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I. INTRODUCTION

Vision-based grasping has seen extensive studies [2]. There
are two ways in general to approach data-driven grasping.
Traditionally, grasping is done in a pipeline dependent on the
knowledge of the object [12]. First, the object identity and
pose are visually estimated. Then, grasp candidates trained
on CAD models by some quality measure are retrieved and
transformed from the object frame into the robot frame. Grasps
are executed in descending quality, while pruning unreachable
grasps in terms of inverse kinematics and collision-aware
motion trajectory planning.

A second approach is independent of object identity. Given
a scene, the grasp detector is simply given the raw camera
input and predicts grasp candidates by geometry only [26, 17,
27, 22, 29, 21, 9, 34, 30]. The advantage is that it does not
depend on correct identity and pose estimation, eliminating
the risk of error propagation. With that, however, comes the
disadvantage that the grasp detection is completely unaware
of object semantics, and is thus only useful for pick and place
tasks such as emptying a basket.

A common disadvantage for both approaches is that neither
take object functionality into account. In cases of common tool
use, such as hammer, pliers, or key, the object must be picked
up in a certain orientation in order to execute its functionality.
On the other hand, when the task is simply transportation, the
object can be picked up in any orientation.

1) Task-driven grasping: This shortcoming has been ad-
dressed in several ways. A direct extension to the first ap-
proach is to add constraints to the grasp candidates based on
the given task [31]. A more direct alternative is to compute
grasps by simultaneously taking into account object identity
and functionality. To this end, affordance estimation and task-
driven grasping have been studied [20, 10, 28, 1]. More
recently, deep learning has enabled grasp detection that takes
object identity into account without explicit recognition [18].

2) Touch-based grasping: So far, all cases above are vision-
based grasping. Recently, improvement in tactile sensing
brought touch back into the light for perception [25] and
grasping [5, 3, 13, 15, 23, 6, 8, 16, 7]. Other than exclusively
touch-based grasping, touch is also an effective complement
to vision-based manipulation [11, 24, 14, 19]. The latest vi-
suotactile integration leverages convolutional neural networks
(CNNs) for their capability of end-to-end derivation from raw
sensor readings directly to prediction [33, 4].

We develop a new representation for visuotactile integration
suitable for feature-embedding in CNNs and evaluate grasp

Fig. 1: Robotiq gripper with TakkTile sensors, in real world and simulation.

success. To assess the tactile modality and grasp success, we
train a data set of grasps in simulation, using an array of
contact sensors on a gripper (Fig. 1), and lift the object into
midair. In addition, we are able to measure task success, using
an existing visual semantics predictor [10] to give hints of task
constraints, in the form of probabilistic heat maps.

We show preliminary results that demonstrate the plausibil-
ity of touch, even sparse contacts, in improving grasp success.
We aim to evaluate task success in the future. Furthermore, we
seek to compare and evaluate for the optimal 2D visuotactile
representation. The significance of these projected observa-
tions is that, first, tactile sensors are exclusively either high
resolution or affordable. We target the latter type, both for
accessibility and for independence on sophisticated sensors
and therefore wider adaptability. Second, since touch is a
3D modality, 2D representations inevitably lose information.
However, because of the exponential growth of CNN param-
eters and the sparse nature of touch, 2D image is a compact
representation that makes sparse inputs more meaningful.

In the future, we plan on transferring the model learned in
simulation to the real robot. To this end, the simulation is built
to resemble the real environment, and the simulated contact
sensors have the same resolution and are at the same locations
as on the real gripper. We expect that the model may need to
be retrained or fine-tuned for the real robot.

II. VISUOTACTILE REPRESENTATION

Our goal of visuotactile grasp prediction presents two
problems: spatial correspondence between modalities, and
representation for learning. An obvious answer is point clouds
[11, 16], which is straight-forward for reconstruction. How-
ever, we are interested in higher-level abstractions.

We propose a concatenation of 2D image channels. The first
channel is the depth image. Subsequent channels come from
tactile contacts. Upon contact, the activated tactile sensors’ 3D
positions are obtained by forward kinematics. These positions
are transformed into the camera frame and projected into the



image using the intrinsics matrix, which gives the 2D pixels
that correspond to the 3D positions. This completes the spatial
correspondence between image and touch.

