KNN relies on distance computations. Unscaled fea-

tures can disproportionately influence results. Standardization or normalization is

typically required.

S-8

• Prediction cost is high because the algorithm must compute distances to all training

points at inference time. Efficient data structures (e.g., KD-trees or ball trees) can

partially mitigate this cost.

• Memory usage grows linearly with dataset size since all training data must be stored.

This can become a limiting factor for large datasets.

• Curse of dimensionality affects KNN performance in high-dimensional spaces, where

distances lose discriminative power. Dimensionality reduction (e.g., PCA) is often

necessary.

• Sensitivity to noise and irrelevant features can degrade classification accuracy.

Feature selection or extraction helps improve robustness.

• Class imbalance may cause KNN to favor the majority class. Weighting neighbors

inversely by distance or adjusting class priors can mitigate this issue.

• Model selection involves choosing the optimal value of k via cross-validation, similar

to hyperparameter tuning in SVMs.

Deep Learning

After discussing traditional machine learning approaches such as Support Vector Machines

and k-Nearest Neighbors, we now turn to deep learning, with a particular focus on neural

networks.

While conventional algorithms can be effective for certain tasks, they often rely on hand-

crafted features and may struggle to capture the complex, high-dimensional patterns inherent

in Raman spectra. These spectra frequently exhibit overlapping, subtle, and nonlinear fea-

tures resulting from diverse molecular vibrations. Deep learning models, particularly neural

networks with multiple layers, have demonstrated strong capabilities in modeling such com-

plexity. By learning hierarchical representations directly from raw data, these models can

S-9

Figure S2: Schematic representation of a multilayer perceptron (MLP).

automatically extract discriminative features, making them especially suitable for Raman

spectral classification.

Deep learning is founded on artificial neural networks—computational architectures in-

spired by biological neural systems. A neural network learns to model relationships between

inputs and outputs by adjusting its internal parameters during training.

Neural networks consist of layers of interconnected computational units called neurons,

as shown in Figure S2. These layers include an input layer, one or more hidden layers, and

an output layer. In this discussion, we focus on the multilayer perceptron (MLP) with a

single hidden layer, although deeper networks are commonly used in practice.

Each neuron is associated with two parameters: weights (θ) and a bias term (b). When

an input vector X is fed into the network, each neuron performs a linear transformation:

Z = θ ·X + b, (10)

followed by a non-linear activation function g(·) to introduce non-linearity into the model:

S-10

A = g(Z) = g(θ ·X + b), (11)

where A denotes the neuron’s activation. These computations are applied layer by layer

in what is known as the feedforward step, culminating in a network output ŷ.

Learning occurs during the backward step through a process called backpropagation, which

uses the chain rule to compute the gradients of the loss function with respect to each param-

eter in the network. These gradients are then used to update the parameters via gradient

descent. For instance, the partial derivatives required during backpropagation are given by:

∂L

∂θ[L]
=

1

N

∂L

∂Z [L]
A[L−1]⊤, (12)

∂L

∂b[L]
=

1

N

N
∑

i=1

∂L

∂Z [L](i)
, (13)

∂L

∂A[L−1]
=

(

θ[L]
)⊤ ∂L

∂Z [L]
, (14)

where L is the loss function, θ[L] the weights in layer L, Z [L] the pre-activation output,

A[L−1] the activation from the previous layer, and N the number of training samples.

This training process is repeated iteratively over multiple epochs until convergence. The

network progressively adjusts its parameters to minimize the discrepancy between predicted

and true outputs.

Although the concept of MLPs dates back several decades, the resurgence of deep learning

has been driven by the availability of large datasets and advances in computing hardware.

These developments have enabled the training of deep neural networks, which contain many

layers and millions of parameters, dramatically increasing their representational power.

S-11

0.0.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a class of deep learning models originally devel-

oped for image processing and now widely used across various domains. From LeCun’s early

work on handwritten digit recognition in 1998S7 to breakthroughs in large-scale image clas-

sification tasks such as ImageNet,S8 CNNs have played a central role in advancing modern

artificial intelligence.

CNNs extract hierarchical features from raw input data by convolving learnable filters

(also called kernels) across the input space. Unlike traditional convolution operations with

fixed filters, CNNs learn the filter weights during training via backpropagation, much like

the weights in Multilayer Perceptrons (MLPs). This capacity to learn informative features

directly from raw data makes CNNs particularly effective for modeling high-dimensional

input signals.

A fundamental advantage of CNNs over fully connected networks is weight sharing. A

single filter is applied repeatedly across different positions in the input, allowing the net-

work to detect spatially recurring patterns while reducing the number of parameters. This

property also confers translational invariance, meaning the network can recognize a feature

regardless of its position in the input. These architectural advantages make CNNs well suited

for tasks involving spatially structured inputs, such as images or sequential data.

A typical CNN architecture consists of three main types of layers: convolutional layers,

pooling layers, and fully connected layers. Although real-world models use multiple filters,

we will illustrate the core principles using a single-filter example.

Convolutional Layers Convolutional layers form the foundation of CNNs. Each layer

applies a set of filters to the input by sliding them over the signal and computing element-wise

multiplications followed by a summation. Figure S3 illustrates a 2D convolution example,

where a 3 × 3 kernel is applied to a single-channel input. The output at each location is

computed as the dot product between the filter and the corresponding local region of the

S-12

1 0 0 0 1 0

0

1

0

0

1 0 0 1 1 0

0

0

0

11 0 1 1

1 0 0 1

0 0 1 0

1 1 0 1

2 0

0

2

0

0

0

1

0
4

input pixel

output pixel

convolution kernel

Figure S3: Example of a 2D convolution operation using a 3× 3 kernel on a single-channel
image.

input.

For instance, consider a 3× 3 kernel with values arranged along the diagonal as {2, 1, 2}.

If the input region matches the kernel pattern (e.g., values {1, 1, 0}), the resulting output

would be high, e.g., 1× 2 + 1× 1 + 0× 2 = 3. More formally, the 1D convolution operation

can be written as:

S(t) = (x ∗ w)(t) =
∑

n

x(n)w(t− n), (15)

where x(n) denotes the input signal and w(n) the convolution kernel. Convolution is a

linear operation, so to model non-linear patterns, a non-linear activation function is applied

to the output. Common activation functions include the Rectified Linear Unit (ReLU),

sigmoid, and hyperbolic tangent.

Relevance to Raman Spectroscopy Although Raman spectra are one-dimensional sig-

nals, we include this explanation of 2D convolution to clarify CNN principles and highlight

the challenges of applying CNNs to spectral data. In 2D image tasks, CNNs leverage in-

S-13

Figure S4: Illustration of a 1D max-pooling operation with a window size of 2.

ductive biases such as local connectivity and spatial invariance—both advantageous when

features can appear anywhere in the image.

However, in Raman spectroscopy, this invariance is less desirable. Spectral peaks are

localized and occur at specific Raman shifts that are critical for identifying molecular struc-

tures. If a CNN applies spatial invariance to Raman spectra, it may treat peaks at different

positions as equivalent, potentially discarding vital information about molecular identity.

Therefore, adapting CNN architectures for Raman analysis requires careful modification

of these biases. In particular, preserving the absolute positions of peaks is essential. Archi-

tectures for spectral data should use one-dimensional convolutions with reduced pooling to

retain resolution along the spectral axis. These changes ensure that CNNs can effectively

model the precise spectral patterns needed for accurate classification.

Pooling Layers Pooling layers reduce the spatial dimensionality of feature maps by sum-

marizing local responses, thereby improving computational efficiency and helping mitigate

overfitting. The most widely used pooling operation is max pooling, which retains the maxi-

mum value within a specified window of size m2. This process preserves the most prominent

features while discarding less significant variations. Figure S4 shows a one-dimensional (1D)

max-pooling operation with m = 2.

2An alternative approach is average pooling, which computes the mean value within the same window.

S-14

While pooling is effective in image analysis—where features can appear in various posi-

tions and translation invariance is desirable—its application to Raman spectral data must

be handled with care. In Raman spectroscopy, the absolute positions of spectral peaks along

the Raman shift axis are essential for accurate molecular identification. Excessive pooling

may blur or eliminate these peaks, leading to diminished sensitivity to fine spectral features

and possible misclassification. Therefore, architectures designed for Raman data should use

pooling layers judiciously, with window sizes selected to preserve the positional integrity of

key spectral information.

Fully Connected Layers A typical CNN architecture consists of a sequence of convolu-

tional and pooling layers, followed by one or more fully connected layers. In convolutional

layers, each neuron is locally connected—that is, it receives input from only a small, spatially

contiguous region of the preceding layer. For example, as shown in Figure S3, the highlighted

output neuron is influenced by a 3× 3 region (nine neurons) from the previous feature map.