Fig. 2: Example tactile channels, shown as heat map overlaid on RGB for
illustration. Top/bottom row: successful/unsuccessful grasps.

To account for object movement and calibration error, the
exact image pixel is not used; instead, it will be blurred. A
tactile map of the dimensions of the camera image is initialized
to zeros. Pixels corresponding to contacts are given non-zero
values. The resulting matrix is convolved with a maximum
filter and a Gaussian filter. This has two effects. First, it re-
moves the dependence on accurate 3D-to-2D correspondence,
to allow small object movement. Second, it creates denser
representation of the otherwise single-pixel contacts.

The number of channels in the tactile matrix depends on
the representation. We propose several for evaluation: 1. raw
depth z of contacts; 2. thickness d = zT −zC between contact
and camera depth; 3. normals of activated sensors, scaled
by thickness, dn̂. Fig. 2 shows examples in the 3-channel
(xyz) normal and thickness representation. Each channel is
visualized as a heat map; all three are overlaid.

Fig. 3 illustrates the process of visuotactile representation to
grasp success prediction. We use an off-the-shelf TensorFlow
CNN implementation and augment the first and last layers.
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Fig. 3: Number of input channels varies for each tactile representation. Task
channel is used for task success evaluation.

III. TACTILE GRASP DATASET COLLECTION

Grasps with tactile readings are collected in simulation. We
spawn a random set of objects at random positions on a table
(Fig. 4(a)). For each scene, the gripper executes a number of
grasps, given by an off-the-shelf grasp planner e.g. [32]. Any
vision-based planner that gives a wrist pose and a score can
be used. Grasps with good and bad scores are executed, to
produce positive and negative training examples.

The grasp collection process is as follows. For each grasp,
the gripper moves to the goal wrist pose. The fingers are closed
in pinch mode, to make maximum use of the fingertip sensors.
At this point, the object is fixed. Tactile sensors are read, and

the tactile map is constructed as in Section II. Fig. 5 shows
example grasps. Then, the gripper is lifted 50 cm. After the lift,
if the object is still with the gripper, the grasp is successful.

(a) (b)
Fig. 4: (a). A scene. (b). Semantic task map for carry, overlaid on RGB.

Fig. 5: Left/right: Successful/unsuccessful grasps. Rectangular gripper shape
is goal pose; green gripper is actual gripper. On left, surface normals scaled
by z-thickness are plotted as yellow vectors at the activated fingertip sensors.

To evaluate semantic task success, we use an existing vision-
based per-pixel classifier [10], which outputs a probabilistic
heat map (Fig. 4(b)). Its values indicate whether a pixel, if
in contact with the gripper, is compatible with a given task
– carry, pour, handover, or open. For example, for pour, the
gripper should avoid regions near the opening. On the other
hand, for carry, the gripper is free to lift at the opening. Binary
task-compatibility is labeled per-vertex in the CAD model, one
model per task. Ground truth task success is thus obtained by
the task labels of the contact points in the object frame.

Thus far, we have collected over 10,000 grasps in Gazebo
on 10 computers in parallel. The bottleneck is in the gripper
movement, which cannot be sped up. We will evaluate the
simplest tactile representation first, and task success at last.
Since the simulation mimics our real environment, including
collision scene, we anticipate the obstacles in transferability
to be in sensor noise, reachability, and network adaptability.

IV. PRELIMINARY RESULTS

To investigate the issue of sparse contacts in the whole
scene, we first evaluate on an existing data set for a simplified
case – overhead planar parallel grasps on cropped images [27].
We simulate contacts on Dex-Net Adv-Synth (188,300 image-
grasp pairs) depth images by gradient along the grasp axis. The
addition of tactile input, even as constant-peak blobs, yielded
lower errors (Fig. 6). Meaningful peaks should improve futher.
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Fig. 6: Left: Tactile heat maps with blobs of constant peak z = 1, overlaid on
depth image. Top/bottom: good/bad grasps. Right: Tactile+depth input yielded
lower error rates than depth alone, as steps increase.
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