In contrast, fully connected layers establish connections between every neuron in one

layer and all neurons in the preceding layer. This dense connectivity enables the network

to integrate the local patterns extracted by the convolutional layers and to model complex,

global relationships across the entire input. When paired with nonlinear activation functions,

fully connected layers allow the model to learn intricate combinations of features, which is

particularly useful for classification tasks.

Figure S5 illustrates a representative CNN architecture. The input image is shown in

blue, followed by convolutional feature maps in yellow, a pooled feature map in orange,

and fully connected layers in purple and green. These final layers synthesize the extracted

features and map them to the output space, completing the decision-making process of the

network.

1D CNN for Raman Spectra While the CNN architecture shown in Figure S5 is de-

signed for two-dimensional (2D) inputs such as images, Raman spectra are fundamentally

S-15

Figure S5: Illustrative example of a typical CNN architecture.

one-dimensional (1D) signals, with intensity values indexed by Raman shift. To process these

spectral data effectively, we employ a one-dimensional convolutional architecture tailored to

the structure of Raman signals.

Figure S6 illustrates a simplified example of a 1D convolution applied to a binary input

vector, where a value of 1 indicates the presence of a peak and 0 indicates its absence. The

convolution kernel in this example is defined as [−2, 4,−2], designed to activate strongly

when centered on a peak. The convolution at a given position t is computed as:

S(t) =
∑

n

x(n) · w(t− n), (16)

where x(n) denotes the input signal, w(n) the kernel weights, and S(t) the output signal.

For example, if the peak is centered at position t, the kernel response evaluates to S(t) =

(−2× 0) + (4× 1) + (−2× 0) = 4.

Crucially, in a CNN, the kernel weights are not fixed but are learned during training

via backpropagation. This allows the network to discover discriminative patterns in the

data—such as peak positions, widths, and intensities—directly from raw spectra without

requiring manual feature engineering.

While pooling layers can provide limited translation invariance, their use in spectral data

must be approached with caution. In Raman spectroscopy, the absolute positions of spectral

S-16

0

0

0

0

1

0

-2

4

-2

4

Figure S6: Illustration of a 1D convolution applied to a Raman spectrum using a kernel that
responds selectively to peaks.

peaks carry significant chemical information. Excessive pooling may blur these features and

degrade classification performance. To mitigate this, one can limit the depth or stride of

pooling layers, or omit them entirely in favor of preserving high resolution along the spectral

axis. This design choice allows the model to remain sensitive to meaningful spectral shifts

while maintaining robustness against minor experimental noise.

Semi-Supervised Learning

In many real-world scenarios, labeled data are scarce while unlabeled data are abundant.

Semi-supervised learning provides a framework to exploit this imbalance by using unlabeled

data to improve model performance when labels are limited. The central assumption is that

the posterior class distribution p(C|X) can be inferred more effectively when incorporating

knowledge of the marginal input distribution p(X).S9 In other words, understanding the

structure of the input space can help refine the classification boundary, even without direct

access to labels.

Figure S7 shows a conceptual example of binary classification. The colored points rep-

resent labeled data, while the gray points represent unlabeled samples. In the absence of

unlabeled data (left panel), the decision boundary is overly simplistic. Incorporating the

unlabeled data (right panel) enables the model to learn a boundary that better reflects the

S-17

Figure S7: Illustrative example of semi-supervised learning. Left: decision boundary based
only on labeled data. Right: boundary refined using unlabeled data.

Generator

Latent space

Discriminator

Real samples

Generated

samples

"real"

or

"fake"

Figure S8: Architecture of a Generative Adversarial Network (GAN). Adapted from.S10

true data distribution. This refinement relies on the smoothness assumption, which posits

that nearby points in the input space are likely to share the same label.

0.0.2 Semi-Supervised Generative Adversarial Networks

Generative Adversarial Networks (GANs) can be extended to semi-supervised learning, re-

sulting in Semi-Supervised GANs (SGANs), which leverage both labeled and unlabeled data

to improve classification performance.

Generative Adversarial Networks As illustrated in Figure S8, a standard GAN consists

of two neural networks trained in opposition: a Generator (G) and a Discriminator (D). The

Generator learns to map random noise vectors z ∼ pz(z) to synthetic samples that resemble

real data drawn from a distribution p(X). The Discriminator receives inputs that are either

real data or generated data from the Generator, and outputs the probability that a sample

S-18

is real.

The objective of G is to generate data that D cannot distinguish from real samples,

while D aims to correctly identify whether an input is real or generated. Formally, the GAN

optimization problem is expressed as:S11

min
G

max
D

V (D,G) = E
x∼pdata(x)[logD(x)]

+ E
z∼pz(z)[log(1−D(G(z)))],

(17)

where D(x) is the predicted probability that x is a real sample, and G(z) is the output

of the Generator. As training progresses, G learns to approximate the true data distribu-

tion p(X), enabling the generation of realistic synthetic samples. GANs are widely used in

applications such as image synthesis and data augmentation, where the trained Generator

produces new data samples, and the Discriminator is typically used only during training.

Semi-Supervised GANs To incorporate unlabeled data, the SGAN framework modifies

the role of the Discriminator. Instead of performing binary classification (real vs. fake), D is

trained to classify inputs into K+1 categories: the original K real classes and an additional

class representing synthetic data generated by G.S12

The Discriminator receives three types of input: labeled real samples, unlabeled real

samples, and generated (synthetic) samples. Its objectives are as follows:

1. Classify labeled real samples correctly into one of the K real classes.

2. Assign unlabeled real samples to one of the K real classes, acknowledging their au-

thenticity.

3. Assign generated samples to the (K + 1)th class, identifying them as synthetic.

This design enables D to simultaneously act as a classifier and a detector of synthetic

data, using adversarial training to improve generalization.

S-19

The SGAN objective function combines a supervised loss term with an unsupervised

adversarial loss:

L = Lsupervised + Lunsupervised,

Lsupervised = −E(x,y)∼pdata log pmodel(y | x, y ≤ K),

Lunsupervised = −Ex∼pdata log[1− pmodel(y = K + 1 | x)]

− Ex∼G log[pmodel(y = K + 1 | x)],

(18)

Here, Lsupervised encourages accurate classification of labeled data, while Lunsupervised pe-

nalizes the Discriminator for misclassifying real samples as synthetic and rewards it for

correctly identifying synthetic samples. This formulation enables the model to benefit from

unlabeled data and adversarial feedback, enhancing its capacity to generalize from limited

supervision.

0.0.3 Contrastive Learning

In the context of unsupervised representation learning for Raman spectra, contrastive learn-

ing has emerged as a promising approach. Although initially introduced to improve few-shot

learning in supervised settings, contrastive methods have since gained popularity in self-

supervised learning frameworks, where label information is unavailable.S13

In this work, we adopt the SimCLR framework introduced by Chen et al.,S14 which learns

useful representations by maximizing agreement between different augmented views of the

same sample. Specifically, two stochastic augmentations, T (·) and T ′(·), are independently

applied to each input sample, producing a positive pair. These augmented inputs are passed

through an encoder network f(·) to extract high-level features, followed by a projection

head g(·) that maps the encoded representations into a latent space. The similarity between

representations is measured using cosine similarity:

S-20

sim(z, z′) =
z⊤z′

∥z∥ · ∥z′∥
, (19)

where z and z′ are the projected representations of the augmented inputs, and ∥·∥ denotes

the Euclidean norm.

To train the network, a contrastive loss is applied that encourages the representations of

positive pairs to be similar, while pushing apart those of negative pairs. For a positive pair

(i, j) within a batch of 2N augmented examples, the contrastive loss is defined as:

Li,j = − log
exp(sim(zi, zj)/τ)

∑2N
k=1 1[k ̸=i] exp(sim(zi, zk)/τ)

, (20)

where τ is a temperature parameter that controls the concentration of the distribution,

and 1[k ̸=i] is an indicator function equal to 1 when k ̸= i and 0 otherwise. Each positive pair

is formed by two augmentations of the same original input, while the remaining 2(N − 1)

examples in the batch serve as negative samples.

For Raman spectroscopy, the effectiveness of contrastive learning strongly depends on

appropriate data augmentations that preserve the underlying chemical identity of the sample.

Useful augmentation strategies include:

• Additive noise: Mimicking measurement noise to increase robustness.

• Intensity scaling: Varying signal amplitude to reflect experimental variability.

• Peak shifting: Slightly translating spectral peaks to simulate calibration errors while

maintaining chemical interpretability.

By leveraging these transformations, contrastive learning enables the model to discover

latent structure in the spectral data without requiring labels, laying the groundwork for

downstream tasks such as classification or clustering.

S-21

Training and Validation Loss Curves

To assess convergence and over-/under-fitting, we plot the training and validation loss curves

for our MLP variants and the 1-D CNN on both RRUFF-raw and RRUFF-clean datasets.

Figure S9: Training and validation categorical cross-entropy loss for MLP-small on the
RRUFF-raw dataset. Persistent high validation loss indicates underfitting.

Figure S10: Training and validation categorical cross-entropy loss for MLP-small on the
RRUFF-clean dataset.

S-22

Figure S11: Training and validation categorical cross-entropy loss for MLP-mid on the
RRUFF-raw dataset.

Figure S12: Training and validation categorical cross-entropy loss for MLP-mid on the
RRUFF-clean dataset.

S-23

Figure S13: Training and validation categorical cross-entropy loss for MLP-large on the
RRUFF-raw dataset. A widening gap indicates overfitting.

Figure S14: Training and validation categorical cross-entropy loss for MLP-large on the
RRUFF-clean dataset.

S-24

Figure S15: Training and validation categorical cross-entropy loss for CNNs on the
RRUFF-raw dataset. Fast convergence and small generalization gap highlight strong fit.

Figure S16: Training and validation categorical cross-entropy loss for CNNs on the
RRUFF-clean dataset.

S-25

Transfer Learning Fine-Tuning Curves

Here we add the training curves for the transfer learning experiments.

Figure S17: Fine-tuning training and validation Top-1 accuracy for c = 5 new classes.

Figure S18: Fine-tuning training and validation Top-1 accuracy for c = 10 new classes.

S-26

Figure S19: Fine-tuning training and validation Top-1 accuracy for c = 15 new classes.

Figure S20: Fine-tuning training and validation Top-1 accuracy for c = 20 new classes.

S-27

References

(S1) Ball, G. H.; Hall, D. J. ISODATA, a Novel Method of Data Analysis and Pattern

Classification; 1965.

(S2) Pearson, K. On Lines and Planes of Closest Fit to Systems of Points in Space. Lond.

Edinb. Dubl. Philos. Mag. J. Sci. 1901, 2, 559–572.

(S3) Hotelling, H. Analysis of a Complex of Statistical Variables into Principal Compo-

nents. J. Educ. Psychol. 1933, 24, 417–441.

(S4) Jebara, T. Machine Learning: Discriminative and Generative; Springer Science &

Business Media, 2012; Vol. 755.

(S5) Vapnik, V. N. The Nature of Statistical Learning Theory ; Springer-Verlag, 1995.

(S6) Cover, T.; Hart, P. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. Theory

1967, 13, 21–27.

(S7) LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to

Document Recognition. Proc. IEEE 1998, 86, 2278–2324.

(S8) Alom, M. Z.; Taha, T.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.; Hasan, M.;

Essen, B.; Awwal, A.; Asari, V. A State-of-the-Art Survey on Deep Learning Theory

and Architectures. Electronics 2019, 8, 292.

(S9) van Engelen, J. E.; Hoos, H. H. A Survey on Semi-Supervised Learning. Mach. Learn.

2020, 109, 373–440.

(S10) Ouali, Y.; Hudelot, C.; Tami, M. An Overview of Deep Semi-Supervised Learning.

2020; arXiv preprint arXiv:2006.05278.

S-28

(S11) Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.;

Courville, A.; Bengio, Y. Generative Adversarial Nets. Adv. Neural Inf. Process. Syst.

2014.

(S12) Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Im-

proved Techniques for Training GANs. Adv. Neural Inf. Process. Syst. 2016.

(S13) Tian, Y.; Sun, C.; Poole, B.; Krishnan, D.; Schmid, C.; Isola, P. What Makes for

Good Views for Contrastive Learning. CoRR 2020, abs/2005.10243 .

(S14) Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A Simple Framework for Contrastive

Learning of Visual Representations. Proc. Int. Conf. Mach. Learn. 2020; pp 1597–1607.

S-29

	Abstract
	Keywords
	Introduction
	The Database
	Subset of the RRUFF database used in this study
	Preprocessing
	Final Dataset
	Illustrative spectral variability
	Data augmentation strategy
	Implementation and Training Environment

	Classification using SVM and KNN
	Methodology
	Experiments

	Classification using CNNs
	Methodology
	Experiments
	Interpreting CNNs decisions with Grad-CAM

	Understanding CNNs inductive biases for Raman spectra classification
	Methodology: Linking Raman Characteristics with CNNs Behavior
	Experiments: Tuning CNNs for Partial Translational Invariance

	Classification using semi-supervised methods
	Methodology
	Experiments

	Assessing the learnability and representational efficiency of low-level features in Raman Spectra
	Methodology
	Experiments

	Classification using transfer learning
	Methodology
	Experiments

	Conclusion
	Supporting Information
	Acknowledgements
	References

